开关电源设计技巧

合集下载

开关电源工程化实用设计指南

开关电源工程化实用设计指南

开关电源工程化实用设计指南开关电源是一种非常重要的电力转换设备,它可以将输入的直流电压转换为输出的交流电压,从而满足各种电子设备的供电需求。

开关电源的工程化实用设计是一项涉及到多个领域的技术工作,包括电路设计、磁性元件设计、功率转换器设计、控制器设计和可靠性设计等。

下面将介绍开关电源的工程化实用设计指南。

一、电路设计开关电源的电路设计是整个设计的核心,也是最关键的一步。

在电路设计中,需要考虑以下几个方面的因素:输入和输出电压:开关电源的输入和输出电压需要根据电子设备的实际需求来确定。

在输入电压方面,需要考虑到电网电压的波动和噪声等因素,确保开关电源能够稳定工作。

在输出电压方面,需要根据电子设备的功率和负载特性来进行设计,确保输出的电压能够满足电子设备的供电需求。

功率容量:开关电源的功率容量需要根据电子设备的功率需求来确定。

在确定功率容量时,需要考虑到开关电源的最大负载和可能出现的峰值负载等因素,确保开关电源的功率容量足够且不会出现过载或损坏的情况。

电路拓扑:开关电源的电路拓扑是指其基本电路结构。

根据不同的需求,可以选择不同的电路拓扑来进行设计。

常用的电路拓扑包括BUCK型、BOOST型、BUCK-BOOST型等,需要根据实际情况来选择合适的电路拓扑。

控制方式:开关电源的控制方式是指如何控制开关管的导通和关断,以达到稳定输出电压的目的。

常用的控制方式包括脉冲宽度调制(PWM)、脉冲频率调制(PFM)和电流模式控制等,需要根据实际情况来选择合适的控制方式。

二、磁性元件设计开关电源中的磁性元件主要包括电感和变压器,它们在功率转换器中起到重要的作用。

在磁性元件设计中,需要考虑以下几个方面的因素:磁芯材料:磁芯材料的选择是磁性元件设计的关键。

常用的磁芯材料包括铁氧体、坡莫合金和非晶合金等,需要根据实际情况来选择合适的磁芯材料。

线圈设计:线圈设计是磁性元件设计的另一个关键因素。

在电感设计中,需要考虑到线圈的匝数、线径和绕制方式等因素,以确保电感能够满足开关电源的负载需求。

开关电源模块的十大技巧

开关电源模块的十大技巧

开关电源模块的十大技巧
1. 确保输入电压的稳定性:开关电源的输入电压变化范围应在规定范围内,以确保输出电压的稳定性。

2. 选用恰当的输出电容:输出电容可以平滑输出电压的波动,并提供短时间的电源备份,选用合适的电容容值可以改善电源性能。

3. 降低输出电压噪声:噪声滤波电容和电感可以帮助减少输出电压的噪声,并改善电源的稳定性。

4. 设计合适的保护措施:开关电源应考虑过压、过流、过温等保护功能,以确保设备的安全运行。

5. 选择合适的开关频率:高开关频率可以减小开关器件尺寸,但可能会增加功耗和噪声;低开关频率则可能导致较大的尺寸和重量。

6. 优化散热设计:开关电源通常会产生一定的热量,在设计时要考虑散热问题,以避免过热引发故障。

7. 考虑EMC问题:开关电源可能会产生电磁干扰,要在设计时注意防止干扰其他设备或被其他设备干扰。

8. 选择适当的转换拓扑结构:有多种不同的开关电源拓扑结构,如Buck、Boost、Buck-Boost等,根据实际应用需求选择合适的拓扑结构。

9. 优化功率因数:开关电源的功率因数应尽可能接近1,以减小对电网的污染,并提高能源利用效率。

10. 严格测试和品质控制:开关电源的稳定性和可靠性至关重要,应进行严格测试,并建立有效的品质控制体系,确保产品质量。

如何一步一步设计开关电源?开关电源设计调试步骤全过程

如何一步一步设计开关电源?开关电源设计调试步骤全过程

如何一步一步设计开关电源?开关电源设计调试步骤全过程针对开关电源很多人觉得很难,其实不然。

设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。

万事开头难,笔者在这就抛砖引玉,慢慢讲解如何一步一步设计开关电源。

开关电源设计的第一步就是看规格,具体的很多人都有接触过,也可以提出来供大家参考,我帮忙分析。

在这里只带大家设计一款宽范围输入的,12V2A的常规隔离开关电源。

1、首先确定功率根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback)基本上可以满足要求。

在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论。

2、选择相应的PWMIC和MOS来进行初步的电路原理图设计当我们确定用flyback拓扑进行设计以后,我们需要选择相应的PWMIC和MOS来进行初步的电路原理图设计(sch)。

无论是选择采用分立式的还是集成的都可以自己考虑。

对里面的计算我还会进行分解。

分立式:PWMIC与MOS是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说);集成式:就是将PWMIC与MOS集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境。

3、做原理图确定所选择的芯片以后,开始做原理图(sch),在这里我选用STVIPer53DIP(集成了MOS)进行设计。

设计前最好都先看一下相应的datasheet,确认一下简单的参数。

无论是选用PI的集成,或384x或OBLD等分立的都需要参考一下datasheet。

一般datasheet里都会附有简单的电路原理图,这些原理图是我们的设计依据。

4、确定相应的参数当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCBLayout。

当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算了。

开关电源设计(精通型)

开关电源设计(精通型)

开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。

它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。

在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。

2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。

(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。

二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。

(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。

(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。

2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。

(2)电压和电流等级:确保开关器件能承受最大电压和电流。

(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。

(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。

3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。

(2)精度:提高控制电路的采样精度,降低输出电压的波动。

(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。

三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。

3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。

4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。

5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。

开关电源设计时的PCB规范及走线技巧

开关电源设计时的PCB规范及走线技巧

开关电源PCB设计原则及走线技巧一、引言开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。

因为开关三极管总是工作在“开”和“关”的状态,所以叫开关电源。

开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。

开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就是能满足这种条件的电路。

开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。

隔离电源按照结构形式不同,可分为两大类:正激式和反激式。

反激式指在变压器原边导通时副边截止,变压器储能。

原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。

正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。

按规格又可分为常规正激,包括单管正激,双管正激。

半桥、桥式电路都属于正激电路。

正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。

一般在小功率场合可选用反激式。

稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。

大功率输出,一般采用桥式电路,低压也可采用推挽电路。

反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。

在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。

本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。

输出功率大小与输出电压高低有关。

反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。

电子设计中常用的开关电源设计方法

电子设计中常用的开关电源设计方法

电子设计中常用的开关电源设计方法在电子设计中,开关电源是一种常用的电源设计方法,它具有高效率、小体积和稳定性好等优点,因此在各种电子设备中被广泛应用。

在实际应用中,有几种常见的开关电源设计方法,包括降压型开关电源、升压型开关电源和反激型开关电源。

首先是降压型开关电源,它是最常见的开关电源设计方法之一。

降压型开关电源通过将输入电压降低到输出电压的方法来实现电压转换。

在降压型开关电源中,主要包括基本的降压型稳压器、脉宽调制(PWM)控制方式以及电感式降压转换器等。

在实际应用中,通过合理选择器件参数和控制方式,可以实现高效率、低波动、小尺寸等优点。

其次是升压型开关电源,与降压型开关电源相反,升压型开关电源将输入电压升高到输出电压的水平。

升压型开关电源的工作原理相对复杂一些,需要具备更高的技术要求。

在升压型开关电源中,常用的设计方法包括升压型稳压器、升压式模块以及多级升压转换器等。

设计时需要考虑输出电压稳定性和负载调整范围等因素,以确保电源的性能和稳定性。

最后是反激型开关电源,它是一种常用于大功率应用中的开关电源设计方法。

反激型开关电源具有高效率、快速响应和良好的动态性能等特点。

在反激型开关电源设计中,主要包括基本的反激型稳压器、谐振反激式转换器以及桥式反激转换器等。

通过合理选择拓扑结构和控制方式,可以实现高效率和稳定的反激型开关电源设计。

总的来说,在电子设计中常用的开关电源设计方法包括降压型开关电源、升压型开关电源和反激型开关电源。

设计时需要考虑输入输出电压范围、负载调整范围、效率要求以及输出稳定性等因素,以选择合适的开关电源设计方法,并通过合理设计实现性能优越的电源系统。

希望以上内容对您有所帮助,如有任何疑问欢迎继续交流。

开关电源电路设计要点与调试

开关电源电路设计要点与调试

开关电源电路设计要点与调试开关电源是一种用于电子设备的电源供应,其具有高效率、稳定性和可调性等优点。

设计和调试开关电源时,需要注意一些重要要点。

一、开关电源设计要点:1.选择适当的拓扑结构:开关电源的拓扑结构有多种,如降压型、升压型、升降压型等。

要根据设备的功率需求和使用环境来选择合适的拓扑结构。

2.选择合适的功率器件:开关电源的功率器件主要包括开关管、二极管和变压器等。

需要选择具备合适功率和工作频率范围的器件,并且要考虑其可靠性和成本。

3.控制和保护电路设计:开关电源需要有稳定的控制和保护功能,如输出电压、电流的监测和调节,过载、过压、短路等故障的保护。

需要设计相应的反馈和控制电路,保证开关电源的可靠工作。

4.选择合适的滤波电路:开关电源在工作过程中会产生较大的开关干扰,需要采取合适的滤波措施,减小开关干扰对其他电子设备的影响。

5.选择合适的输出电容:开关电源的输出端需要连接电容进行滤波,以减小输出纹波。

应选择适当容量和质量的电容,保证输出电压稳定。

6.保证开关电源的安全性:开关电源设计时需要考虑一些安全因素,如避免触电危险、瞬态过电压保护等,保证电源的安全可靠性。

7.合理布局和散热设计:开关电源的布局设计要合理,器件的热量要及时散热,避免温度过高对电源稳定性的影响。

二、开关电源调试要点:1.确认电源输入输出参数:在开关电源调试之前,首先要明确电源的输入和输出参数,如输入电压范围、输出电压和电流等,以便调试和验证工作的正确性。

2.建立逐步调试的过程:开关电源调试时可以采用逐步调试的方法,即先调试一部分功能,然后逐渐增加其他功能的调试。

这样可以避免在调试过程中出现一些难以排查的问题。

3.注意开关电源的保护功能:在调试的过程中,要注意开关电源的保护功能是否正常,如过载、过压、短路等故障保护功能是否有效。

可以通过人工模拟故障情况进行测试。

4.确保开关电源的稳定性:开关电源在调试过程中需要保证输出电压和电流的稳定性。

开关电源制作 与调试 pdf

开关电源制作 与调试 pdf

开关电源制作与调试pdf开关电源在现代电子设备中起着至关重要的作用,因为它们提供了一个可靠且高效的方法来转换和调节电能。

开关电源的优点包括高效率、小体积和轻重量,使其成为许多应用的理想选择。

本文将介绍如何制作和调试一个简单的开关电源。

一、开关电源的工作原理开关电源通过控制开关管的导通和截止时间来调节输出电压或电流。

当开关管导通时,电能被存储在变压器中;当开关管截止时,存储的电能被释放到输出端。

通过改变开关管的导通和截止时间,可以调节输出电压或电流。

二、制作开关电源1. 确定规格:首先,确定所需的输出电压和电流规格。

这些规格将决定开关电源的规格和组件选择。

2. 选择组件:根据规格,选择适当的开关管、变压器、二极管、电容等组件。

确保所有组件都符合规格要求,并具有适当的耐压和电流容量。

3. 设计电路:根据工作原理,设计开关电源的电路。

确定输入和输出电压、电流,以及控制电路所需的反馈信号。

4. 搭建电路:将所有组件按照电路图组装在一起。

确保所有连接正确,并使用适当的绝缘材料将高压部分与其他部分隔离。

5. 测试:在接通电源之前,使用万用表测试电路的电阻、电压和电流等参数,确保所有组件正常工作且连接良好。

三、调试开关电源1. 初步测试:在接通电源之前,检查电路板上的所有连接,确保没有短路或断路。

使用万用表测量输入和输出电压、电流,确保它们在规定范围内。

2. 调整反馈:根据需要调整反馈信号,以稳定输出电压或电流。

这通常涉及调整运放器的反馈电阻,以改变其增益和带宽。

3. 测试效率:测量开关电源的效率。

在额定负载下,测量输入功率和输出功率,然后计算效率。

根据需要调整变压器和开关管的参数以提高效率。

4. 测试保护功能:确保开关电源具有适当的保护功能,例如过流保护和过压保护。

测试这些功能以确保它们正常工作。

5. 负载调整率:测试负载调整率以确保在变化的负载条件下,输出电压或电流保持稳定。

这涉及到在不同负载条件下测量输出电压或电流,并观察其变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源设计技巧
开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。

下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。

1电路和器件的选择
一个关键点是保持dv/dt和di/dt在较低水平,有许多电路通过减小dv/dt和/或
di/dt来减小辐射,这也减轻了对开关管的压力,这些电路包括ZVS(零电压开关)、ZCS (零电流开关)、共振模式.(ZCS的一种)、SEPIC(单端初级电感转换器)、CK(一套磁结构,以其发明者命名)等。

减小开关时间并非一定就能引起效率的提高,因为磁性元件的RF振荡需要强损耗的缓冲,最终可以观察到不断减弱的回程。

使用软开关技术,虽然会稍微降低效率,但在节省成本和滤波/屏蔽所占用空间方面有更大的好处。

2阻尼
为了保护开关管免受由于寄生参数等因素引起的振荡尖峰电压的冲击常需要阻尼,如图5示。

阻尼器连到有问题的线圈上,这也可以减小发射。

阻尼器有多种类型:从EMC角度看,RC阻尼器通常在EMC上是最好的,但比其他的发热多一些。

权衡各方面的利弊,在缓冲器中应谨慎使用感性电阻。

3散热器
散热器与集电极或TO247功率器件的漏极之间有50pF的电容,因此可以产生很强的发射。

仅仅直接地把散热片连到机壳,这只是把噪声引向大地,很可能不能减小总体发射水平。

较好的做法是:把它们连到一恰当的电路结点——一次整流输出端,但要注意安全要求。

具有屏蔽作用的绝缘隔离片可以连接到开关管上,把它们屏蔽内层接至一次整流端,散热片要么悬浮要么连到机壳。

散热片也可以通过电容连到有危险电压的线上,电容的引线和PCB轨线构成的电感可能会与电容“谐振”,这可对解决某些特殊频率上的问题特别有效。

应该在样机上多次试验,最终找到散热片的最佳安装方法。

4整流器件
用于一次电源上的整流器和二次整流器,因为其反向电流,可以引起大量的噪声,最好使用快速软开关型号的器件,如图6示。

5磁性元件有关问题及解决方案
特别需注意的是电感和变压器的磁路要闭合。

例如,用环形或无缝磁芯,环形铁粉芯适合于存储磁能的场合,若在磁环上开缝,则需一个完全短路环来减小寄生泄漏磁场。

初级开关噪声会通过隔离变压器的线圈匝间电容注入到次级,在次级产生共模噪声,这些噪声电流难以滤除,而且由于流过路径较长,便会产生发射现象。

一种很有效的技术是将次级地用小电容连接到初级电源线上,从而为这些共模电流提供一条返回路径,但要注意安全,千万别超出安全标准标明的总的泄漏地电流,这个电容也有助于次级滤波器更好的工作。

线圈匝间屏蔽(隔离变压器内)可以更有效地抑制次级上感应的初级开关噪声。

虽然也曾有过五层以上的屏蔽,但三层屏蔽更常见。

靠近初级线圈的屏蔽通常连到一次电源线上,靠近次级线圈的屏蔽经常连到公共输出地(若有的话),中间屏蔽体一般连到机壳。

在样机阶段最好反复实验以找到线圈匝间屏蔽的最好的连接方式。

以上两项技术也能减小输入端上感应的次级开关噪声。

适当大小的输出电感可以将次级交流波形变成半正弦波(图7上半部分),因此可以显著地减小变压器绕组间噪声(直流纹波)。

相关文档
最新文档