选修4-4 极坐标系

合集下载

最新人教版高中数学选修4-4《极坐标系》教材梳理

最新人教版高中数学选修4-4《极坐标系》教材梳理

最新⼈教版⾼中数学选修4-4《极坐标系》教材梳理庖丁巧解⽜知识·巧学⼀、极坐标系的概念1.在⽣活中,如台风预报、地震预报、测量、航空、航海等,经常⽤距离和⽅向来表⽰⼀点的位置.⽤距离和⽅向表⽰平⾯上⼀点的位置,就是极坐标.极坐标系的建⽴:在平⾯内取⼀个定点O ,叫做极点.引⼀条射线Ox ,叫做极轴.再选定⼀个长度单位和⾓度正⽅向(通常取逆时针⽅向).这样就建⽴了⼀个极坐标系.2.如图1-2-3,极坐标系内⼀点的极坐标的规定:对于平⾯上任意⼀点M ,⽤ρ表⽰线段OM 的长度,⽤θ表⽰从Ox 到OM 的⾓度,ρ叫做M 的极径,θ叫做点M 的极⾓,有序数对(ρ,θ)就叫做M 的极坐标.图1-2-3深化升华极点、极轴、长度单位、⾓度单位和它的正⽅向,构成了极坐标系的四要素,缺⼀不可.1.特别规定:当M 在极点时,它的极坐标ρ=0,θ可以取任意值.2.平⾯上⼀点的极坐标是不唯⼀的,有⽆数种表⽰⽅法.坐标不唯⼀是由极⾓引起的.不同的极坐标可以写出统⼀表达式.⼆、极坐标和直⾓坐标的互化1.互化的前提条件:①极坐标系中的极点与直⾓坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系中取相同的长度单位.2.互化公式??≠=+===.0,t an ,,sin ,co s 222x x y y x y x θρθρθρ在进⾏两种坐标间的互化时,应注意以下⼏点:①两套公式是在三条规定下得到的;②由直⾓坐标求极坐标时,理论上不是唯⼀的,但这⾥约定只在主值范围内求值;③由直⾓坐标⽅程化为极坐标⽅程,最后要化简;④由极坐标⽅程化为直⾓坐标⽅程时要注意变形的等价性,通常总要⽤ρ去乘⽅程的两端,应该检查极点是否在曲线上,若在是等价变形,否则,不是等价变形.问题·探究问题1 平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但为什么它并不是确定点的位置的唯⼀⽅法,为什么要使⽤极坐标?探究:确定平⾯内⼀个点的位置时,有时是依靠⽔平距离与垂直距离这两个量,有时却是依靠距离与⽅位⾓(即“长度”与“⾓度”,这就是极坐标系的基本思想)这两个量.在⽣活中,如台风预报、地震预报、测量、航空、航海中等,甚⾄更贴近⽣活的如⼈听声⾳,不但有⾼低之分,还有⽅向之分.描述⼀个⼈所⾛的⽅向和路程,经常会这样说:从A 点出发向北偏东60°⽅向⾛了⼀段距离到B 点,再从B 点向南偏西15°⽅向⾏⾛……描述某飞机的位置:飞⾏⾼度1 200⽶,从飞机上看地平⾯控制点B 的俯⾓α=16°31′……这种位置的刻画能够给⼈⼀个很直观的形象.⽣活中除了应⽤这两种坐标系外,还应⽤地理坐标系,它实际上能称为真实世界的坐标系了.它能确定物体在地球上的位置.最常⽤的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何⼀点的位置.另外,从⼏何上来说,有些复杂的曲线,⽐如说环绕⼀点做旋转运动的点的轨迹,⽤直⾓坐标表⽰,形式极其复杂,但⽤极坐标表⽰,就变得⼗分简单且便于处理.在应⽤上有重要价值的等速螺线,它的直⾓坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有⼀个简单的⼀次函数关系ρ=ρ0+aθ(a≠0),从⽽可以看出ρ的值是随着θ的增加(或减少)⽽增加(或减少)的.总之,使⽤极坐标是⼈们⽣产⽣活的需要.平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但它并不是确定点的位置的唯⼀⽅法.问题2 ⽤极坐标与直⾓坐标来表⽰点时,⼆者究竟有哪些相同和不同呢?探究:极坐标系是⽤距离和⾓来表⽰平⾯上的点的位置的坐标系,它由极点O 与极轴Ox 组成.对于平⾯内任⼀点P ,若设|OP|=ρ(≥0),以Ox 为始边,OP 为终边的⾓为θ,则点P 可⽤有序数对(ρ,θ)表⽰.直⾓坐标是⽤两个长度来度量的,直⾓坐标系是在数轴的基础上发展起来的,⾸先定义原点,接着⽤两条互相垂直的直线分别构成x 轴和y 轴.点的位置⽤有序数对(x,y)来表⽰.在平⾯直⾓坐标系内,点与有序实数对,即坐标(x ,y )是⼀⼀对应的,可是在极坐标系内,虽然⼀个有序实数对(ρ,θ)只能与⼀个点P 对应,但⼀个点P 却可以与⽆数多个有序实数对(ρ,θ)对应.也就是说平⾯上⼀点的极坐标是不唯⼀的.极坐标系中的点与有序实数对极坐标(ρ,θ)不是⼀⼀对应的.典题·热题例1设有⼀颗彗星,围绕地球沿⼀抛物线轨道运⾏,地球恰好位于该抛物线轨道的焦点处,当此彗星离地球为30(万千⽶)时,经过地球和彗星的直线与抛物线的轴的夹⾓为30°,试建⽴适当的极坐标系,写出彗星此时的极坐标.思路分析:如图1-2-4所⽰,建⽴极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列四种情形:图1-2-4(1)当θ=30°时,ρ=30(万千⽶);(2)当θ=150°时,ρ=30(万千⽶);(3)当θ=210°时,ρ=30(万千⽶);(4)当θ=330°时,ρ=30(万千⽶).解:彗星此时的极坐标有四种情形:(30,30°),(30,150°),(30,210°),(30,330°).误区警⽰彗星此时的极坐标是四个,不能忽略了夹⾓的概念.如果只找到了⼀个极坐标,这是三⾓概念不清.例2极坐标与直⾓坐标的互化:(1)化点M 的直⾓坐标(-3,4)为极坐标;(2)化点M 的极坐标(-2,6π-)为直⾓坐标.思路分析:本题利⽤直⾓坐标与极坐标之间的互化公式,化极坐标时,需要找到点所对应的极径,极⾓;将极坐标化为直⾓坐标,直接根据公式可得到横,纵坐标.解:(1)∵ρ=22224)3(+-=+y x =5,tanθ=34-=x y , ⼜∵x<0,y>0,∴θ是第⼆象限⾓.∴θ=π-arctan 34. ∴点M 的极坐标为(5,π-arctan34). (2)x=2cos(6π-)=3-,y=-2sin(65π-)=1,∴点M 的直⾓坐标为(3-,1).深化升华(1)化点的直⾓坐标为极坐标时,⼀般取ρ≥0,0≤θ<2π,即θ取最⼩正⾓,由tanθ=xy 求θ时,还需结合点(x,y)所在的象限来确定θ的值. (2)化点的极坐标为直⾓坐标时,直接⽤互化公式?==,sin ,cos θρθρy x 例3在极坐标系中,A(4,9π),B(1,185π),则△OAB 的⾯积是__________. 思路解析:如图1-2-5所⽰,∠AOB=185π-9π=6π,图1-2-5S △AOB =21·|AO|·|BO|·sin ∠AOB=21·4·1·sin 6π=1. 答案:1⽅法归纳既然是求⾯积,那么就要明确所⽤到的⾯积公式不是⼀般的底乘⾼的⾯积公式,⽽是正弦定理的⾯积公式.例4已知两点的极坐标A(3,2π)、B(3,6π),则|AB|=______,AB 与极轴正⽅向所夹的⾓为____.图1-2-6思路解析:如图1-2-6所⽰,根据极坐标的定义可得|AO|=|BO|=3,∠AOB=60°,即△AOB 为正三⾓形.答案:3,65π⽅法归纳在坐标系中找到点的位置后,利⽤数形结合的⽅法可求出距离来.例5在极坐标中,若等边△ABC 的两个顶点是A(2,4π)、B(2,45π),那么顶点C 的坐标可能是( )A.(4,43π)B.(32,43π) C.(32,π) D.(3,π)思路解析:如图1-2-7,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点.图1-2-7⼜|AB|=4,△ABC 为正三⾓形,|OC|=32,∠AOC=2π,C 对应的极⾓θ=4π+2π=43π或θ=4π-2π=4π-,即C 点极坐标为(32,43π)或(32,4π-). 答案:B深化升华在找点的极坐标时,把图形画出来,通过画图解决问题.例6(1)θ=43π的直⾓坐标⽅程是______; (2)极坐标⽅程ρ=sinθ+2cosθ所表⽰的曲线是______. 思路解析:(1)根据极坐标的定义,∵t anθ=xy ,∴tan 43π=x y ,即y=-x. (2)将极坐标⽅程化为直⾓坐标⽅程即可判断曲线的形状,因为给定的ρ不恒等于零,⽤ρ同乘⽅程的两边得ρ2=ρsinθ+2ρcosθ.化成直⾓坐标⽅程为x 2+y 2=y+2x,即(x-1)2+(y-21)2=45,这是以点(1,21)为圆⼼,半径为25的圆. 答案:(1)y=-x (2)以点(1,21)为圆⼼,半径为25的圆+++++++++++ ⽅法归纳当极坐标⽅程中含有sinθ、cosθ时,可将⽅程两边同乘以ρ,凑成含有ρsinθ、ρcosθ的项,然后再代⼊互化公式便可化为直⾓坐标⽅程,此法称为拼凑法.。

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

选修4-4极坐标市公开课一等奖省赛课微课金奖PPT课件

选修4-4极坐标市公开课一等奖省赛课微课金奖PPT课件
9/18
(一)直线极坐标方程
1、求过极点,倾角为5 射线极坐标
方程。
4
易得 5 ( 0)
4
2、求过极点,倾角为 方程。
4
直线极坐标
或 5
4
4
10/18
结论:直线极坐标方程
( 0)表示极角为的一条射线。 = ( R)表示极角为的一条直线。
11/18
(一)直线坐标方程
O
X
叫做点M极角,
有序数对(,)就叫做M极 坐标。
3/18
二.极坐标系下点与极坐标对应情况
1.给定(,),就能够在极坐标 平面内确定唯一一点M。
P
M (ρ,θ)…
2.给定平面上一点M,但却有 O
X
没有数个极坐标与之对应。
原因在于:极角有没有数个。
4/18
假如限定ρ>0,0≤θ<2π 那么除极点外,平面内点和极坐标 就能够一一对应了.
18/18
42
求点A(2, 7 )到这条直线的距离。
4
解:将直线
sin(
)
2 化为直角坐标方
42
程为x y 1 0,点A(2, 7 )化为直角坐标为
4
( 2,- 2)
点到直线的距离为
2- 2-1 =
2
2
2
16/18
练习:4 6、确定极坐标方程 4 sin( )与
3
3 cos sin 8 0所表示的曲线
及位置关系。
17/18
高考
1.在直角坐标系 xOy 中,以 O 为极点,x 轴正半轴为极轴建 立极坐标系.曲线 C 的极坐标方程为 ρcosθ-π3=1,M,N 分别为 C 与 x 轴,y 轴的交点. (1)写出 C 的直角坐标方程,并求 M,N 的极坐标; (2)设 MN 的中点为 P,求直线 OP 的极坐标方程.

人教版高中数学选修4-4课件:第一讲二极坐标

人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.

选考部分(理)-选修4-4-坐标系与参数方程

选考部分(理)-选修4-4-坐标系与参数方程

返回
6.解:(1)由 ρ=2 5sin θ,得 x2+y2-2 5y=0,即圆 C 的直角 坐标方程为 x2+(y- 5)2=5.
x=3- 由
22t,
y= 5+ 22t,
可得直线 l 的普通方程为
x+y- 5-3=0.
所以圆 C 的圆心(0, 5)到直线 l 的距离为
|0+
5- 2
5-3|=3 2 2.
返回
2.解:(1)由 ρ=4cos θ 得 ρ2=4ρcos θ, 化为直角坐标方程得 x2+y2=4x, 即圆 C 的直角坐标方程为(x-2)2+y2=4. (2)将直线 l 的参数方程xy==ta+ 3t, (t 为参数)化为普通方程 得 x- 3y-a=0. 由圆 C 与直线 l 相切,得 |21-+a3| =2, 解得 a=-2 或 6.
返回
8.解:(1)将直线 l 的参数方程化为普通方程,得 y=xtan α. 将圆 C 的极坐标方程 ρ2-8ρcos θ+12=0 化为直角坐标方程得 (x-4)2+y2=4. 因为直线 l 与圆 C 切于点 M, 则 sin α=COMC=24=12, 所以 α=π6或 α=56π.
返回
(2)若

考点例题
考 部
选 修
4-4
冲关集训

课时作业
选考部分
选修4-4 坐标系与参数方程
返回
考点例题 例 1:思路点拨:首先求出直线与极轴的交点,便可求圆的极坐
标方程.
解:在 ρsinθ-π3=- 23中令 θ=0,得 ρ=1, 所以圆 C 的圆心坐标为(1,0).
因为圆 C 经过点 P
2,π4,
所以圆 C 的半径 PC= 22+12-2×1× 2cosπ4=1,于是圆

高中数学选修4-4-极坐标

高中数学选修4-4-极坐标

极坐标知识集结知识元极坐标知识讲解1.极坐标系【知识点的认识】极坐标系与点的极坐标在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置.其中,ρ称为点M 的极径,θ称为点M的极角.由极径的意义可知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系,我们约定,极点的极坐标是极径ρ=0,极角θ可取任意角.2.简单曲线的极坐标方程【知识点的认识】一、曲线的极坐标方程定义:如果曲线C上的点与方程f(ρ,θ)=0有如下关系(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(ρ,θ)=0;(2)以方程f(ρ,θ)=0的所有解为坐标的点都在曲线C上.则曲线C的方程是f(ρ,θ)=0.二、求曲线的极坐标方程的步骤:与直角坐标系里的情况一样①建系(适当的极坐标系)②设点(设M(ρ,θ)为要求方程的曲线上任意一点)③列等式(构造△,利用三角形边角关系的定理列关于M的等式)④将等式坐标化⑤化简(此方程f(ρ,θ)=0即为曲线的方程)三、圆的极坐标方程(1)圆心在极点,半径为r,ρ=r.(2)中心在C(ρ0,θ0),半径为r.ρ2+ρ02﹣2ρρ0cos(θ﹣θ0)=r2.四、直线的极坐标方程(1)过极点,θ=θ0(ρ∈R)(2)过某个定点垂直于极轴,ρcosθ=a(3)过某个定点平行于极轴,r sinθ=a(4)过某个定点(ρ1,θ1),且与极轴成的角度α,ρsin(α﹣θ)=ρ1sin(α﹣θ1)五、直线的极坐标方程步骤1、据题意画出草图;2、设点M(ρ,θ)是直线上任意一点;3、连接MO;4、根据几何条件建立关于ρ,θ的方程,并化简;5、检验并确认所得的方程即为所求.3.点的极坐标和直角坐标的互化【知识点的认识】坐标之间的互化(1)点的极坐标和直角坐标的互化以直角坐标系的原点O为极点,x轴的正半轴为极轴,且在两种坐标系中取相同的长度单位(如图).平面内任意一点P的直角坐标与极坐标分别为(x,y)和(ρ,θ),则由三角函数的定义可以得到如下两组公式:,.通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<2π.(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为:.(3)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为:.例题精讲极坐标例1.在极坐标系中,已知M(1,),N,则|MN|=()A.B.C.1+D.2例2.在极坐标系中,已知A(3,),B(4,),O为极点,则△AOB的面积为()A.3B.C.D.2例3.已知直线l:(t为参数)与曲线ρ2=的相交弦中点坐标为(1,1),则a等于()A.-B.C.-D.当堂练习单选题练习1.已知曲线C的极坐标方程为:ρ=2cosθ-4sinθ,P为曲线C上的动点,O为极点,则|PO|的最大值为()A.2B.4C.D.2练习2.在极坐标中,O为极点,曲线C:ρ=2cosθ上两点A、B对应的极角分别为,则△AOB 的面积为()A.B.C.D.练习3.已知直线l过点P(-2,0),且倾斜角为150°,以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-2ρcosθ=15.若直线l交曲线C于A,B两点,则|PA|∙|PB|的值为()A.5B.7C.15D.20练习4.在平面直角坐标系中,记曲线C为点P(2cosθ-1,2sinθ+1)的轨迹,直线x-ty+2=0与曲线C 交于A,B两点,则|AB|的最小值为()A.2B.C.D.4练习5.在极坐标系中,直线ρcosθ=2与圆ρ=4cosθ交于A,B两点,则|AB|=()A.4B.C.2D.练习6.在同一平面直角坐标系中,将直线x-2y=2按φ:变换后得到的直线l,若以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,则直线l的极坐标方程为()A.4ρcosθ-ρsinθ=4B.ρcosθ-16ρsinθ=4C.ρcosθ-4ρsinθ=4D.ρcosθ-8ρsinθ=4填空题练习1.在极坐标系中,圆ρ=1上的点到直线的距离的最大值是___.练习2.在极坐标系中,点(2,)到直线ρsinθ-ρcosθ-6=0的距离为___.练习3.在极坐标系下,已知圆,则圆O的直角坐标方程是_________________练习4.在极坐标系中,若点A(3,),B(3,),则△AOB的面积为___解答题练习1.'在平面直角坐标系xOy中,以原点为极点,x轴为极轴建立极坐标系,曲线C的方程是,直线l的参数方程为(t为参数,0≤α<π),设P (1,2),直线l与曲线C交于A,B两点.(1)当α=0时,求|AB|的长度;(2)求|PA|2+|PB|2的取值范围.'练习2.'在直角坐标xOy中,直线l的参数方程为{(t为参数)在以O为极点.x轴正半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ=4sinθ-2cosθ.(I)求直线l的普通方程与曲线C的直角坐标方程:(Ⅱ)若直线l与y轴的交点为P,直线l与曲线C的交点为A,B,求|PA||PB|的值.'。

高考数学冲刺讲义选修4-4坐标系与参数方程(选考)

高考数学冲刺讲义选修4-4坐标系与参数方程(选考)
解:把直线的参数方程代入圆的方程,得
(1 t ) (1 t ) 4,
2 2
因此t1 1, t2 1
t 1
2
x1 0 分别代入直线方程,得 y1 2 交点为A(0,2)和B(2,0)。
x2 2 y2 0
选修4-4
六.圆锥曲线的参数方程
x x0 lt ,t R y y0 mt
例10:直线过点A(1,3),且与向量(2,-4)共线: (1)求出直线的参数方程;(2)练习:求点P(-2,-1) 到此直线的距离。
x 1 2t y 3 4t
解:(1)
(2)解第二问的方法很多,最简单的方法就是把直线才 参数方程转换为直线的一般方程,然后利用点到直线 的距离公式求解。 答案: 2 2
又因为(t以s为单位),得参数方程
x 2 cos 60 t ,t 0 y 2 sin t 60

O
A 2 x
曲线的直角坐标方程常常可以转化为参数方程,转化的 关键是找到一个适当的参数。
曲线的普通方程和参数方程之间有些容易转化,有些则 较困难,有些无法转化。
由此可见,平面上的点与它的极坐标不是一一对应关系。这是极 坐标与直角坐标的 0 ,此时极坐标 ( , ) 对应的点M 的位置下面规则确定:点M在与极轴成 角的射线的反向 延长线上, 它到极点O的距离为 ,即规定当 0 时,点
M ( , ) 就是点M ( , ) 。
选修4-4
坐标系 与 参数方程
选修4-4
一.坐标系 在生产实践中,随着活动范围的扩大和对精度要 求的提高,为了更快,更准确的表述物体的位置, 我们通常要建立新的坐标系,叫做极坐标。

选修4-4坐标系与参数方程-高考题及答案

选修4-4坐标系与参数方程-高考题及答案

1、已知在直角坐标系xOy 中,直线l的参数方程为3x t y =-⎧⎪⎨=⎪⎩,(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C的极坐标方程为24s 30co ρρθ-+=.①求直线l 普通方程和曲线C 的直角坐标方程;②设点P 是曲线C 上的一个动点,求它到直线l 的距离的取值范围.2、已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ,(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为(2,π3).(Ⅰ) 求点A 、B 、C 、D 的直角坐标;(Ⅱ) 设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.3、在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(Ⅱ)求圆C 1与C 2的公共弦的参数方程.4、在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.5、在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数).M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.6、已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.7、在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.8、在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝ ⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.1、【答案】①直线l 0y -+=.曲线C 的直角坐标方程为:22430x y x +-+=【或22(2)1x y -+=】. ②曲线C 的标准方程为22(2)1x y -+=,圆心(2,0)C ,半径为1;∴圆心(2,0)C 到直线l 的距离为:d ==所以点P 到直线l 的距离的取值范围是1]-+ 2、解:(Ⅰ)由已知可得A (2cos π3,2sin π3),B (2cos(π3+π2),2sin(π3+π2)),C (2cos(π3+π),2sin(π3+π)),D (2cos(π3+3π2),2sin(π3+3π2)),即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (Ⅱ)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2,则 S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].3、解:(Ⅰ)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程ρ=4cos θ. 解⎩⎪⎨⎪⎧ρ=2ρ=4cos θ,得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为(2,π3),(2,-π3).注:极坐标系下点的表示不唯一.(Ⅱ)法一:由⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1y =t ,-3≤t ≤ 3.(或参数方程写成⎩⎪⎨⎪⎧x =1y =y ,-3≤y ≤3)法二:将x =1代入⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,得ρcos θ=1,从而ρ=1cos θ.于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1y =tan θ,-π3≤θ≤π3. 4、 (1)把极坐标系的点P (4,π2)化为直角坐标,得P (0,4),因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线 l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为 (3cos α,sin α),从而点Q 到直线l 的距离d =|3cos α-sin α+4|2=2cos α+π6+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2.5、 (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y2.由于M 点在C 1上, 所以⎩⎪⎨⎪⎧x 2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.6、 (1)由已知,M 点的极角为π3,且M 点的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t ,(t 为参数).7、解:在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0).因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.8、 解:(1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33,故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.又圆C 的圆心坐标为(2,-3),半径r =2,圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-4·第一章 极坐标系
一、新学习目标
1. 认识极坐标系,学生能复述极坐标系的定义,能区分并说明极坐标系和平面直角坐标系的异同。

2. 认识极坐标,给定一个点P 的极坐标(,)ρθ能说明其意义;能结合图形写出平面上任意一个点的极坐标。

3. 比较极坐标系和平面直角坐标系:能熟练进行点的两种坐标转换【P (,)ρθ与P (x ,y )】。

4. 认识圆和直线方程的几种特殊形式:会画出极坐标系和平面直角坐标系下的图形,会从图形分析出极坐标方程。

5. 能够进行圆和直线的标准方程与极坐标方程的转换,能够判断一个极坐标方程表示的是什么曲线。

6. 能说明平面上一个点的多种极坐标表示。

能写出极坐标平面上的对称点。

二、知识纲要
1. 平面直角坐标系中的坐标伸缩变换
设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)
x x
y y
λλϕ
μμ'=>⎧⎨
'=>⎩ 的作用下,点P(x,y)对
应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.
2.极坐标系的概念:
(1)极坐标系:
如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线O x ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.
(2)极坐标:
设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴O x 为始边,射线O M 为终边的角xO M ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.
说明:
①一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.
②特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.
③如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.
注:极坐标系和平面直角坐标系的异同:
3.极坐标和直角坐标的互化:
(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴
,
并在两种坐标系中取相同的长度单位,如图所示:
(2)互化公式: 设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(
0ρ≥),于是极坐标与直角坐标的互化公式如表:
在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.
4.极坐标的多种表示:
极坐标系中极轴正方向的选取是任意的,习惯上可以向右(如图1),也可以向左(如图2)
图1
ρ
,P ρθ(-)
图2
5. 极坐标系下的点对称:
(1).点M (,)ρθ关于极轴对称的点:'M ρθ(,-)或'-M ρπθ(,-)
(2).点M (,)ρθ关于极点对称的点:'M ρπθ(,+)或'M ρθ(-,)
6.常见曲线的极坐标方程
·'M ρθ(,-)
x '
θ-)
·
πθ+
'M ρπθ(,+)
x '
注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(
,)44
M ππ
可以表示为
5(
,
2
)(,2),4
444
4

π
ππππ
ππ+-或或(-)等多种形式,其中,只有(,)44
ππ
的极坐标满足方程ρθ=.
三、经典练习题
1.点M 的直角坐标是(-,则点M 的极坐标为( )。

A .(2,)3
π
B .(2,)3
π
-
C .2(2,
)3
π D .(2,2),()3
k k Z π
π+

2. 椭圆
125
)1(9
)
3(2
2
=++
-y x 的两个焦点坐标是 ( )
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)
3.在极坐标系中,点(ρ,θ)与(-ρ, π-θ
)的位置关系为( )。

A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2
π
(ρ∈R) 对称 D .重合
4.圆5cos ρθθ=-的圆心坐标是( )。

A .4(5,)3
π--
B .(5,
)3
π
- C .(5,
)3
π
D .5(5,
)3
π
5. 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( )
A.x 2+(y+2)2=4
B.x 2+(y-2)2=4
C.(x-2)2+y 2=4
D.(x+2)2+y 2=4
6.化极坐标方程2
cos 0ρθρ-=为直角坐标方程为( )
A .2
01y y +==2x 或 B .1x =
C .2
01y +==2x 或x D .1y =
7.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )
A .一条射线和一个圆
B .两条直线
C .一条直线和一个圆
D .一个圆
8. 极坐标ρ=cos(
θπ
-4
)表示的曲线是( )
A.双曲线
B.椭圆
C.抛物线
D.圆
9.极坐标方程 4ρsin 2

=5 表示的曲线是( )。

A .圆
B .椭圆
C .双曲线的一支
D .抛物线
10.极坐标方程cos 20ρθ=表示的曲线为( )
A .极点
B .极轴
C .一条直线
D .两条相交直线
11. 极坐标方程ρ=
θ
θcos sin 321
++
所确定的图形是( ) A.直线 B.椭圆
C.双曲
D.抛物线
10.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )
A .cos 2ρθ=
B .sin 2ρθ=
C .4sin()3
π
ρθ=+
D .4sin()3
π
ρθ=-
11.点 P 1(ρ1,θ1) 与 P 2(ρ2,θ2) 满足ρ1 +ρ2=0,θ1 +θ2 = 2π,则 P 1、P 2 两点的位置关系是
( )。

A .关于极轴所在直线对称 B .关于极点对称+
C .关于θ=2
π
所在直线对称 D .重合
12.已知圆的极坐标方程ρ=2sin(θ+
6
π
),则圆心的极坐标和半径分别为( )
A.(1,3
π
),r=2 B.(1,
6
π
),r=1 C.(1,
3
π
),r=1 D.(1, -
3
π
),r=2
13.直线ρ=θθsin cos 23
+与直线l 关于直线θ=4
π
(ρ∈R)对称,则l 的方程是( ) A .θ
θρsin cos 23
-=
B .θ
θρcos cos 23
-=
C .θ
θρsin 2cos 3
-=
D .θ
θρsin 2cos 3
+=
14.把直角坐标系的原点作为极点,x 的正半轴作为极轴,并且在两种坐标系中取相同的长度单位,若曲线的极坐标方程是1
cos 412
2
-=
θP
,则它的直角坐标方程是。

15.直线cos sin 0x y αα+=的极坐标方程为____________________。

16.曲线的极坐标方程为1tan cos ρθθ
=⋅,则曲线的直角坐标方程为________________。

17.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。

18、求圆心为C 36,π⎛⎝


⎪,半径为3的圆的极坐标方程。

19.在平面直角坐标系中已知点A (3,0),P 是圆珠笔()122=+y x 上一个运点,且AOP ∠的平分线交PA 于Q 点,求Q 点的轨迹的极坐标方程。

20.椭圆
2
2a
x +
2
2b
y =1(a > b > 0)的右顶点为A ,中心为O ,若椭圆在第一象限的弧上存在点P ,
使∠OPA=90°,求离心率的范围。

求圆心为C 36,π⎛⎝


⎪,半径为3的圆的极坐标方程。

相关文档
最新文档