轨道交流供电系统
简述城市轨道交通供电系统的组成及供电模式

简述城市轨道交通供电系统的组成及供电模式
城市轨道交通供电系统的组成如下:
(1)外部电源供电系统:提供电能为主所供电。
(2)主所或电源开闭所供电系统:将高压电降压整流后向牵引所、降压所提供中压电源,适用于集中供电。
(3)牵引供电系统:将中压交流电降压整流为直流1500V或直流
750V。
(4)动力照明供电系统:将中压交流电降压整流为220V/380V。
(5)杂散电流腐蚀防护系统:减少杂散电流并防止其对外扩散,避免电腐蚀城轨交通主体结构,并对杂散电流进行监测。
(6)电力监控系统:对全线变电所及沿线供电设备进行集中监视、控制、测量。
城市轨道交通供电系统的供电模式有:
集中式供电、分散式供电和混合式供电。
城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析随着城市化进程的加快,城市轨道交通系统已经成为城市中不可或缺的交通方式,其对于城市的发展和居民生活有着重要的作用。
而城市轨道交通的供电系统及电力技术则是其运行的关键,对于保障交通系统的安全、稳定和高效运行至关重要。
本文将对城市轨道交通供电系统及电力技术进行分析。
一、城市轨道交通供电系统城市轨道交通系统的供电系统是指为保证列车正常运行所需的电能供给系统。
目前,城市轨道交通系统的供电方式主要有集中式供电和分散式供电两种。
1.集中式供电集中式供电是通过架空电缆或第三轨供电,将电能从供电站传输到整个轨道线路上的所有列车。
这种供电方式的优点是电能传输损耗小,对环境的影响较小,且可以有效控制电能的分配和管理。
集中式供电也存在着设备投资大、维护成本高、对供电线路和设备的要求高等缺点。
从目前的发展趋势来看,集中式供电较多应用于地铁等城市轨道交通系统,而分散式供电更适用于轻轨、有轨电车等城市轨道交通系统。
不同的供电方式都有着各自的优缺点,选择合适的供电方式需要根据具体的运营环境和需求来进行综合考虑。
二、城市轨道交通电力技术城市轨道交通的电力技术是指为保障供电系统正常运行而涉及的相关技术,主要包括电力传输技术、电能转换技术、电能控制技术等。
1.电力传输技术电力传输技术是指供电系统将电能从供电站传输到轨道线路上的所有列车所采用的传输方式和技术。
目前,城市轨道交通系统的电力传输技术主要有直流传输技术和交流传输技术两种。
直流传输技术是指通过电缆或第三轨将直流电能传输到列车上,而交流传输技术则是通过接触网将交流电能传输到列车上。
两种传输技术各有其适用范围和特点,根据运营环境和需求选择合适的传输技术对于提高供电系统的安全性、稳定性及运行效率至关重要。
2.电能转换技术电能转换技术是指供电系统将电能进行合适的转换,以适应列车不同运行状态和需求的技术。
城市轨道交通系统的电能转换技术主要包括逆变技术、变压技术等。
城市轨道交通的强弱电系统-四电工程

城市轨道交通的强弱电系统-四电工程城市轨道交通是一种高效、快速、安全、舒适的现代化交通工具。
为了保证城市轨道交通系统的正常运行,以及为满足未来城市轨道交通网络的扩张和发展,需要进行全面、可靠、安全的强弱电系统设计。
在轨道交通领域中最常用到的又被称为“四电工程”的强弱电系统设计。
下面将从四个方面详细介绍城市轨道交通的强弱电系统-四电工程。
一、供电系统1.供电系统的基本构成城市轨道交通供电系统由电源、送电线路、接触网、变电站、开关站、牵引变压器、道床电气设备等多个部分组成。
2.供电系统的工作原理和特点供电系统是城市轨道交通系统的核心部分,提供高电压直流(或交流)电力来驱动列车行驶。
主要特点是:变压器在交流传输过程中具有较小的电流损耗,能够满足长距离供电要求;交流供电系统具有较好的适应性,可适用于多种场合;直流供电具有升级改造方便等优点。
二、信号与通信系统1.信号与通信系统的基本构成城市轨道交通信号与通信系统主要由列车信号设备、道岔控制、信号机和通讯设备等多个部分组成。
2.信号与通信系统的工作原理和特点信号与通信系统是城市轨道交通系统的另一个关键部分,主要用于列车行驶控制和通讯。
它具有安全性高、精度高、灵活性好、实时性高等特点。
常见的信号方式有区段信号、换位信号、跟踪信号等多种方式。
三、控制系统1.控制系统的基本构成城市轨道交通控制系统包括车辆控制、列车队列控制、信号控制和中央监控等多个部分。
2.控制系统的工作原理和特点控制系统用于对车辆进行运行管理和列车流量智能控制。
它具有灵活性强、反应快捷、控制准确等特点。
控制系统的设计案采用了遥控技术,在现代化设备的基础上,更是加强了机动性和智能化程度,实现了全自动化组织和调度。
四、车辆牵引安全系统1.车辆牵引安全系统的基本构成城市轨道交通车辆牵引安全系统包括牵引变流器、牵引电机、制动系统、速度监控系统等多个部分。
2.车辆牵引安全系统的工作原理和特点车辆牵引安全系统是城市轨道交通系统中最关键的部分,主要用于控制列车的牵引和制动。
城市轨道交通供电系统

城市轨道交通供电系统城市轨道交通供电系统由变电所、接触网(接触轨)和回流网三部分构成。
变电所通过接触网(接触轨),由车辆受电器向电动客车馈送电能,回流网是牵引电流返回变电所的导体。
供电系统的供电制式主要指电流制式、电压等级和馈电方式。
目前,城市轨道交通的直流牵引电压等级有DC 600 V DC 750 V和DC 1 500 V等多种。
我国国家标准《城市轨道交通直流牵引供电系统》(GB/T 10411—2005)规定了DC750 V和DC 1 500 V两种电压制式。
供电系统的馈电方式分为架空接触网和接触轨两种。
其中,电压制式和馈电方式是密不可分的。
一般架空接触网馈电方式电压等级采用DC1500V接触轨馈电方式电压等级主要采用DC750V但有向DC1500发展的趋势。
城市轨道交通作为城市电网的用户,直接从城市电网取得电能;城市电网也把城市轨道交通看成一个重要用户。
城市轨道交通供电系统由电源系统(城市电网、主变电所)、牵引供电系统、动力照明供电系统和电力监控系统组成。
其中,牵引供电系统包括牵引变电所和牵引网两大部分,动力照明供电系统包括降压变电所与动力照明配电系统。
一、电源系统我国电力生产由国家经营管理,因此无论是干线电气化铁路还是工矿电力牵引用电和城市轨道交通电力牵引用电均由国家统一电网供给OK5》-]…KEHG)城i:h电网高压供电系统i何流线<根据生产电能的发电厂所利用的能源不同,其可以分为火力发电厂(用煤、油为燃料)、水力发电厂、原子能发电厂及风力、地热、太阳能和潮汐发电厂等。
发电厂可能与其用户相距甚远,必须将输电电压升高,以减少线路的电压损失和能量损耗,因此在发电厂的输出端接入升压变压器以提高输电电压。
目前我国用得最普遍的输电电压等级为110~220 kV。
通常高压输电线到了各城市或工业区以后通过区域变电所(站)将电能转配或降低一个等级向附近各用电中心送电。
城市轨道交通牵引用电既可从区域变电所高压线路得电,也可以从下一级电压的城市地方电网得电,这取决于系统和城市地方电网具体情况及牵引用电容量大小。
城市轨道交通供电系统的组成与各部分功能

框架保护动作分析—— 正常工况
框架保护动作分析——正极对外壳短路
框架保护动作分析——负极对外壳短路
框架保护动作分析-小结
• 在正常工况下,正极对外壳、负极对外壳、外壳对地、钢 轨对地绝缘正常,框架保护不动作 • 外壳对地短路工况,正极对外壳、负极对外壳、钢轨对地 绝缘正常, 框架保护不动作 • 正极对外壳短路工况,框架保护动作 • 负极对外壳短路工况,当流过框架保护元件的电流大于 40A时,框架保护动作 • 外壳对地短路工况,且钢轨对地绝缘较差,流过框架保护 元件的电流大于40A时,框架保护动作
•
3.
五,中压环网供电系统
城市轨道交通中压交流环网系统供电系统的形式:
1. 牵引供电和动力照明系统采取相对独立的供电网络,电压等级可以相同 也可以不同.(上海地铁采取本方式供电,且动力照明供电网全线各站采 取10KV电网供电,即各站都有一个10KV配电所.而牵引供电采取 33KV(或35KV)电压进行供电.即各牵引变电所都是一个35KV变电所.
七、直流牵引供电
• • • •
接触网(轨): 馈电线: 回流线:从钢轨返回牵引变电所的导线。 电分段:为了便于检修和缩小事故范围、 将接触网分成若干段。 • 轨道:利用走行轨作为牵引电流回流的电 路
2.牵引变电所的设计原则
• 正线任一个牵引变电所故障时,其相邻牵引变电所应采取 越区供电方式,担负其该区段的全部牵引负荷。此负荷应 满足远期高峰小时负荷。
5.逆流保护
• 在直流牵引供电系统中,整流机组把交流电经降 压整流后转换称所需要的 直流电。在正常运行时, 电流只能从整流机组经过直流进线断路器流向母 排,不会从直流母排反向流向整流机组,否则将 会导致整流机组烧坏。这点与交流供电机制不同。
地铁供电系统的供电原理

地铁供电系统的供电原理
地铁供电系统的供电原理是通过架空电缆或第三轨供电的方式向地铁车辆提供电能。
架空电缆供电方式是通过悬挂在地铁线路两侧的架空电缆,将电能传输到地铁车辆的集电装置上。
架空电缆通常由高压输电线路和地铁供电线路组成,高压输电线路将电能从发电厂传输到地铁供电线路上,再通过地铁供电线路将电能传输到地铁车辆上。
第三轨供电方式是通过在地铁轨道旁边设置一条供电第三轨,将电能传输给地铁车辆。
地铁车辆通过装置接触第三轨,将电能直接传输到车辆上。
地铁供电系统一般采用交流供电方式,电压为1500V或750V,频率为50Hz。
供电系统还配备了保护装置,如过电压保护、过电流保护等,以确保供电安全和稳定。
供电系统还包括供电变电所、配电装置、接触网、集电装置等设备,以确保电能的有效供应和地铁车辆的正常运行。
供电系统的运行管理由地铁运营公司负责,他们将对供电系统进行监测和维护,确保供电系统的正常运行。
轨道交通供配电知识点总结

轨道交通供配电知识点总结一、轨道交通供配电系统介绍轨道交通供配电系统是指为轨道交通运营提供电力能源的系统,包括电力供应系统和配电系统。
电力供应系统负责将电能从电网输送到地铁、有轨电车等轨道交通系统的车站或车辆上,配电系统则负责在车站和车辆之间进行电能的分配和控制。
供配电系统的稳定运行对于轨道交通的安全和可靠运行具有重要意义。
二、供配电系统组成1. 供电系统供电系统主要包括电网、变电站和接触网。
电网是供电系统的起点,它将电能从发电厂输送到变电站,在变电站对电能进行变压、变频、群开口和过滤处理,然后将电能输送到接触网。
接触网是地铁、有轨电车等车辆供电的设备,通过接触网上的电接触器和车辆上的接触滑板,实现了电能从接触网传输到车辆。
2. 配电系统配电系统包括集电系统和车辆内部的配电系统。
集电系统将电能从接触网引入车辆,然后通过配电装置对电能进行分配,并为车辆内部的各种电气设备、照明等提供电能。
三、供配电系统的重要参数1. 供电电压供电电压是指供电系统提供的电能的电压大小。
不同的车辆和设备对供电电压的要求不同,因此电力供应系统需要根据实际情况进行调整和优化,以满足不同用电设备的需求。
2. 供电频率供电频率是指供电系统提供的交流电的频率,通常为50Hz。
供电频率的稳定性对于一些电力设备和车辆的运行非常重要,因此供电系统需要保持供电频率的稳定,以确保轨道交通的正常运行。
3. 隔离电阻隔离电阻是指电气设备、设施和地面等之间的绝缘电阻。
隔离电阻越大,表示设备之间的绝缘效果越好,能够确保电路的安全运行,避免因设备之间的漏电等问题引发安全事故。
4. 轨道接触电阻轨道接触电阻是指车辆从接触网上取电时,接触滑板与接触网之间的电阻。
接触电阻的大小会影响车辆从接触网上取电的效率和稳定性,也会影响整个供电系统的能效和安全性。
四、供配电系统的运行调度管理1. 负荷调度负荷调度是指根据轨道交通运营的实际情况,合理调配供电系统的电能输出,以满足不同时间、不同区域的用电需求。
城市轨道交通供电系统新技术探讨

城市轨道交通供电系统新技术探讨城市轨道交通作为城市重要的公共交通工具,其供电系统的稳定性和效率对于整个交通系统的运行至关重要。
随着科技的不断发展,城市轨道交通供电系统的技术也在不断创新和探索,以适应城市交通的不断发展和变化,提高供电系统的效率和可靠性,同时降低能源消耗和环境影响。
本文将从新技术的角度探讨城市轨道交通供电系统的发展趋势和挑战,分析新技术对城市轨道交通供电系统的影响,并展望未来的发展方向。
一、城市轨道交通供电系统现状分析城市轨道交通供电系统是指通过电力来给地铁、轻轨等城市交通工具供给动力的系统,其主要包括接触网、供电装置、牵引变流器和牵引电机等部分。
目前,我国城市轨道交通供电系统基本上采用交流供电方式,接触网通常采用25kV交流电供电,牵引变流器将接触网的交流电转化为直流电,供给牵引电机。
这种供电系统具有功率大、传输能力强、效率高等优点,但也存在着能源消耗高、电气设备寿命较短、维护成本高等问题。
在城市轨道交通运营中,供电系统的稳定性和可靠性对于列车的正常运行具有重要影响。
传统的供电系统在面对城市交通线路复杂、运营密集的情况下,往往难以满足对供电质量和效率的高要求。
而随着城市轨道交通的快速发展,传统供电系统的局限性已经凸显出来,亟待新技术的引入和创新,以应对城市轨道交通供电系统的挑战。
1. 供电系统智能化技术随着信息技术的飞速发展,智能化技术已经成为城市轨道交通供电系统改造的重要方向。
智能化技术通过对供电系统的监测、控制和管理,实现对供电系统运行状态的实时监测和分析,并能够智能化地对故障进行诊断和处理。
比如利用传感器、物联网技术等实现对接触网、供电装置等设备的在线监测,及时发现故障隐患,避免故障对列车运行的影响。
智能化技术还可以实现对供电设备的远程控制和优化调节,改善供电系统的运行效率和稳定性。
为了降低城市轨道交通供电系统的能源消耗和环境影响,高效节能供电技术已成为供电系统改造的重要方向之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兰州交通大学毕业设计(论文)- I - 摘要随着我国经济的发展,城市轨道交通,尤其是地铁,作为一种交通工具也迅速发展,并被越来越广泛的应用。
我国直流牵引供电系统的研制与开发起步较晚,目前还没有厂家进行完善的开发和生产,所以直流牵引供电系统的保护将成为一个研究的热点问题。
本文首先在了解城市轨道交通系统组成和直流牵引供电系统组成的基础上,研究地铁的供电方式、保护原理及实现方式。
再通过参数的计算及牵引负荷和牵引网短路电流特性的分析,用MA TLABA/SIMULINK中电力系统仿真模块12脉波整流机组和牵引网稳态电流模型,对接触网上不同点的短路电流进行了仿真分析。
本文研究了常见的几种馈线保护方法,对这几种保护进行了配置,并研究了故障保护流程。
最后,对地铁馈线保护系统系统进行了简单的模块化设计,并简要分析了各模块,使结构更完整。
本文计算了钢轨直流电阻、电感和供电回路外电感等参数,研究了单边供电和双边供电时短路电流的计算。
通过对接触网上不同点的短路电流的仿真,更精准的反应了短路后电流暂态过程。
关键词:地铁;直流牵引供电;馈线保护;整流;短路电流1 绪论 1.1 课题背景与意义(1) 轨道交通及其背景随着社会的进步和经济的发展,城市交通日趋紧张,这时地铁、轻轨等方式成为解决我国大中城市交通拥挤问题的最佳方案,由于城市轨道交通具有运载能力大、噪音废气污染小、运行快速准时、占用土地少等特点,使之对于缓解城市交通拥挤、改善城市大气环境以及推动城市经济和社会发展具有十分重要的意义。
因而大力发展地铁等城市轨道交通,己成为各国的共识。
第一条地铁于1863年在伦敦修建以后,世界上许多大城市纷纷建立快速轨道交通系统。
现在世界上有地铁的城市己达100多座,线路长达5200km。
我国城市轨道交通系统起步晚,近10年来,进行不同程度的轨道交通项目建设前期工作和可行性研究的城市有20座,还有很多大城市都在策划修建大、中运量的地铁或轻轨交通项目,全国已建成的以地铁为主的轨道交通线路有145km。
同时,许多城市正在筹建轨道交通系统。
仅从中国15座大城市的轨道交通规划统计,线网总里程就己有2280km左右。
而现在至少已有360km长度的轨道交通投入运行,而这些数量仅占已知规划总里程2280km的16%左右。
另外,还有一些大、中城市,虽然尚未公布其轨道交通的建设规划,但大量的前期工作都已在开展,这说明我国城市轨道交通的建设总规模和建设进度都会超过现在的市场与社会需求,城市交通正面临一场大变革。
由此可见,中国的轨道交通发展前景是宏大的,有着广阔的市场,该行业的发展壮大,将推动轨道交通的各种配套技术尤其是高新技术产业的跟踪发展,进而形成城市轨道交通行业的产业化生产体系。
(2) 轨道直流牵引供电保护研究的目的及意义采用直流供电的城市轨道交通,其核心的技术是直流供电系统化的控制和保护装置,为地铁直流牵引供电系统的安全可靠运行提供保障的。
所以在保证直流牵引供电系统安全可靠地向列车供电方面,其保护发挥了极其重要的作用。
直流供电系统包了括直流开关柜、控制和保护系统、直流电缆、接触网等。
其中控制和保护系统对确保轨道交通的安全、可靠的运行具有举足轻重的作用。
它一方面确保向地铁列车提供安全可靠的供电,减少甚至消除不必要的停电时间,从而提高经济效益;另一方面在直流牵引供电系统发生故障的情况下,应有选择性地迅速切除故障,以保证列车、设备和旅客的人身安全。
除了可靠性的要求之外,直流牵引供电保护系统必须在系统发生故障时快速、准确地切除故障,同时还要避免列车正常运行时一些电气参数的变化引起保护装置误跳闸。
此外,在有效切除远端短路故障以及区分机车启动电流和远端短路等问题上,依然值得深入研究。
国内在地铁直流牵引供电系统保护方面的研究还处于起步阶段,再加上建设轻轨与地铁等需要巨大的资金,投资大,几乎占到总投资1/3的轨道交通设备造价,以及占到总投资10%~15%的拆迁安装费用,建设周期长,特别是资金到位不及时,会造成利息超支等等,这所有的原因致使我国今天还没有样机和产品出现,在该领域的市场需求都来自于进口。
国外进口设备与国内设备的差价为3~10倍,价格高且改动困难,而且每个工程的安装调试都受制于外商,每年为维持正常运行需从有关国家进口设备零部件要多花数亿元,使运营费用大大增加。
鉴于以上原因,最近国家要求有关主管部门尽快制定量力而行、经济实用地使地铁直流牵引供电系统保护技术装备尽快国产化的要求,国产化率要确保不低于70%。
其根本目的是降低造价,加快城市地铁交通的发展。
因此,及早研制出具有自主知识产权的直流供电系统保护装置,具有重要的经济与战略意义。
1.2 课题研究现状地铁交通发展初期,在直流牵引供电系统保护方面还没有性能好、可靠性高的保护装置,一般仅靠电流速断和过电流保护来切断短路故障,效果往往很不理想。
传统的直流牵引系统二次保护系统,都是由电磁式继电器所构成。
到90年代末,北京地铁建成通车的“复一八线”,它的直流牵引系统的二次保护,也只是在电量保护中引进了国外的微机综合保护装置,而非电量保护仍然沿用电磁式继电保护方式。
在这种保护系统中,使用了大量的中间继电器、时间继电器、重合闸继电器等分立元器件。
由于使用的元器件数量和品种多,使得系统接线复杂,给系统调试以及修改接线带来困难。
因其潜在故障点多,故降低了整个系统的安全可靠性。
同时,还由于对各种继电器每年必须进行动作值、返回值、动作时间等项校验,维护时还要打磨继电器接点、检测接点的开闭特性、检查和清扫二次线等,因而维护、计表工作十分繁重。
从以上我们可以发现一个关键的问题:大量电磁式继电器的使用。
如果能用先进而成熟的技术产品,并结合工程技术人员的经验,在其基础上进行二次开发,从而替代目前使用的各种传统的电磁式继电器,并结合己有的电量保护装置组成具有地铁特色的、全新的直流保护系统,就能顺利地解决这些问题,进而加快地铁保护系统的设备改造和技术进步,提高整个保护系统的安全可靠性[1]。
随着电子技术、计算机技术的发展,人们采用微处理器实现了电流上升率和电流增量保护,极大地提高了直流牵引供电系统保护装置的可靠性和准确率。
目前,最先进的保护方法是,采用基于单片机或PLC(可编程逻辑控制器)的数字式保护装置取代传统的继电器保护装置,从而大大提高了可靠性、保护性能以及直流牵引供配电的自动化程度。
在轨道交通直流供电保护领域内,国产保护设备还处于起步阶段。
目前,国内的地铁直流保护设备主要引进国外保护单元,在国内各地的工程建设中,因各地的实际情况不同,所采用的保护装置也不相同,如南京地铁采用了Secheron公司的SEPCOS保护单元,广州地铁采用了Siemens公司的DPU96保护单元,上海地铁采用了Adtrans的DCP106保护单元等[2]。
我国在这方面也做过一些工作:基本搞清了保护的配置,也开发了一些样机;有些厂家正在启动仿制。
但是目前存在的主要困难是:一般直流保护与直流快速开关作成整体,而直流快速开关尚未国产化,难于找到很好的配套厂家;另外,缺乏大量的现场实测数据来检验所提原理和研制的保护的可行性。
在国外,主要有两家公司制造此类产品:瑞士Secheron公司的SEPCOS保护系统;Siemens公司的DPU96保护系统。
SEPCOS是瑞士Sechron公司研制的远方控制和保护系统,用于城市轨道交通系统、铁路系统等。
它的控制和保护系统是基于几个微处理器的多功能的系统。
可用于保护和控制直流牵引变电所中的馈线柜、正、负极柜和整流器。
SEPCOS控制和保护系统是一个独立的、模块化的、可扩展的、可编程的系统。
SEPCOS控制和保护系统具有多种控制和保护功能,满足电力牵引网络需要的4组功能:提高保护性的模拟输入量测量和保护功能、控制功能、记录功能和通讯功能。
中央处理仪(DPU96)是Siemens开发的,可以由DC110V电源供电,同时又可以输出DC24V电源给隔离放大器供电,用于直流牵引供电系统综合保护和控制领域的系列产品。
该系列产品包括下列单元:DPU96-PU中央处理仪、DPU96-BA直流隔离放大器、DPU96-VD分压器和DPU96-SW-PC应用软件。
直流隔离放大器和分压器配合使用,用于电流和电压值的测量,同时又能起到电气隔离的作用。
电流值测量的采样间隔为100μs。
电压值测量的采样间隔为200μs。
在信号处理中,采用8个连续测得的电流值和电压值获得平均值,以光纤信号的形式传送给中央处理仪,同时又以±10V 模拟信号传进给指示仪表(电流表或电压表)。
采用平均值作为测量值屏蔽了瞬时电流脉冲的干扰,分压器的测量范围为DC0V-3000V。
直流隔离放大器与分压器配合可测量下列数据:馈线电流、馈线电压、线路测试电压和线路测试电流。
直流隔离放大器和分压器均为绝缘封装,固定安装于直流开关柜高压室的标准安装轨上[3]。
1.3 本课题的研究内容与目标由于目前国内地铁直流牵引供电系统馈线保护还不是很成熟,理论和现场资料数据较少,而且本人水平有限,论文预期达到以下目标:(1) 简单介绍供电系统的组成及地铁不同的供电方式,熟悉直流牵引供电系统保护的原理和实现方式;(2) 地铁直流牵引网的短路计算,这是变电所设备选择、保护设计和运行分析的重要依据。
在所查资料基础上,从基本的参数计算开始,简单介绍了整流机组的概念和外特性及12脉波整流机组和电路。
最后给出地铁直流牵引网短路电流的计算方法;(3) 对地铁直流牵引供电系统馈线保护进行配置,给出相应的整定原则或保护特性、原理。
本文地铁直流牵引供电系统馈线保护配置如下:大电流脱扣保护、电流上升率及电流增量保护(DDL保护)、框架泄漏保护、热力过负荷保护、双边跳联保护、定时限过流保护、低电压保护,并做了简单的故障处理流程;(4) 建立简单的仿真模型,对12脉波和短路点不同位置是牵引网短路电流进行了仿真;(5) 完成一个简单的地铁馈线保护系统。
2 直流牵引供电系统要完成一个简单地铁馈线保护系统,首先要做的就是了解地铁供电系统的组成和供电方式,熟悉地铁直流牵引供电系统保护的原理和实现方式。
这是后面内容的前提和基础。
2.1 城市轨道交通供电系统的组成地铁作为城市轨道交通系统的一部分,在经济日益发展的今天,成为解决交通拥挤的重要方案。
城市轨道交通采用直流供电,其供电系统一般为列车及辅助设施如照明、通风、空调、排水、通信、信号、防灾报警、自动扶梯等提供电能。
城市轨道交通供电系统包括高压电源系统(即城市电网,主要给城市轨道交通提供外部电源)、牵引供电系统(为列车提供电力,由牵引变电所和接触网组成)和动力照明系统(由降压变电所和动力照明配电线路组成)。
给地铁、轻轨电动列车提供电能的变电所是牵引变电所,此外,城市轨道交通供电系统的变电所还有电源变电所(或称高压变电所)、降压变电所和牵引降压(混合)变电所。