2014-2015学年江苏省徐州市九年级(上)期末数学试卷解析版
2012-2013学年江苏省徐州市九年级(上)期末数学试卷

2012-2013学年江苏省徐州市九年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(3分)计算(﹣1)(+1)的结果是()A.1 B.﹣1 C.+1 D.3+23.(3分)若等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或124.(3分)下列坐标表示的点中,不在反比例函数y=的图象上的是()A.(﹣2,﹣3)B.(﹣1,﹣6)C.(﹣0.5,12)D.(1.5,4)5.(3分)若正方形的对角线长为,则它的面积为()A.1 B.C.2 D.26.(3分)已知x2﹣1=﹣x,则x﹣的值等于()A.0.382 B.0.618 C.1 D.﹣17.(3分)若实数a、b在数轴上对应点的位置如图所示,则可化简为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b8.(3分)如图,在⊙O中,∠AOB=120°,=2,则∠ADC等于()A.15°B.20°C.30°D.40°二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在第3页相应的答题处,在卷Ⅰ上答题无效)9.(3分)若二次根式有意义,则x的取值范围是.10.(3分)我国“钓鱼岛”周围海域面积约为170 000km2,该数用科学记数法可记作km2.11.(3分)方程x2﹣2x=0的根是.12.(3分)如图为我市某周内的气温走势图,这七天中,温差最大的一天是.13.(3分)如图,半径为1的圆片与数轴相切于原点,将该圆片沿数轴向负方向滚动一周,点A从原点到达点A′的位置,则数轴上点A′对应的实数为.14.(3分)若将一根长为8m的绳子围成一个面积为3m2的矩形,则该矩形的长为m.15.(3分)若一次函数y=x+b的图象与两坐标围成的三角形面积为2,则b=.16.(3分)如图,扇形OAB的圆心角为90°,正方形OCDE的顶点C、E、D分别在OA、OB、上.AF⊥OA且与ED的延长线交于点F.若正方形的边长为1,则图中阴影部分的面积为.三、解答题(本大题共有9小题,共72分)17.(8分)(1)计算:(﹣1)2+()0﹣()﹣1;(2)解方程:x2﹣2x﹣3=0.18.(6分)甲、乙两人进行射击比赛,在相同条件下各射击10次,成绩如图:(1)填表(2)请从不同角度评价甲、乙两人的打靶成绩.19.(8分)如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;(2)BE=BC.20.(8分)如图,在⊙O中,直径AB⊥弦CD,垂足为P,OB=5,PB=2,求CD 的长.21.(8分)如图,在Rt△ABC中,∠ABC=90°,BC=5cm,AC﹣AB=1cm.(1)求AB、AC的长;(2)求△ABC内切圆的半径.22.(8分)某网店以每件40元的价格购进一批商品,若以单价60元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.问:单价定为多少元时,每月销售该商品的利润最大?23.(8分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线的顶点A的坐标是;(2)抛物线与x轴的交点的坐标是;(3)将抛物线绕原点O旋转180°,求所得图象对应二次函数的关系式.24.(8分)如图,在梯形ABCD中,AD∥BC,∠A=∠B=90°,BC=4AD.AB为⊙O 的直径,OA=2,CD与⊙O相切于点E,求CD的长.25.(10分)如图①.点C、B、E、F在直线l上,线段AB与DE重合.将等腰直角三角形ABC以1cm/s的速度沿直线l向正方形DEFG平移,当C、F重合时停止运动.已知△ABC与正方形DEFG重叠部分的面积y(cm2)与运动时间x(s)的函数图象如图②所示.请根据图中信息解决下列问题:(1)填空:m=s;n=cm2;(2)分别写出0≤x≤4和4<x≤m时,y与x的函数关系式;(3)x为何值时,重叠部分的面积为 3.5cm2?2012-2013学年江苏省徐州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)计算(﹣1)(+1)的结果是()A.1 B.﹣1 C.+1 D.3+2【解答】解:原式=()2﹣1=2﹣1=1.故选A.3.(3分)若等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或12【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C.4.(3分)下列坐标表示的点中,不在反比例函数y=的图象上的是()A.(﹣2,﹣3)B.(﹣1,﹣6)C.(﹣0.5,12)D.(1.5,4)【解答】解:A、把(﹣2,﹣3)代入y=得:左边=﹣3,右边=﹣3,左边=右边,即(﹣2,﹣3)在反比例函数图象上,故本选项错误;B、把(﹣1,﹣6)代入y=得:左边=﹣6,右边=﹣6,左边=右边,即(﹣1,﹣6)在反比例函数图象上,故本选项错误;C、把(﹣0.5,12)代入y=得:左边=12,右边=﹣12,左边≠右边,即(﹣0.5,12)不在反比例函数图象上,故本选项正确;D、把(1.5,4)代入y=得:左边=4,右边=4,左边=右边,即(1.5,4)在反比例函数图象上,故本选项错误;故选C.5.(3分)若正方形的对角线长为,则它的面积为()A.1 B.C.2 D.2【解答】解:∵四边形ABCD是正方形,∴AO=BO=AC=,∵∠AOB=90°,由勾股定理得,AB=1,S正方形ABCD=1×1=1.故选A.6.(3分)已知x2﹣1=﹣x,则x﹣的值等于()A.0.382 B.0.618 C.1 D.﹣1【解答】解:由x≠0,已知等式变形得:x﹣=﹣1.故选D7.(3分)若实数a、b在数轴上对应点的位置如图所示,则可化简为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b【解答】解:∵实数a、b在数轴上对应点的位置可知b>a,∴b﹣a>0.原式==b﹣a.故选:C.8.(3分)如图,在⊙O中,∠AOB=120°,=2,则∠ADC等于()A.15°B.20°C.30°D.40°【解答】解:连接OC,∵∠AOB=120°,∴=120°,∵=2,∴==×120°=40°,∴∠AOC=40°,∴∠ADC=∠AOC=×40°=20°.故选B.二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在第3页相应的答题处,在卷Ⅰ上答题无效)9.(3分)若二次根式有意义,则x的取值范围是x≥1.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.10.(3分)我国“钓鱼岛”周围海域面积约为170 000km2,该数用科学记数法可记作 1.7×105km2.【解答】解:170 000=1.7×105,故答案为:1.7×105.11.(3分)方程x2﹣2x=0的根是x1=0,x2=2.【解答】解:因式分解得x(x﹣2)=0,解得x1=0,x2=2.故答案为x1=0,x2=2.12.(3分)如图为我市某周内的气温走势图,这七天中,温差最大的一天是周六.【解答】解:这七天的温差分别是:昨天:﹣2﹣(﹣10)=8;今天:2﹣(﹣6)=8;周二:0﹣(﹣5)=5;周三:2﹣(﹣3)=5;周四:3﹣(﹣1)=4;周五:6﹣0=6;周六:4﹣(﹣5)=9;则温差最大的一天是周六.故答案为周六.13.(3分)如图,半径为1的圆片与数轴相切于原点,将该圆片沿数轴向负方向滚动一周,点A从原点到达点A′的位置,则数轴上点A′对应的实数为﹣2π.【解答】解:∵圆的半径为1,∴周长为2π,∴点A′对应的实数为﹣2π.故答案为:﹣2π.14.(3分)若将一根长为8m的绳子围成一个面积为3m2的矩形,则该矩形的长为3m.【解答】解:设该矩形的长为xm,则宽为(4﹣x)m,由题意,得x(8÷2﹣x)=3,解得:x1=3,x2=1.答:矩形的长为3m.15.(3分)若一次函数y=x+b的图象与两坐标围成的三角形面积为2,则b=±2.【解答】解:∵令x=0,则y=b;令y=0,则x=﹣b,∴一次函数y=x+b的图象与x、y轴的交点分别为(﹣b,0),(0,b),∴b2=2,解得b=±2.故答案为:±2.16.(3分)如图,扇形OAB的圆心角为90°,正方形OCDE的顶点C、E、D分别在OA、OB、上.AF⊥OA且与ED的延长线交于点F.若正方形的边长为1,则图中阴影部分的面积为﹣1.【解答】解:连接OD,∵正方形OCDE的面积为1,∴正方形OCDE的边长为1,∴OD=,∴AC=﹣1,∵DE=DC,BE=AC,=,∴S=长方形ACDF的面积=AC•CD=﹣1.阴故答案为:﹣1.三、解答题(本大题共有9小题,共72分)17.(8分)(1)计算:(﹣1)2+()0﹣()﹣1;(2)解方程:x2﹣2x﹣3=0.【解答】解:(1)原式=1+1﹣2=0;(2)由原方程,得(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得,x1=3,x2=﹣1.18.(6分)甲、乙两人进行射击比赛,在相同条件下各射击10次,成绩如图:(1)填表(2)请从不同角度评价甲、乙两人的打靶成绩.【解答】解:(1)由图形可知,甲的最好成绩是9环,所以甲命中9环以上次数为0次;把乙运动员10次比赛成绩按从小到大的顺序排列为:2、4、6、7、7、8、8、9、9、10;位于中间的两个数是7、8,所以乙的中位数为:(7+8)÷2=7.5.填表如下:(2)①从平均数来看,两人成绩不相上下;②从中位数来看,乙的成绩较好;③从方差来看,甲的成绩比较稳定;④从成绩变化趋势看,乙的成绩越来越好.19.(8分)如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;(2)BE=BC.【解答】证明:(1)∵BD是角平分线,∴∠EBD=∠DBC,∵E、D是中点,∴ED是中位线,∴ED∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB;(2)由∠EBD=∠EDB得BE=DE,∵ED是中位线,∴ED=BC,∴BE=BC.20.(8分)如图,在⊙O中,直径AB⊥弦CD,垂足为P,OB=5,PB=2,求CD的长.【解答】解:连接OC,∵⊙O中,直径AB⊥弦CD,∴CD=2CP.在Rt△OPC中,∵PC2+PO2=OC2,且OP=OB﹣PB=5﹣2=3.∴PC===4,∴CD=2CP=8.21.(8分)如图,在Rt△ABC中,∠ABC=90°,BC=5cm,AC﹣AB=1cm.(1)求AB、AC的长;(2)求△ABC内切圆的半径.【解答】解:(1)设AB=xcm,则AC=(x+1)cm,∵在Rt△ABC中,由勾股定理得:AC2﹣AB2=BC2,∴((x+1)2﹣x2=52,解得:x=12,即AB=12cm,AC=13cm;(2)连接AO、BO、CO、OD、OE、OF,设内切圆的半径为y,根据题意,得S=×5×12=×5r+×12r+×13r,△ABC解得:r=2,即所求内切圆的半径为2cm.22.(8分)某网店以每件40元的价格购进一批商品,若以单价60元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.问:单价定为多少元时,每月销售该商品的利润最大?【解答】解:根据题意得出:y=[300﹣10(x﹣60)](x﹣40)=﹣10(x﹣90)(x﹣40)=﹣10(x﹣65)2+6250.当x=65即单价为65元时,每月销售该商品的利润最大.23.(8分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线的顶点A的坐标是(2,4);(2)抛物线与x轴的交点的坐标是(0,0),(4,0);(3)将抛物线绕原点O旋转180°,求所得图象对应二次函数的关系式.【解答】解:(1)y=x2﹣4x的顶点坐标是(2,﹣4);(2)当x2﹣4x=0时,解得x=4,x=0,即抛物线与x轴的交点坐标是(4,0),(0,0);(3)将抛物线绕原点O旋转180°,所得图象对应二次函数的关系式y=﹣x2+4x,故答案为:(2,﹣4),(4,0),(0,0).24.(8分)如图,在梯形ABCD中,AD∥BC,∠A=∠B=90°,BC=4AD.AB为⊙O 的直径,OA=2,CD与⊙O相切于点E,求CD的长.【解答】解:∵AB为⊙O的直径,∠A=∠B=90°,∴AD、BC均为⊙O的切线,又CD与⊙O相切于点E,∴DE=DA,CE=CB,∴CD=AD+BC,设AD=x,则BC=4AD=4x,CD=5x,如图所示,作梯形的高DF,在Rt△CDF中,DF=AB=2OA=4,CF=CB﹣BF=CB﹣AD=3x,CD=5x,由勾股定理得:DF2+FC2=CD2,得42+(3x)2=(5x)2,解得:x1=1,x2=﹣1(舍去),∴CD=5x=5.25.(10分)如图①.点C、B、E、F在直线l上,线段AB与DE重合.将等腰直角三角形ABC以1cm/s的速度沿直线l向正方形DEFG平移,当C、F重合时停止运动.已知△ABC与正方形DEFG重叠部分的面积y(cm2)与运动时间x(s)的函数图象如图②所示.请根据图中信息解决下列问题:(1)填空:m=8s;n=8cm2;(2)分别写出0≤x≤4和4<x≤m时,y与x的函数关系式;(3)x为何值时,重叠部分的面积为 3.5cm2?【解答】解:(1)由题意可知,当点C与点E重合时,y有最大值,由图2知此时x=4s,∵等腰直角三角形ABC运动速度为1cm/s,∴CB=AB=1×4=4,=×4×4=8,即n=8cm2;∴S△ABC∵点C与点F重合时,面积达到最小值0,又EF=CB=4,∴t=8s,即m=8s.故答案为8,8;(2)当0≤x≤4时,如图,设DE与AC交于点H.∵BE=x,∴EH=CE=BC﹣BE=4﹣x,∴y=S=(EH+AB)•BE=(4﹣x+4)x=﹣x2+4x,梯形ABEH即y=﹣x2+4x;当4<x≤8时,如图,设GF与AC交于点I.∵BE=x,BC=4,∴CE=BE﹣BC=x﹣4,∴FI=CF=EF﹣EC=4﹣(x﹣4)=8﹣x,=CF2=(8﹣x)2=x2﹣8x+32,∴y=S△CFI即y=x2﹣8x+32;综上所述,y=;(3)当0≤x≤4时,令﹣x2+4x=3.5,整理,得x2﹣8x+7=0,解得x1=1,x2=7(不合题意,舍去);当4<x≤8时,令x2﹣8x+32=3.5,整理,得x2﹣16x+57=0,解得x1=8﹣,x2=8+(不合题意,舍去).综上所述,当x为1s或(8﹣)s时,重叠部分面积为3.5cm2.。
江苏省徐州市2014届九年级第二次质量检测数学试卷(含答案)(扫描版)

解得:x=20…………………………5 分 经检验:x=20 是原方程的解…………………………6 分 ∴公交巴士的速度为 20km/h,小汽车的速度为 60km/h…………………………7 分 23.∵四边形 ABCD 是平行四边形 ∴AB∥CD 即 AF∥DC AB=CD…………………………1 分 ∴∠AFE=∠DCE…………………………3 分 ∵E 为 AD 的中点 ∴AE=DE 又∵∠AEF=∠DEC ∴△AEF≌△DEC…………………………6 分
化 简 得 : 3t -64t+500=0 无 解 ③ 若 ∠OQP=90°有 PQ⊥x 轴 ∴
1 4 t= t+1 2 5
2
∴ t=
10 3
∵ t=
10 满 足 0< t< 10 条 件 3 10 . …………………………7 分 3
∴ t 值 存 在 且 t=
当 点 P 在 BC 上 运 动 时 10< t< 20 作 PM⊥y 轴交 y 轴于点 M,PN⊥x 轴交 x 轴于点 N 由 题 意 得 : BP=t-10 OQ=4t-34
∴FA=CD ∴FA=AB…………………………8 分 24.(1)2…………………………3 分 (2)列表或树状图正确…………………………6 分 (3)P(两次摸球颜色相同)=
4 …………………………8 分 25
25.(1)∵∠APD 是△APC 的外角 ∴∠APD=∠A+∠C ∵∠CAB=50°,∠APD=80° ∴∠C=80°-∠A=30°…………………………2 分 ∵∠C、∠B 所对的是同弧 ∴∠B=30°…………………………4 分 (2)过 O 作 OE⊥BD 交 BD 于 E 在 Rt△OEB 中 ∠B=30°OB=5cm ∴BE=
江苏2014届九年级上期末考试数学试题及答案

2013—2014学年度第一学期期末考试 初三数学一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在答题纸上.)1▲ ) A .4 B .-4 C .±4 D2.函数y =2—1-x 中自变量x 的取值范围是( ▲ ) A .x >1B .x ≥1C .x ≤1D .1≠x3.下列图案既是轴对称图形,又是中心对称图形的是( ▲ )A .B .C .D .4.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是( ▲ ) A .极差是20B .中位数是91C .众数是98D .平均数是915.在平面几何中,下列命题为真命题的是( ▲ ) A .四边相等的四边形是正方形 B .四个角相等的四边形是矩形C .对角线相等的四边形是菱形 D .对角线互相垂直的四边形是平行四边形6.已知圆锥的底面半径为2,母线长为4,则它的侧面积为( ▲ )A .4πB .16πC .43πD .8π7.已知⊙O 的半径是5,直线l 是⊙O 的切线,P 是l 上的任一点,那么( ▲ )A . 0<OP <5 B . OP =5 C . OP >5D . OP ≥58.如图,已知:在边长为12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF =3,则BE 长为( ▲ )A .1B .2.5C .2.25D .1.59.如图,已知:在梯形ABCD 中,CD ∥AB ,AD 、BC 的延长线相交于点E ,AC 、BD 相交于点O ,连接EO 并延长交AB 于点M ,交CD 于点N .则S △AOE :S △BOE 等于( ▲ )A .1∶1B .4∶3C .3∶4D .3∶210.如图,在平面直角坐标系x O y 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B (4n ,0)(n 为正整数),记△AOB 内部(不包括边界)的整点个数为m .则m 等于( ▲ ) A .3n B .3n -2C .6n+2D .6n -3二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.)11.分解因式:x 2-2x = ▲ .12.3月20日,无锡市中级人民法院依法裁定,对无锡尚德太阳能电力有限公司实施破产重组.据调查,截至2月底,包括工行、农行、中行等在内的9家债权银行对无锡尚德的本外币授信余额折合人民币已达到7 100 000 000元,则7 100 000 000可用科学记数法表示为 ▲ .13.若双曲线xky =与直线13+=x y 的一个交点的横坐标为1-,则k 的值为 ▲ .14.六边形的内角和等于 ▲ .15.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E , OE =3cm ,则AD 的长为 ▲ . 16.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若CD =2EF =4,BC =4 2 ,则∠C 等于 ▲ .17.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm 2.(结果可保留根号) 18.在平面直角坐标系中,点A 、B 、C 的坐标分别为(2,0),(3,3),(1,3),点D 、E 的坐标分别为(m ,3m ),(n ,33n )(m 、n 为非负数),则CE +DE +DB 的最小值是 ▲ .三、解答题:(本大题共10小题,共84分.解答时将文字说明、证明过程或演算步骤写在答题纸相应的位置上.)第8题图第9题图F E DBA19.(本题满分8分)计算或化简:(1)计算:()01213332-+⨯---. (2)先化简,再求值:()()()x x x x +-+-333,其中x =-2.20.(本题满分8分)⑴ 解方程: . ⑵ 解不等式组:12512x x x +⎧⎪⎨->⎪⎩≤,,.21.(本题满分8分)在数学课上,陈老师在黑板上画出如图所示的图形,在△AEC 和△DFB 中,已知∠E =∠F ,点A ,B ,C ,D 在同一直线上,并写下三个关系式:①AE ∥DF ,②AB =CD ,③CE =BF .请同学们从中再任意选取两个作为补充条件,剩下的那个关系式作为结论构造命题.小明选取了关系式①,②作为条件,关系式③作为结论。
2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .等边三角形 C2.如右图,数轴上点N 表示的数可能是( ) A .2 B .3 C .5 D . 10 3.给出下列四个结论,其中正确的结论为( )A .等腰三角形底边上的中点到两腰的距离相等B .正多边形都是中心对称图形C .三角形的外心到三条边的距离相等D .对角线互相垂直且相等的四边形是正方形 4.已知⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系是( ) A .外切 B .相交 C .内切 D .内含 5.对任意实数x ,多项式1062-+-x x 的值是一个( )A.正数B.负数C.非负数D.无法确定6.将抛物线12+=x y 先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2 7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13 B .11 C .11或13 D .128.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面 的四个结论:①OA=3;②a+b+c <0;③ac >0; ④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①② 二、填空题(本大题共10个小题,每小题3分,共30分.) 9.在函数关系式11-=x y 中,x 的取值范围是 .10.已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 cm .11.抛物线2y x 12=-+()的顶点坐标是 .12.平面直角坐标系内的三个点A (1,0)、B (0,-3)、C (2,-3) 确定一个圆(填“能”或“不能”)。
江苏省徐州市九年级上学期期末数学试卷 (解析版)

江苏省徐州市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒2.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-33.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .44.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒5.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74 B .44 C .42 D .40 6.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <1 7.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2B .2C .-1D .18.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣39.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1610.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm12.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°13.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个14.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A.-2 B.2 C.-3 D.3 15.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+1x=4 D.x2=3x﹣2二、填空题16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.已知小明身高1.8m,在某一时刻测得他站立在阳光下的影长为0.6m.若当他把手臂竖直举起时,测得影长为0.78m,则小明举起的手臂超出头顶______m.19.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是2200.5s t t=-,飞机着陆后滑行______m才能停下来.20.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.21.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.22.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.23.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.24.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.25.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.26.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 27.抛物线()2322y x =+-的顶点坐标是______.28.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.29.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.32.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值. 33.解下列一元二次方程. (1)x 2+x -6=0; (2)2(x -1)2-8=0.34.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点. (2)求证:AE=4CE. (3)求图中阴影部分的面积. 35.解方程: (1)x 2-3x+1=0;(2)x (x+3)-(2x+6)=0.四、压轴题36.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于32,请直接写出圆心B 的横坐标B x 的取值范围.37.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.38.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.39.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式. 40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F .(1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD 的度数,再根据直径所对的圆周角是90°,利用内角和求解. 【详解】解:连接AD,则∠BAD=∠BCD=28°, ∵AB 是直径, ∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C. 【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.2.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.3.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.4.D解析:D 【解析】 【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解. 【详解】 连接CO , ∵26ADC ∠=︒∴∠AOC=252ADC ∠=︒ ∵//OA BC ∴∠OCB=∠AOC=52︒ ∵OC=BO , ∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.5.C解析:C 【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.6.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.7.D解析:D 【解析】 【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可. 【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.10.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=3BD=3,∴△ABC的面积为12BC•AD=1232⨯⨯=3,S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.12.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=512AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.15.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,19.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.20.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x -5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x 1,x 2是关于 x 的方程x 2+3x -5=0的两个根,根据根与系数的关系,得,x 1+x 2=-3,x 1x 2=-5,则 x 1+x 2-x 1x 2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x 1+x 2=-3,x 1x 2=-5是解题的关键.21.y =-5(x+2)2-3【解析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.22.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=6,∠AOB=90°,且OA=OB,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=,∠AOB=90°,且OA=OB,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.23.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°24.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:58 【解析】 【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55538=+ 故答案为:58. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 25.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.26.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】 本题考查圆锥的计算,掌握公式正确计算是解题关键.27.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .28.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键. 29.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB ,∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.x 1=2,x 2=8.【解析】【分析】把已知两点坐标代入二次函数解析式求出a 与b 的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,404216836616a b a b =-+⎧⎨-=++⎩解得:110a b =⎧⎨=-⎩∴求得二次函数关系式为21016y x x =-+,当y=0时,210160x x -+=,解得x 1=2,x 2=8.【点睛】此题考查了抛物线与x 轴的交点,抛物线与x 轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.32.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, 2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.33.(1)123;2x x =-=;(2)123;1x x ==-【解析】【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=0.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.34.(1)见解析;(2)见解析;(3【解析】【分析】(1)易求DF 长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF ,EF=2CE 即可得;(3)先证明△OFG 为等边三角形,△OPG 为等边三角形,即可确定扇形圆心角∠POG 和∠GOF 的大小均为60°,所以两扇形面积相等, 通过割补法得出最后阴影面积只与矩形OPDH 和△OGF 有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F 是CD 的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP ,OG,作OH ⊥FG,∵∠AFD=60°,OF=OG,∴△OFG 为等边三角形,同理△OPG 为等边三角形,∴∠POG=∠FOG=60°,OH=33OG ,∴S 扇形OPG =S 扇形OGF , ∴S 阴影=(S 矩形OPDH -S 扇形OPG -S △OGH )+(S 扇形OGF -S △OFG )=S 矩形OPDH -32S △OFG =3132323222 , 即图中阴影部分的面积3.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.35.(1)x 135+x 235-2)x 1=-3,x 2=2. 【解析】试题分析:(1)直接利用公式法求出x 的值即可;(2)先把原方程进行因式分解,再求出x 的值即可.试题解析:(1)∵一元二次方程x 2-3x+1=0中,a=1,b=-3,c=1,∴△=b 2-4ac=(-3)2-4×1×1=5.∴x=24(3)5352212b b ac a -±---±±==⨯. 即x 135+x 235- (2)∵因式分解得 (x+3)(x-2)=0,∴x+3=0或x-2=0,解得 x 1=-3,x 2=2.考点:1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.四、压轴题36.(1)②;(2)±1;(3)23<B x <33或733-<B x <23-【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,22PM OP OM=-,∵1=2PMOS PM OM••,∴要使PMO△面积最小,则PM最小,即OP最小即可,当OP⊥l时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:111=1222AEFS AE EF EF••=⨯⨯=,故EF=1.在△AEF中,根据勾股定理得:22AF AE==。
2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()23.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,7.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二28.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣19.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )10.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 _________ . 12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是_________ .13.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P 1.使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;…照此规律重复下去,则点P 2013的坐标为 _________ .14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是 _________ . A . a <0B .a ﹣b+c <0 C . ﹣D . 4ac ﹣b 2<﹣8a15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC 于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x 的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()=2≤3.(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.(2013•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中÷=127.(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二2.8.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()﹣<最小值:9.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()BG=4AG==210.(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()∴==,二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是4或﹣4.12.(2013•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵14.(2013•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是.从这副牌中任意抽取一张,则这张牌是标有字母的概率是=故答案为:=15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.16.(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.时,抛物线与,×x<<17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是在﹣2<b<2范围内的任何一个数.18.(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).,根据垂径定理可得:=由=E=∴,∵,AG===E=AD=,×=3∴(∴,,;三.解答题(共10小题)19.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)x个月,则乙队施工)20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.=﹣21.(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC 点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.AE=CE=•AE=.22.(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.BC=3AM=6r=6r=CE=2r=OM=6﹣BE=2OM=BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6﹣BE=2OM=,∴,.23.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.∴∴××,解得,x++时,有最大值24.(2013•义乌市)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.,=11时,25.(2013•盐城)如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.y=y=∴﹣x,FH=FOB==x×,×=1,﹣﹣,=,AD==2xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=26.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC 上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.BE EH=:B==EQ=AEH==,EH=BE::27.(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.,解得,mN=N=mON==点坐标为(m×≤,,,当≤(+,到达最高位置时的坐标为()28.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.==∴=,即==362)代入,解得x=36(负值舍去))代入,解得xx x y=31。
2014—2015学年第一学期初三年级数学期末考试试卷含答案
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
苏科版2014-2015年九年级上学期期末考试名校联考数学试题及答案
苏科版2014~2015年九年级上学期期末考试名校联考数学试题时间120分钟满分130分2015、2、17一、选择题(每题3分,共30分.)1.一元二次方程x2-x-2=0的解是…………………………………………………().A.x1=1,x2=2 B.x1=1,x2=-2 C.x1=-1,x2=-2 D.x1=-1,x2=2 2.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是…………().A.r> 6 B.r≥ 6 C.r< 6 D.r≤ 6 3.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为………………………………………………………………………………().A.302海里 B.303海里 C.60海里 D.306海里4.某机械厂七月份生产零件50万个,第三季度共生产零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是……………………………………………().A.50(1+x)2=196 B.50+50(1+x)2=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196 5.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是……………………………………………………………………………().A.众数 B.方差 C.中位数 D.平均数6.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是………………………………………().A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM∶MA=1∶2 7.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列有4个结论:①b2-4ac>0;②abc<0;③b<a+c;④4a+b=1,其中正确的结论为……………………().A.①② B.①②③ C.①②④ D.①③④(第9题) 8.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是……………………………………………………………( ).A .2B . 3C . 32D . 329.如图,点A (a ,b )是抛物线y =12x 2上位于第二象限的一动点,OB ⊥OA交抛物线于点B (c ,d ).当点A 在抛物线上运动的过程中,以下结论: ①ac 为定值;②ac =-bd ;③△AOB 的面积为定值;④直线AB 必过一定点.其中正确的结论有………………………………………( ). A .4个 B .3个 C .2个 D .1个10.现定义一种变换:对于一个由任意5个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1.例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2).则下面序列可以作为S 1的是……………………………………………………( ).A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)二、填空题(每题2分,共16分.)11.抛物线y =x 2-2x +3的顶点坐标是 .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下洗匀后放在桌子上,任取一张,那么取到字母e 的概率为 .13.已知命题“关于x 的一元二次方程x 2+bx +14=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是 . 14.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .15.如图,添加一个条件: ,使△ADE ∽△ACB .16.已知y 是关于x 的函数,函数图象如图所示,则当y >0时,自变量x 的取值范围是 .(第7题)(第8题)(第3题)(第6题)(第17题)(第18题)C17.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 等于 .18.如图,在Rt △ABC 中,∠B=90°, sin ∠BAC =13,点D 是AC 上一点,且BC =BD=2,将Rt △ABC 绕点C 旋转到Rt △FEC 的位置,并使点E 在射线BD 上,连接AF 交射线BD 于点G ,则AG 的长为 .三、解答题(本大题共10小题,共84分.)19.(本题8分)解方程:(1) (4x -1)2-9=0 (2) x 2-3x -2=020.(本题8分)如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E . (1)求证△BPD ∽△CEP .(2)是否存在这样的位置,使PD ⊥DE ?若存在,求出BD 的长; 若不存在,说明理由.(第14题)(第15题)(第16题)A BCDE O 21.(本题8分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线.(2)若圆心O到弦DB的距离为1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)22.(本题8分)2014年12月31日晚23时35分许,上海外滩陈毅广场发生拥挤踩踏事故.为了排除安全隐患,因此无锡市政府决定改造蠡湖公园的一处观景平台.如图,一平台的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使平台更加牢固,欲改变平台的坡面,使得坡面的坡角∠ADB=50°,则此时应将平台底部向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)23.(本题8分)有七张除所标数值外完全相同的卡片,把所标数值分别为-2、-1、3、4的四张卡片放入甲袋,把所标数值分别为-3、0、2的三张卡片放入乙袋.现在先后从甲、乙两袋中各随机取出一张卡片,按照顺序分别用x、y表示取出的卡片上标的数值,并把x、y分别作为点A的横坐标、纵坐标.(1)请用树状图或列表法写出点A(x,y)的所有情况.(2)求点A属于第一象限的点的概率.24.(本题8分)学校冬季趣味运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:甲组7 8 9 7 10 10 9 10 10 10乙组10 8 7 9 8 10 10 9 10 9甲组成绩的中位数是分,乙组成绩的众数是分.(2)计算乙组的平均成绩和方差.(3)已知甲组成绩的方差是1.4,则选择组代表八(5)班参加学校比赛.25.(本题8分)在“美化校园”活动中,某兴趣小组想借助如图所示的直角墙角(两边DA、DC足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=x (m).(1)若花园的面积为192m2,求x的值.(2)若在P处有一棵树与墙DC、DA的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细).求花园面积S的最大值.26.(本题8分)如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D(1,n).(1)求抛物线的函数表达式.(2)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.27.(本题10分)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P、Q分别从点A、点B同时出发,相向而行,速度都为1cm/s.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设运动时间为t (0≤t≤2,单位:s),正方形APDE 和梯形BCFQ重合部分的面积为S (cm2) .(1)当t= s时,点P与点Q重合.(2)当t= s时,点D在QF上.(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数表达式.28.(本题10分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.答案及评分标准一、选择题:(本大题共10小题,每小题3分,共30分.)1.D 2.A 3. A 4. C 5. C 6 . D 7. B 8.B 9. B 10. D 二、填空题:(本大题共8小题,每小题2分,共16分.)11.(1,2) 12.27 13.当b =-12时,方程无解(答案不唯一) 14.300π15.∠AED =∠B (答案不唯一) 16.x <-1或1<x <2 17.2 18.143三、解答题:(本大题共10小题,共84分.)19.(1) (4x -1)2-9=0 (2)x 2―3x ―2=0 4x -1=±3 ……… 2分 Δ=17 ………2分x 1=1,x 2=-12 ……… 4分 x 1=3+172,x 2=3-172……4分 20.解:(1)∵AB =AC ∴∠B =∠C ……………………1分∵∠DPC =∠DPE +∠EPC =∠B +∠BDP ……2分 ∴∠EPC =∠BDP …………………………3分 ∴△ABD ∽△DCE ……………………………4分 (2)作AH ⊥BC在Rt △ABH 和Rt △PDE 中 ∴cos ∠ABH =cos ∠DPE =BH AB =PD PE =35………………… 6分 ∴PD PE =BD PC =35 又∵PC =4 ∴BD =125……………8分 21.(1)证明:连接OD ∵BC 是⊙O 的切线 ∴∠ABC =90°………………1分∵CD =CB ,OB =OD ∴∠CBD =∠CDB ,∠OBD =∠ODB ……………2分 ∴∠ODC =∠ABC =90°即OD ⊥CD ∴CD 为⊙O 的切线 ……………4分 (2)解:作OF ⊥DB ,在Rt △OBF 中,∵∠ABD =30°,OF =1, ∴∠BOF =60°,OB =2,BF = 3 ……… 5分H……3分∵OF ⊥BD , ∴BD =2BF =23, ∠BOD =2∠BOF =120° …………6分 ∴S 阴影=43π-3. …………………………………………………………8分22.解:过A 点作AE ⊥CD 于E .在Rt △ABE 中,∠ABE =62°.∴AE =AB •sin62°=25×0.88=22米, ……2分 BE =AB •cos62°=25×0.47=11.75米,………4分 在Rt △ADE 中,∠ADB =50°, ∴DE =AE tan50°=553…………………6分 ∴DB =DC -BE ≈6.58米.………………7分 答:向外拓宽大约6.58米. ……………8分23.(1)-2 -1 3 4 -3 (-2, -3) (-1, -3) (3, -3) (4, -3) 0 (-2, 0) (-1, 0) (3, 0) (4, 0) 2(-2, 2)(-1, 2)(3, 2)(4, 2)∴如表所示,所有情况共有12种 …………………………………………………4分(2)因为属于第一象限的点的坐标有(3, 2)和(4, 2)共2种,…………………………6分所以概率P =16 ……………………………………………………………………8分24.(1)9.5 10 ……2分 (2)x —=9,方差=1 ……6分 (3)乙 ……8分 25.(1)根据题意,得x (28-x )=192 ………………………………………………2分解得x =12或x =16 ………………………………………………3分 ∴x 的值为12m 或16m ………………………………………………4分(2)∵根据题意,得6≤x ≤13 …………………………………………………5分 又∵S =x (28-x )=-(x -14)2+196 ……………………………………………6分∴当x ≤14时,S 随x 的增大而增大所以当x =13时,花园面积S 最大,最大值为195m 2 ……………………………8分 26.解:(1)设抛物线顶点为E ,根据题意OA =4,OC =3,得:E (2,3),………1分则可求得抛物线函数关系式为y=-34(x-2)2+3=-34x2+3x;………………………3分(2)可得点D坐标为(1,94) (4)分存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,∵DM=2,∴AN=2,∴N1(2,0),N2(6,0)………………………………………6分②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=94,NP=AQ=3,∴N3(-7-1,0),N4(7-1,0).………………8分27.解:(1)1 ……1分(2)45……2分(3)当1<t≤43时,如图②,设DE交FQ于点H,则重合部分为梯形DHQP可求得:PQ=2t-2,HD=52t-2 ……3分∴S=12(PQ+HD)·DP=12(2t-2+52t-2)·t=94t2-2t(1<t≤43) ……5分当43<t<2时,如图③,设DE交BC于点M,DP交BC于点N,则重合部分为六边形EFQPNM可求得:AQ=2-t,AF=4-2t∴S△FAQ=12AQ·AF=(2-t)2 ………………………………………7分同样可求得:DN=3t-4,DM=12(3t-4)初三数学期终试卷2015.2 第 11 页 共 11 页 ∴S △DMN =12 DM ·DN =12 ·12 ( 3t -4 )( 3t -4 )=14( 3t -4 )2………………8分 ∴S =S 正方形APDE -S △FAQ -S △DMN =-94t 2+10t -8……………………9分 综上所述,S =⎩⎪⎨⎪⎧94t 2-2t (1<t ≤43)-94t 2+10t -8(43<t <2) ……………………10分 28.解:(1)方案一中的最大半径为1.………………………2分(2)设半径为r ,方案二:在Rt △O 1O 2E 中, (2r )2=22+(3-2r )2,解得 r =1312 …4分 方案三:∵△AOM ∽△OFN , ∴r3-r =2-r r ,解得r =65…6分 ∵1312<65,∴方案三半径较大 ……………………………………7分 (3)方案四所拼得的图形水平方向跨度为3-x ,竖直方向跨度为2+x .所以所截出圆的直径最大为(3-x )或(2+x )两者之中较小的.……………………………8分当3-x <2+x 时,即当x >12时,r =12(3-x );此时r 随x 的增大而减小,所以r <12(3-12)=54; 当3-x =2+x 时,即当x =12时,r =12(3-12)=54; 当3-x >2+x 时,即当x <12时,r =12(2+x ).此时r 随x 的增大而增大,所以r <12(2+12)=54; ∴方案四,当x =12时,r 最大为54.………………………………………………………………9分 ∵1<1312<65<54, ∴方案四中所得到的圆形桌面的半径最大.……………………………10分。
江苏省徐州市九年级上学期期末数学试卷 (解析版)
江苏省徐州市九年级上学期期末数学试卷(解析版)一、选择题1.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°2.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(14,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.14-≤b≤1 B.54-≤b≤1 C.94-≤b≤12D.94-≤b≤13.若25xy=,则x yy+的值为()A.25B.72C.57D.754.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐5.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确...的是( )A.12DE BC=B.AD AEAB AC=C.△ADE∽△ABCD .:1:2ADEABCSS=6.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++7.下列方程是一元二次方程的是( ) A .2321x x =+ B .3230x x --C .221x y -=D .20x y +=8.sin60°的值是( ) A .B .C .D .9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°10.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D 211.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7 C .8 D .912.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×10914.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题16.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.17.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.19.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.20.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为_____.21.如图,由边长为1的小正方形组成的网格中,点,,,A B C D为格点(即小正方形的顶点),AB与CD相交于点O,则AO的长为_________.22.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.23.已知 x1、x2是关于 x 的方程 x2+4x-5=0的两个根,则x1+ x2=_____.24.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接CP,以 CP 为边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.25.已知3a=4b≠0,那么ab=_____.26.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.27.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.28.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x … -1 0 1 2 3 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
2014-2015年江苏省徐州市沛县九年级上学期期中数学试卷及参考答案
2014-2015学年江苏省徐州市沛县九年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)一元二次方程x2﹣2x=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=0,x2=2 D.x1=0,x2=﹣22.(3分)抛物线y=(x﹣2)2+3的对称轴方程是()A.x=2 B.x=﹣2 C.x=3 D.x=﹣33.(3分)下列方程中有实数根的是()A.x2+x+2=0 B.x2﹣x﹣1=0 C.x2﹣x+2=0 D.x2﹣x+3=04.(3分)如图,圆内接四边形ABCD是正方形,点E是上一点,则∠E的大小为()A.90°B.60°C.45°D.30°5.(3分)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.56.(3分)将抛物线y=x2先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系是()A.y=(x+1)2+3 B.y=(x﹣1)2﹣3 C.y=(x+1)2﹣3 D.y=(x﹣1)2+3 7.(3分)某中学去年对实验器材的投资为6万元,预计明年的投资为9万元,若设该校今明两年在实验器材投资上年平均增长率是x,根据题意,下面所列方程正确的是()A.9(1+x)2=6 B.9(1﹣x)2=6C.6(1+x)2=9 D.6+6(1+x)+6(1+x)2=98.(3分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A. B.C.3 D.2二、填空题(共10小题,每小题3分,满分30分)9.(3分)已知⊙O的半径为5cm,点P在⊙O内,则OP5cm(填“>”、“<”或“=”)10.(3分)已知x1、x2是方程x2﹣4x+1=0的两个根,则x1+x2=.11.(3分)一个正五边形绕它的中心至少要旋转度,才能和原来五边形重合.12.(3分)若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.13.(3分)抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.14.(3分)如图,CB是⊙O的直径,P是CB延长线上一点,PA切⊙O于A点,PA=4cm,PB=2cm,则⊙O的半径为cm.15.(3分)如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1,x的取值范围是.16.(3分)一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为.17.(3分)把一个圆锥的侧面展开后是一个圆心角为120°,半径为4的扇形,则这个圆锥的底面圆的半径为.18.(3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴x=1,下列结论中正确的是(写出所有正确结论的序号)①b>0;②abc>0;③b2﹣4ac>0;④a﹣b+c<0;⑤4a+2b+c>0;⑥方程ax2+bx+=0有一根介于3和4之间.三、解答题(共10小题,满分86分)19.(10分)解下列方程(1)x(x﹣3)+x﹣3=0(2)2x2﹣4x=1.20.(10分)(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求PA的最大值和最小值.(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.21.(7分)已知二次函数y=ax2+bx+c的图象经过点(﹣3,6)、(﹣2,﹣1)、(0,﹣3),求这个二次函数的表达式.22.(7分)某农户打算用120米长的围栏围成总面积为800平方米的三个大小相同的矩形羊圈,羊圈的一面靠墙(如图),墙的长度足够,求羊圈的边长AB、BC各多少米?23.(8分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线交AB的延长线于点D,∠ACD=120°.(1)求证:AC=CD;(2)若⊙O的半径为2,求图中阴影部分的面积.24.(8分)对于抛物线y=x2﹣4x+3.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为.(2)在所给的平面直角坐标系中画出此时抛物线;(3)结合图象回答问题:当1<x<4时,y的取值范围是.25.(8分)在同一平面内,已知点O到直线l的距离为6,以点O为圆心,r为半径画圆.(1)当r=时,⊙O上有且只有1个点到直线l的距离等于2;(2)若⊙O上有且只有2个点到直线l的距离为2,则r的取值范围是.(3)随着r的变化,⊙O上到直线l的距离等于2的点的个数有哪些变化?求出相对应的r的值或取值范围.26.(8分)某商品的进价为每件40元,当售价为每件50元时,每个月可卖出16件,如果每件商品的售价每上涨1元,则每个月少卖8件,设每件商品的售价上涨x元(x为正整数)时,每个月的销售利润诶y元.(1)求y与x的函数关系式;(2)每件商品的售价定为多少元时,月销售利润最大?最大月销售利润为多少元?27.(8分)如图,Rt△ABC中,∠ABC=90°以AB为直径的⊙O交AB于点D,点E为BC的中点,连接DE.(1)求证:DE是⊙O的切线.(2)若∠BAC=30°,DE=3,求AD的长.28.(12分)如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,一次函数y=﹣3x+3的图象经过A、C两点.(1)求二次函数的函数关系式;(2)将一次函数y=﹣3x+3的图象沿y轴向下平移m(m>0)个单位,设平移后的直线与y轴交于点D,与二次函数图象的对称轴交于点E.①求证:四边形ADEC是平行四边形;②当m=时,四边形ADEC是矩形,当m=时,四边形ADEC是菱形;(3)在二次函数的图象上是否存在点P,使得S=2S△ADC?若存在,求出P点△PAC坐标;若不存在,请说明理由.2014-2015学年江苏省徐州市沛县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)一元二次方程x2﹣2x=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=0,x2=2 D.x1=0,x2=﹣2【解答】解:x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故选:C.2.(3分)抛物线y=(x﹣2)2+3的对称轴方程是()A.x=2 B.x=﹣2 C.x=3 D.x=﹣3【解答】解:∵抛物线的解析式为:y=(x﹣2)2+3,∴抛物线的对称轴方程为:x=2.故选:A.3.(3分)下列方程中有实数根的是()A.x2+x+2=0 B.x2﹣x﹣1=0 C.x2﹣x+2=0 D.x2﹣x+3=0【解答】解:A、∵△=12﹣4×1×2=﹣7<0,∴方程没有实数根,故本选项错误;B、∵△=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有实数根,故本选项正确;C、∵△=(﹣1)2﹣4×1×2=﹣7<0,∴方程没有实数根,故本选项错误;D、∵△=(﹣1)2﹣4×1×3=﹣11<0,∴方程没有实数根,故本选项错误;故选:B.4.(3分)如图,圆内接四边形ABCD是正方形,点E是上一点,则∠E的大小为()A.90°B.60°C.45°D.30°【解答】解:连接AC、BD交于点O,∵圆内接四边形ABCD是正方形,∴AO=BO=CO=DO,∠AOD=90°,∴点O为圆心,则∠E=∠AOD=×90°=45°.故选:C.5.(3分)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.5【解答】解:连接OA,∵M是AB的中点,∴OM⊥AB,且AM=4在直角△OAM中,OA==5故选:D.6.(3分)将抛物线y=x2先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系是()A.y=(x+1)2+3 B.y=(x﹣1)2﹣3 C.y=(x+1)2﹣3 D.y=(x﹣1)2+3【解答】解:抛物线y=x2的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,﹣3),所以,所得图象的解析式为y=(x﹣1)2﹣3,故选:B.7.(3分)某中学去年对实验器材的投资为6万元,预计明年的投资为9万元,若设该校今明两年在实验器材投资上年平均增长率是x,根据题意,下面所列方程正确的是()A.9(1+x)2=6 B.9(1﹣x)2=6C.6(1+x)2=9 D.6+6(1+x)+6(1+x)2=9【解答】解:设平均增长率为x,由题意得:今年的投资总额为6(1+x),明年的投资总额为6(1+x)2,∴可列方程为6(1+x)2=8,故选:C.8.(3分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A. B.C.3 D.2【解答】解:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2﹣OQ2,而OQ=2,∴PQ2=OP2﹣4,即PQ=,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ的最小值为=.故选:B.二、填空题(共10小题,每小题3分,满分30分)9.(3分)已知⊙O的半径为5cm,点P在⊙O内,则OP<5cm(填“>”、“<”或“=”)【解答】解:∵⊙O的半径为5cm,点P在⊙O内,∴OP<5cm.故答案为:<.10.(3分)已知x1、x2是方程x2﹣4x+1=0的两个根,则x1+x2=4.【解答】解:∵x1、x2是方程x2﹣4x+1=0的两个根,∴x1+x2=﹣=4,故答案为:4.11.(3分)一个正五边形绕它的中心至少要旋转72度,才能和原来五边形重合.【解答】解:要与原来五边形重合,故为360÷5=72°.故一个正五边形绕它的中心至少旋转72°才能和原来的五边形重合.12.(3分)若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为﹣5.【解答】解:将x=1代入方程得:1+3+m+1=0,解得:m=﹣5.故答案为:﹣5.13.(3分)抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.14.(3分)如图,CB是⊙O的直径,P是CB延长线上一点,PA切⊙O于A点,PA=4cm,PB=2cm,则⊙O的半径为3cm.【解答】解:设圆的半径是x,则BC=2x,根据题意得:PA2=PB•PC,∵PA=4cm,PB=2cm,∴42=2(2+2x),解得:x=3.∴⊙O的半径为3cm.故答案为:3.15.(3分)如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1,x的取值范围是﹣2<x<1.【解答】解:从图象上看出,两个交点坐标分别为(﹣2,0),(1,3),y1时,有﹣2<x<1,∴当有y2>故答案为:﹣2<x<1.16.(3分)一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为2.【解答】解:如图,⊙O内切于直角△ABC中,切点分别为D、E、F;其中AC=8,BC=6;连接OD、OF;则OD⊥BC,OF⊥AC;OD=OF;∵∠C=90°,∴四边形ODCF为正方形,∴CD=CF=R(R为⊙O的半径);由勾股定理得:AB2=AC2+BC2=36+64=100,∴AB=10;由切线的性质定理的:AF=AE,BD=BE;∴CD+CF=AC+BC﹣AB=6+8﹣10=4,∴R=2,它的内切圆半径为2.17.(3分)把一个圆锥的侧面展开后是一个圆心角为120°,半径为4的扇形,则这个圆锥的底面圆的半径为.【解答】解:扇形的弧长==π,故圆锥的底面半径为π÷2π=.故答案为:;18.(3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴x=1,下列结论中正确的是②③④⑥(写出所有正确结论的序号)①b>0;②abc>0;③b2﹣4ac>0;④a﹣b+c<0;⑤4a+2b+c>0;⑥方程ax2+bx+=0有一根介于3和4之间.【解答】解:①∵开口向上,∴a>0,对称轴在y轴的右侧,b<0,∴①错误;②抛物线与y轴交于负半轴,c<0,∴abc>0,②正确;③抛物线与x轴两个交点,b2﹣4ac>0,③正确;④当x=﹣1时,y<0,∴a﹣b+c<0,④正确;⑤根据对称轴是x=1,观察图象可知,x=2时,y<0,∴4a+2b+c<0,⑤错误;⑥从图象可知方程ax2+bx+=0有一根介于﹣1和﹣2之间,对称轴是x=1,∴方程ax2+bx+=0另一根介于3和4之间,⑥正确故答案为:②③④⑥.三、解答题(共10小题,满分86分)19.(10分)解下列方程(1)x(x﹣3)+x﹣3=0(2)2x2﹣4x=1.【解答】解:(1)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1;(2)2x2﹣4x﹣1=0,△=16﹣4×2×(﹣1)=24,x==所以x1=,x2=.20.(10分)(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求PA的最大值和最小值.(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.【解答】(1)解:∵⊙O的直径为10cm,∴⊙O的半径为10÷2=5(cm),当点P在线段OA的延长线上时,PA取得最大值,当点P在线段OA上时,PA 取得最小值∵OA=12cm,∴PA的最大值为12+5=17cm,PA的最小值为12﹣5=7cm;(2)证明:连接CO,如图所示,∵OA=OB,且D、E分别是半径OA和OB的中点,∴OD=OE,又∵=,∴∠COD=∠COE,在△COD和△COE中,,∴△COD≌△COE(SAS),∴CD=CE.21.(7分)已知二次函数y=ax2+bx+c的图象经过点(﹣3,6)、(﹣2,﹣1)、(0,﹣3),求这个二次函数的表达式.【解答】解:∵二次函数y=ax2+bx+c的图象经过点(﹣3,6)、(﹣2,﹣1)、(0,﹣3),∴,解得:,则这个二次函数的表达式为y=2x2+3x﹣3.22.(7分)某农户打算用120米长的围栏围成总面积为800平方米的三个大小相同的矩形羊圈,羊圈的一面靠墙(如图),墙的长度足够,求羊圈的边长AB、BC各多少米?【解答】解:设羊圈的边长AB为x米,则BC的长为(120﹣4x)米,由题意得,x(120﹣4x)=800,解这个方程,得x1=10,x2=20,当x=10时,120﹣4x=80,当x=20时,120﹣4x=40.答:羊圈的边长AB为10米,BC为80米;或则羊圈的边长AB为20米,BC为40米.23.(8分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线交AB的延长线于点D,∠ACD=120°.(1)求证:AC=CD;(2)若⊙O的半径为2,求图中阴影部分的面积.【解答】(1)证明:如图,连接CO,∵CD切⊙O于C,∴∠OCD=90°,∴∠OCA=∠OAC=30°,∠ADC=30°,∴∠A=∠D,∴AC=CD;(2)解:由(1)知∠OCD=90°,∠ADC=30°,∠COD=60°,∴OD=2OC=4,CD=2,=CD•OC=2,S扇形OCB==,∴S△OCD=2﹣.∴S阴影24.(8分)对于抛物线y=x2﹣4x+3.(1)它与x轴交点的坐标为(1,0),(3,0),与y轴交点的坐标为(0,3),顶点坐标为(2,﹣1).(2)在所给的平面直角坐标系中画出此时抛物线;(3)结合图象回答问题:当1<x<4时,y的取值范围是﹣1<y<3.【解答】解:(1)它与x轴交点的坐标为(1,0),(3,0),与y轴交点的坐标为(0,3),顶点坐标为(2,﹣1).故答案为:(1,0),(3,0);(0,3);(2,﹣1);(2)在所给的平面直角坐标系中画出此时抛物线:,(3)由图象,得当1<x<4时,y的取值范围是﹣1<y<3.25.(8分)在同一平面内,已知点O到直线l的距离为6,以点O为圆心,r为半径画圆.(1)当r=4时,⊙O上有且只有1个点到直线l的距离等于2;(2)若⊙O上有且只有2个点到直线l的距离为2,则r的取值范围是4<r<8.(3)随着r的变化,⊙O上到直线l的距离等于2的点的个数有哪些变化?求出相对应的r的值或取值范围.【解答】解:(1)r=6﹣2=4,故答案为:4;(2)4<r<8;(3)当0<r<4时,⊙O上到直线l的距离等于2的点的个数为0,当r=4时,⊙O上到直线l的距离等于2的点的个数为1,当4<r<8时,⊙O上到直线l的距离等于2的点的个数为2,当r=8时,⊙O上到直线l的距离等于2的点的个数为3,当r>8时,⊙O上到直线l的距离等于2的点的个数为4.26.(8分)某商品的进价为每件40元,当售价为每件50元时,每个月可卖出16件,如果每件商品的售价每上涨1元,则每个月少卖8件,设每件商品的售价上涨x元(x为正整数)时,每个月的销售利润诶y元.(1)求y与x的函数关系式;(2)每件商品的售价定为多少元时,月销售利润最大?最大月销售利润为多少元?【解答】解:(1)由题意得:y=(160﹣8x)(50+x﹣40)=﹣8x2+80x+1600;(2)根据(1)得:y=﹣8x2+80x+1600,y=﹣10(x﹣5)2+1800,∵a=﹣8<0,∴当x=10时,y有最大值1800.∴当售价定为每件60元,每个月的利润最大,最大的月利润是1800元.27.(8分)如图,Rt△ABC中,∠ABC=90°以AB为直径的⊙O交AB于点D,点E为BC的中点,连接DE.(1)求证:DE是⊙O的切线.(2)若∠BAC=30°,DE=3,求AD的长.【解答】(1)证明:连接OD、BD,∵AB为⊙O的直径,∴∠ADB=∠CDB=90°;又∵点E为BC的中点,∴BE=DE,∴∠BDE=∠EBD;∵OA=OD,∴∠OAD=∠ODA;又∵∠OAD+∠OBD=90°,∠EBD+∠OBD=90°,∴∠OAD=∠EBD,即∠ODA=∠BDE;∴∠ODE=∠BDE+∠ODB=∠ODA+∠ODB=90°,又∵点D在⊙O上,∴DE是圆⊙O的切线.(2)解:由(1)知BC=2DE=6,又∵∠CBD=∠BAC=30°,∴CD=3,BD=3∴AB=6;由勾股定理得:AD=9.28.(12分)如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,一次函数y=﹣3x+3的图象经过A、C两点.(1)求二次函数的函数关系式;(2)将一次函数y=﹣3x+3的图象沿y轴向下平移m(m>0)个单位,设平移后的直线与y轴交于点D,与二次函数图象的对称轴交于点E.①求证:四边形ADEC是平行四边形;②当m=时,四边形ADEC是矩形,当m=6时,四边形ADEC是菱形;=2S△ADC?若存在,求出P点(3)在二次函数的图象上是否存在点P,使得S△PAC坐标;若不存在,请说明理由.【解答】解:(1)∵一次函数y=﹣3x+3的图象经过A、C两点,∴A(1,0),C(0,3).又∵二次函数y=﹣x2+bx+c的图象经过A、C两点,∴解得,∴二次函数的函数关系式为y=﹣x2﹣2x+3;(2)①证明:如图1,设二次函数图象的对称轴为MN,过D 点作DF⊥MN,垂足为F.由(1)知OA=DF=1,∠FED=∠EDC=∠OCA在△ACO和△DFE中,∴Rt△ACO≌Rt△DEF (AAS),∴DE=AC.又∵DE∥AC,∴四边形ADEC是平行四边形;②由四边形ADEC是矩形,得AC的解析式y=﹣3x+3,AD的解析式为y=x﹣,当x=0时,y=﹣,即D(0,﹣),CD=3﹣(﹣)=,当m=时,四边形ADEC是矩形;由四边形ADEC是菱形,得AD=AC,OD=OC=3,即D(0,﹣3),CD=3﹣(﹣3)=6,当m=6时,四边形ADEC是菱形;故答案为:,6;(3)假设存在满足条件的点P,可设点P(x,﹣x2﹣2x+3),如图2,过点P作PQ∥AC交y轴于点Q,OD⊥AC与D,QE⊥AC与E,∵PQ∥AC,当S=2S△AOC时,有S△QAC=2S△AOC,△PACQE=OD,∴CQ=2OC=6,∴直线PQ的解析式y=﹣3x﹣3,联立PQ与抛物线,得,∴﹣x2﹣2x+3=﹣3x﹣3,解得x1=﹣2,x2=3∴抛物线上存在点P(3,﹣12)或(﹣2,3),使S△PAC=2S△AOC.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省徐州市九年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,请将正确选项前的字母代号填写在括号里)1.(3分)方程x2﹣4x=0的解是()A.x1=0,x2=4B.x1=0,x2=﹣4C.x=4D.x=﹣42.(3分)二次函数y=(x﹣2)2+1的图象的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)3.(3分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.1:4C.2:1D.4:14.(3分)已知A样本的数据如下:72,73,76,76,77,78,78,78.B样本的数据恰好是A样本数据每个都加2,则A、B两个样本具有相同的()A.平均数B.众数C.中位数D.方差5.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm26.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 7.(3分)已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为3,则⊙O上到直线l的距离为的点共有()A.1个B.2个C.3个D.4个8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC、EF∥AB,若AD:DB=3:5,则CF:CB等于()A.2:5B.3:8C.3:5D.5:8二、填空题(本大题共有8小题,每小题3分,共24分,请将答案填写在相应的答题处)9.(3分)任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于.10.(3分)某工厂经过两年时间,将某种产品的年产量从14000台提高到16000台.设平均每年增长的百分率为x,可得方程.11.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.12.(3分)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=.13.(3分)如图,⊙O是△ABC的内切圆,若∠ABC=60°,∠ACB=40°,则∠BOC=°.14.(3分)如图,在正八边形ABCDEFGH中,若四边形BCFG的面积是12cm2,则正八边形的面积为cm2.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围是.三、解答题(本大题共有9小题,共72分)17.(10分)(1)计算:﹣22﹣+|1﹣2tan60°|;(2)解方程:2x2﹣4x﹣1=0.18.(6分)某校九年级学生进行了五次体育模拟测试,甲同学的测试成绩见表(1),乙同学的测试成绩如图所示:表(一)(1)请根据甲、乙两同学这五次体育模拟测试的成绩完成下表:(2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.19.(6分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.20.(7分)如图,计划在长为16m、宽为12m的矩形会议室的地面上铺设一个矩形地毯,若四周未铺地毯地面的宽度相同,且地毯面积占整个会议室地面面积的一半,求地毯的长与宽.21.(7分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)22.(8分)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.23.(8分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,AD∥BC,DC ∥AB.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,求图中阴影部分的面积(结果保留π).24.(10分)已知二次函数y=x2+bx+c的图象经过点(﹣4,3)、(﹣3,0).(1)求b、c的值;(2)画出该函数的图象;(3)若x>m时,y随x的增大而增大,则m的最小值为;(4)该函数图象向上平移个单位长度后,所得函数的图象与x轴只有一个公共点.25.(10分)如图,锐角△ABC内接于圆O,AD⊥BC,BE⊥AC,OM⊥BC,垂足分别为D、E、M.(1)若∠ACB=60°,求∠ABO的大小;(2)△OMB与△AEB相似吗?为什么?(3)判断△OBD与△OAE的面积是否相等?并说明理由.2014-2015学年江苏省徐州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,请将正确选项前的字母代号填写在括号里)1.(3分)方程x2﹣4x=0的解是()A.x1=0,x2=4B.x1=0,x2=﹣4C.x=4D.x=﹣4【分析】方程利用因式分解法求出解即可.【解答】解:方程分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.(3分)二次函数y=(x﹣2)2+1的图象的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)【分析】根据顶点式的意义直接解答即可.【解答】解:二次函数y=(x﹣2)2+1的图象的顶点坐标是(2,1).故选:A.【点评】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x ﹣h)2+k(a≠0)的顶点坐标为(h,k).3.(3分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.1:4C.2:1D.4:1【分析】根据相似三角形的面积的比等于相似比的平方求解.【解答】解:∵△ABC∽△A′B′C′,相似比为1:2,、∴△ABC与△A′B′C′的面积的比1:4.故选:B.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.4.(3分)已知A样本的数据如下:72,73,76,76,77,78,78,78.B样本的数据恰好是A样本数据每个都加2,则A、B两个样本具有相同的()A.平均数B.众数C.中位数D.方差【分析】根据样本A,B中数据之间的关系,结合众数,平均数,中位数和方差的定义即可得到结论.【解答】解:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有方差没有发生变化,故选:D.【点评】本题考查众数、平均数、中位数、方差的定义,属于基础题,解题的关键是了解他们的意义,难度不大.5.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.6.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3【分析】根据二次函数图象的平移规律解答即可.【解答】解:将抛物线y=x2向右平移2个单位可得y=(x﹣2)2,再向上平移3个单位可得y=(x﹣2)2+3,故选:B.【点评】本题考查了二次函数的几何变换,熟悉二次函数的平移规律是解题的关键.7.(3分)已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为3,则⊙O上到直线l的距离为的点共有()A.1个B.2个C.3个D.4个【分析】根据平行线间的距离相等,先过点D作AB⊥OC,即可求得⊙O上到直线l的距离为的点的个数.【解答】解:如图,∵⊙O的半径为5,点O到直线l的距离为3,∴CE=2,过点D作AB⊥OC,垂足为D,交⊙O于A、B两点,且DE=,∴⊙O上到直线l的距离为的点在直线l的左边和右边各有两个,共四个,故选:D.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC、EF∥AB,若AD:DB=3:5,则CF:CB等于()A.2:5B.3:8C.3:5D.5:8【分析】根据平行线分线段成比例定理,由DE∥BC得到==,利用比例的性质得=,再根据平行线平线段成比例定理,由EF∥AB即可得到==.【解答】解:∵DE∥BC,∴==,∴=,∵EF∥AB,∴==.故选:D.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.二、填空题(本大题共有8小题,每小题3分,共24分,请将答案填写在相应的答题处)9.(3分)任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于.【分析】由任意抛掷一枚均匀的骰子一次,朝上的点数大于4的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵任意抛掷一枚均匀的骰子一次,朝上的点数大于4的有2种情况,∴任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)某工厂经过两年时间,将某种产品的年产量从14000台提高到16000台.设平均每年增长的百分率为x,可得方程14000(1+x)2=16000.【分析】根据平均每年增长的百分率为x,则在第一年是14000(1+x),第二年是14000(1+x)2,即可列方程.【解答】解:第一年是14000(1+x),第二年是14000(1+x)2,∴14000(1+x)2=16000.故填空答案:14000(1+x)2=16000.【点评】本题考查了由实际问题抽象出一元二次方程,主要考查增长率问题,属于基础问题,比较简单.11.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.12.(3分)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.【分析】因为一元二次方程有两个相等的实数根,所以△=b2﹣4ac=0,根据判别式列出方程求解即可.【解答】解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=9故答案为:9【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.(3分)如图,⊙O是△ABC的内切圆,若∠ABC=60°,∠ACB=40°,则∠BOC= 130°.【分析】根据三角形内心的性质得到OB平分∠ABC,OC平分∠ACB,根据角平分线定义得∠OBC=∠ABC=30°,∠OCB=∠ACB=20°,然后根据三角形内角和定理计算∠BOC.【解答】解:∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=20°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣30°﹣20°=130°.故答案为130.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.14.(3分)如图,在正八边形ABCDEFGH中,若四边形BCFG的面积是12cm2,则正八边形的面积为24cm2.【分析】根据正八边形的性质得出正八边形每个内角以及表示出四边形ABGH面积进而求出答案即可.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=12,∴四边形ABGH面积=(AH+BG)×HM=(+1)x2=6,∴正八边形的面积为:6×2+12=24(cm2).故答案为:24.【点评】此题主要考查了正八边形的性质以及勾股定理等知识,根据已知得出四边形ABGH面积是解题关键.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为2cm.【分析】先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.【解答】解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围是0<x<4.【分析】根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.【点评】本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共有9小题,共72分)17.(10分)(1)计算:﹣22﹣+|1﹣2tan60°|;(2)解方程:2x2﹣4x﹣1=0.【分析】(1)原式第一项利用乘方的意义化简,第二项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程利用配方法求出解即可.【解答】解:(1)原式=﹣4﹣2+2﹣1=﹣5;(2)方程整理得:x2﹣2x=,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了实数的运算,以及解一元二次方程﹣配方法,熟练掌握运算法则是解本题的关键.18.(6分)某校九年级学生进行了五次体育模拟测试,甲同学的测试成绩见表(1),乙同学的测试成绩如图所示:表(一)(1)请根据甲、乙两同学这五次体育模拟测试的成绩完成下表:(2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.【分析】(1)中位数,就是一组数按从小到大的顺序排列,中间位置的那个数,如果有偶数个数,那就是中间的两个数的平均数,由此即可求出甲、乙同学的中位数;平均数等于各个数据之和除以数据个数,由此可求甲的平均数;方差是各变量值与其均值离差平方的平均数,依公式即可计算出乙的方差;(2)方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法,利用方差即可求出答案.【解答】解:(1)填表如下:(2)乙同学的成绩较为稳定,因为乙同学五次测试成绩的方差小于甲同学五次测试成绩的方差.【点评】本题考查了平均数、中位数、方差的知识.解题的关键是牢记方差和算术平方根的计算公式.19.(6分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【分析】(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.【点评】本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)如图,计划在长为16m、宽为12m的矩形会议室的地面上铺设一个矩形地毯,若四周未铺地毯地面的宽度相同,且地毯面积占整个会议室地面面积的一半,求地毯的长与宽.【分析】设空白部分的宽为x,则地毯的长为(16﹣2x),地毯的宽为(12﹣2x),再根据地毯面积占整个会议室地面面积的一半,矩形会议室的面积为16×12,再根据长方形的面积公式,即可列出方程,从而求出符合条件的解.【解答】解:设空白部分的宽为x米,根据题意得出:(16﹣2x)(12﹣2x)=×16×12,整理得:x2﹣14x+24=0,解得x1=2,x2=12(不合题意,舍去)则16﹣2x=16﹣2×2=12,12﹣2x=12﹣2×2=8.答:地毯的长与宽分半是12m、8m.【点评】本题考查了一元二次方程的应用,关键是运用数形结合思想,通过图形可知设空白部分的宽为x,地毯的长和宽就能表示出来,以会议室的面积做为等量关系列出方程求解.21.(7分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)【分析】设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.【解答】解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.22.(8分)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.【分析】(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【解答】解:(1)见图中△A′B′C′(直接画出图形,不画辅助线不扣分)(2)见图中△A″B′C″(直接画出图形,不画辅助线不扣分)S=π(22+42)=π•20=5π(平方单位).【点评】本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.23.(8分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,AD∥BC,DC ∥AB.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,求图中阴影部分的面积(结果保留π).【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD . ∵OA=OD ,∠DAB=45°, ∴∠ODA=45° ∴∠AOD=90° ∵CD ∥AB∴∠ODC=∠AOD=90°,即OD ⊥CD 又∵点D 在⊙O 上, ∴直线CD 与⊙O 相切;(2)∵⊙O 的半径为2,AB 是⊙O 的直径, ∴AB=4,∵BC ∥AD ,CD ∥AB∴四边形ABCD 是平行四边形 ∴CD=AB=4 ∴S 梯形OBCD ===6;∴图中阴影部分的面积=S 梯形OBCD ﹣S 扇形OBD =6﹣×π×22=6﹣π.【点评】此题主要考查了切线的判定、平行四边形的判定和性质以及扇形的面积计算方法.不规则图形的面积一定要注意分割成规则图形的面积进行计算. 24.(10分)已知二次函数y=x 2+bx +c 的图象经过点(﹣4,3)、(﹣3,0). (1)求b 、c 的值; (2)画出该函数的图象;(3)若x >m 时,y 随x 的增大而增大,则m 的最小值为 ﹣2 ;(4)该函数图象向上平移 1 个单位长度后,所得函数的图象与x 轴只有一个公共点.【分析】(1)把已知两点坐标代入二次函数解析式求出b与c的值即可;(2)画出函数图象,如图所示;(3)利用二次函数的性质判断即可确定出m的值;(4)利用平移规律判断即可.【解答】解:(1)把(﹣4,3)与(﹣3,0)代入得:,解得:b=4,c=3;(2)二次函数解析式为y=x2+4x+3=(x+2)2﹣1,即顶点(﹣2,﹣1),列表得:描点;连线,如图所示:(3)若x>m时,y随x的增大而增大,则m的最小值为﹣2;(4)该函数图象向上平移1个单位长度后,所得函数的图象与x轴只有一个公共点.故答案为:(3)﹣2;(4)1【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.25.(10分)如图,锐角△ABC内接于圆O,AD⊥BC,BE⊥AC,OM⊥BC,垂足分别为D、E、M.(1)若∠ACB=60°,求∠ABO的大小;(2)△OMB与△AEB相似吗?为什么?(3)判断△OBD与△OAE的面积是否相等?并说明理由.【分析】(1)证明∠AOB=120°,∠BAO=∠ABO,即可解决问题.(2)证明∠BOM=∠BAE;∠OMB=∠AEB=90°,即可解决问题.(3)如图,作辅助线;证明△AON∽△ADB,得到;证明;运用OA=OB,得到,进而得到OM•BD=ON•AE,得到OM•BD=ON•AE,即可解决问题.【解答】解:(1)如图,∵∠ACB=60°,∴∠AOB=120°;而OA=OB,∴∠BAO=∠ABO==30°,即∠ABO=30°.(2)相似;理由如下:如图,连接OC,则OB=OC;∵OM⊥BC,∴∠BOM=∠BOC,而∠BAC=∠BOC,∴∠BOM=∠BAE;而BE⊥AC,∴∠OMB=∠AEB=90°,∴△OMB∽△AEB.(3)相等;理由如下:如图,过点O作ON⊥AC于点N;∵AO=CO,ON⊥AC,∴∠AON=∠AOC,而∠ABC=∠AOC,∴∠AON=∠ABC,而∠ONA=∠BNO,∴△AON∽△ADB,∴;同理可证:△OMB∽△AEB,∴;而OA=OB,∴,OM•BD=ON•AE,∴OM•BD=ON•AE,即△OBD与△OAE的面积相等.【点评】该题主要考查了圆周角定理、相似三角形的判定及其性质等几何知识点及其应用问题;解题的关键是牢固掌握定理本质内容,这是灵活运用解题的基础和关键.。