有理数的加减混合运算法则
有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
有理数加减混合运算法则

有理数加减混合运算法则有理数的加减混合运算1.有理数的减法法则:减去一个数,等于加上这个数的相反数,即a-b=a+(-b)2.有理数减法运算的步骤:①根据有理数减法法则,把减号变为加号,把减数变为它的相反数。
②利用有理数的加法法则进行运算。
3.加法和减法可以相互转化,即a+b=a-(-b)。
a-b=a+(-b)。
因此,引入负数后,加法和减法的界限已经消失。
4.有理数的加减混合运算:统一成加法运算。
5.去括号法则:①当括号前面是“+”号时,去掉括号和它前面的“+”号,括号内各数的符号都不改变。
m+(a+b-c)=m+a+b-c②当括号前面是“-”号时,去掉括号和它前面的“-”号,括号内各数的符号都要改变。
m-(a+b-c)=m-a-b+c6.添括号法则:①添上前面带有“+”号的括号时,括号内各数的符号都不改变。
m+a+b-c=m+(a+b-c)②添上前面带有“-”号的括号时,括号内各数的符号都要改变。
m-a-b+c=m-(a+b-c)典型例题例1:计算。
①9-(-5)②(-3)-1③(-5)-(-6)④(-2)-3例2:把(2)+(-4)-(-5)-3-(-2)写成省略括号的和的形式,并把它读出来。
例3:计算下列各式。
①(-24)+(3.2)-16-(-3.5)-(-.3)②(-)+(+)-(+)-(-95)-(-1)③-21+(3)-(-)-(+)④-4⑤(3)-(-5)+(-2)-(-12)⑥|1-2/3|-|1/4-2/3|课堂作业1.下列说法正确的是()A.减去一个负数,差一定大于被减数B.减去一个正数,差不一定小于被减数C.0减去任何数,差都是负数D.两个数之差一定小于被减数2.下列判断中,正确的是()A.若a是有理数,则|a|-a=0一定成立B.两个有理数的和一定大于每个加数C.两个有理数的差一定小于被减数D.0减去任何数都等于这个数的相反数3.差是-5,被减数是-2,则减数为()A.-7.B.-3.C.3.D.74.数-4与-3的和比它们的绝对值的和()5.根据数轴上a和b的位置,可以得到a和b都是负数,所以a+b和a-b中都有负数,答案是D.相等。
有理数加减法法则

(1)有理数加法法则
1.同号两数相加,取相同的符号,并把绝对值相加.即若a>0,b>0,则a+b=+(|a|+|b|);若a<0,b<0,则a+b=-(|a|+|b|).
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.即若a>0,b<0,且|a|>|b|时,则a+b=+(|a|-|b|);若a>0,b<0,且|a|<|b|时,则a+b=-(|b|-|a|).
3.一个数同0相加,仍得这个数.
加法的交换律:a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c) 用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
(2)有理数的减法法则
减去一个数,等于加这个数的相反数.有理数减法法则也可以表示成a-b=a+(-b).例如:(-3)-(-2)=(-3)+(+2)=-1.
对于有理数的减法运算,应先转化为加法,再根据有理数加法法则计算。
有理数的加减混合运算因为减法可以转化为加法运算,于是加减混合运算可以统一为加法运算,用式子表示为:a+b-c=a+b+(-c).
有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算,有理数减法是特殊的加法运算。
有理数的加减混合运算法则

有理数的加减混合运算法则
1.同号相加:两个有理数的符号相同,将它们的绝对值相加,结果的符号与原来的符号相同。
例如:-3+(-5)=-8,2.5+3.2=5.7
2.异号相加:两个有理数的符号不同,将它们的绝对值相减,结果的符号与绝对值较大的有理数的符号相同。
例如:-4+7=3,-1.5+2.8=1.3
有理数的减法法则:
减法可以看作是加法的逆运算,对有理数的减法可以通过加上一个数的相反数来实现。
例如:5-3=5+(-3)=2
1.从左至右按照运算顺序进行运算,先进行括号里的运算,再进行乘法和除法,最后进行加法和减法。
例如:3+2×(-4-1)+6÷(-2)=3+2×(-5)+6÷(-2)
=3+(-10)+(-3)=-10
2.当括号内有混合运算时,先按照乘法和除法的法则进行计算,再进行加法和减法的运算。
例如:2×(-3+5)-4÷(-2)=2×2-4÷(-2)
=4-(-2)=4+2=6
3.如果两个或多个括号之间没有运算符号,可以将它们合并成一个括号进行运算。
例如:(2+3)+(4-1)=5+3=8
4.在括号内拥有多个运算符时,按照运算顺序进行计算。
例如:(-2+5)×3=3×3=9
有理数的加减混合运算法则需要按照运算顺序和法则进行计算,特别是在涉及到括号和混合运算时,需要先计算括号内的运算,并且按照乘法和除法的法则进行计算,最后再进行加法和减法的运算。
掌握这些法则将有助于我们正确地进行有理数的加减混合运算。
有理数加减混合运算法则

有理数加法法则有理数加法运算总是涉及两个方面:一方面是确定结果的符号,另一方面是求结果的绝对值.法则:(一)同号两数相加,取相同的符号,并把绝对值相加.(二)异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值.(三)一个数同0相加,仍得这个数.有理数减法法则法则:减去一个数,等于加上这个数的相反数.注:在运用减法法则时,注意两个符号的变化,一是运算符号,减号变成加号,二是性质符号,减数变成它的相反数.有理数的加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算.步骤:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算.。
有理数的加减乘除混合运算

5
.
【解析】
15 7 5 4 15 7 5 4 原式=- 4 ×-3×-7×-5= × × × =5. 4 3 7 5
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
分层作业
1.[2016· 新泰月考]下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷ (-9)=- 2 9 3 1 4;③ ×-4÷ (-1)= ;④(-4)÷ ×(-2)=16.其中计算正确的个数为( C ) 3 2 2 A.4 个 C.2 个 B.3 个 D.1 个
A.4 C.-2
B.2 D.-4
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
6.计算:
1 3 (1)42×-7+(-0.25)÷ ; 4 1 -1 ; (2)-1-2.5÷ 4
(3)[12-4×(3-10)]÷ 4.
1 解:(1)-6 ;(2)1;(3)10. 3
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
5 7 5 - (2) 12-18÷ 36 5 7 36 =12-18×- 5
5 36 7 36 = ×- 5 - ×- 5 12 18 14 =-3+ 5 1 =- . 5
课件目录
首
页
末 页
第2课时
有理数的加减乘除混合运算
2.[2017· 双柏县期末]计算-5-3×4 的结果是( A ) A.-17 C.-8 B.-7 D.-32
3.计算:[2017· 武汉]2×3+(-4)=
2
有理数混合运算

有理数加减乘除混合运算
一、运算法则 (一)加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大 的加数的符号,并用较大的绝对值减去较小的绝 对值,互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。
(二)减法法则: 减去一个数,等于加上这个数的相反数。 a-b=a+(-b) 减法转化加法
(3) 84.5 12 4 (3 10) 5 2 3 (4)( 1 ) ( ) (0.25) 3 5
6 1 8 6 (5)( ) ( ) 5 10 15 5
1 3 1 1 (6)(3 1 ) 3 (2 3 ) 1 2 4 3 5
三、运算方法
1、按运算顺序计算(有括号先算括号;无括号, 先乘除,后加减。) 2、应用运算律,适当改变运算顺序进行简便运算。
四、若a+b>0,且a· b>0,则______________; 若a+b<0,且a· b>0,则______________; 若a+b>0,且a· b<0,则______________; 若a+b<0,且a· b<0,则______________;
现有四个有理数3,4,-6,10,运用上述规则写出三种不 同方法的运算式,使其结果等于24,运算如下: (1)______________;
(2)______________;
(3)______________.
另有四个数3,-5,7,-13,可通过运算式(4)__________ 使其结果等于24.
பைடு நூலகம்
小结 今天, 我知道了…… 我学会了……
作业: 书P48-49
我掌握了……
有理数加减乘除混合运算法则小结5.10

有理数的加减乘除知识梳理一、有理数的加法法则:①同号两数相加,和取相同的符号并把绝对值相加;如:-2+(-3)=-5②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 如: 2+(-3)=-(3-2)=-1 ③一个数与零相加仍得这个数; 如: 0+(-3)=-3④两个互为相反数的数相加和为零; 如: 3+(-3)=0二、有理数的减法法则:减去一个数等于加上这个数的相反数 如: 5-(-3)=5+3=8三、有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;如:(-2)×(-5)=+(2×5)=10 2×(-5)=-(2×5)=-10②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正。
如:(-4)×(-2)×1×(-3)=-(4×2×1×3)=-24④几个有理数相乘若其中有一个为零积就为零四、有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数六、运算律:① 加法交换律:a +b =b +a 。
② 加法结合律:(a +b )+c =a +(b +c )。
③ 乘法交换律:ab =ba 。
④ 乘法结合律:(ab )c =a (bc )。
⑤ 乘法分配律:a (b +c )=ab +ac 。
七、运算顺序:有理数的混合运算法则大体与整数混合运算相同:先算乘方或开方,再算乘法或除法,后算加法或减法,有括号时、先算小括号里面的运算、再算中括号、然后算大括号。
有理数计算题1、(1)2+(-3) (2)(-5)+(-8) (3)6+(-4)(4)5+(-5) (5)0+(-2) (6))43(31-+(7)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121 (8)()⎪⎭⎫ ⎝⎛++-5112.1 2、(1)9-(-5) (2)(-3)-1 (3)(-3)-(-5)(4)0-8 (5)0-(-74) (6)(-6)-(-6) (7)(-52)-(-53) (8)(-32)-52; 3、(1) )127()65()411()310(-++-+ (2))539()518()23()52()21(++++-+-;(3)(-72)-(-37)-(-22)-17; (4)(-32)-21-(-65)-(-31);(5)(-8)-(-15)+(-9)-(-12) (6)0.5+(-41)-(-2.75)+21;(6)(-32)+(-61)-(-41)-21 (8)21+(-32)-(-54)+(-21)4、(1)(-9)×32 (2)(-132)×(-0.26)(3)(74)×56 (4)(-132)×(-0.26) 5、(1)18÷(-3) (2) (-57)÷(-3) (3) (-53)÷526、(1)(-4)×(-10)×0.5×(-3) (2) (-83)×34×(-1.8)(3)-36÷(-131)÷(-32) (4)(-1)÷(-4)÷74(5)3÷(-76)×(-97) (6)131÷(-3)×(-31)7、 (1)(65―43―97)×36 (2) 3×(–9)+7×(–9)(3)-3÷(31-41) (4)56×(-31-21)÷45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减混合运算法则
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和
等于原数。
即:
⑴当b>0时,a+b>a
⑵当b<0时,a+b<a
⑶当b=0时,a+b=a
4.有理数减法法则
减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化
成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省
略加号的和的形式。
如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5
的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
Ⅰ.把符号相同的加数相结合(同号结合法)
(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23)
(将减法转换成加法)
=-33+18-15-1+23
(省略加号和括号)
=(-33-15-1)+(18+23)
(把符号相同的加数相结合)
=-49+41
(运用加法法则一进行运算)
=-8
(运用加法法则二进行运算)
Ⅱ.把和为整数的加数相结合(凑整法)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(将减法转换成加法)
=6.6-5.2+3.8-2.6-4.8
(省略加号和括号)
=(6.6-2.6)+(-5.2-4.8)+3.8
(把和为整数的加数相结合)
=4-10+3.8
(运用加法法则进行运算)
=7.8-10
(把符号相同的加数相结合,并进行运算)
=-2.2
(得出结论)
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)
--+-+-
原式=(--)+(-+)+(+-)
=-1+0-
=-1
Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-3)+(-3)-(-10)-(+1.25)
原式=(+)+(+3)+(-3)+(+10)+(-1)
=+3-3+10-1
=(3-1)+(-3)+10
=2-3+10
=-3+13
=10
Ⅴ.把带分数拆分后再结合(先拆分后结合)
-3+10-12+4
原式=(-3+10-12+4)+(-+)+(-)
=-1++
=-1++
Ⅵ.分组结合
2-3-4+5+6-7-8+9…+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)
=0
Ⅶ.先拆项后结合
(1+3+5+7...+99)-(2+4+6+8 (100)
有理数的乘除法
1.有理数的乘法法则
法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)
法则二:任何数同0相乘,都得0;
法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;
法则四:几个数相乘,如果其中有因数为0,则积等于0.
2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。
注意:①0没有倒数;
②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。
(求一个数的倒数,不改变这个数的性质);
④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba
⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即(ab)c=a(bc).
⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。
即a(b+c)=ab+ac
4.有理数的除法法则
(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0
5.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
有理数的乘方
1.乘方的概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在中,a叫做底数,n叫做指数。