三角形的外角习题及答案
三角形的外角练习题及标准答案

7.2.2 三角形的外角基础过关作业1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3)4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC的度数.综合创新作业7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.10.(易错题)三角形的三个外角中最多有_______个锐角.培优作业11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠BDC与∠A之间的数量关系.(2)如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?数学世界七桥问题18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题:•能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢?•这就是著名的哥尼斯堡七桥问题.••好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.你知道欧拉是根据什么道理证明的吗?答案:1.钝角2.直角点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°,∴△ABC的外角中最小的角是直角.3.60 点拨:由题意知x+80=x+(x+20).解得x=60.4.∠1>∠2>∠3点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°.∵AE是∠BAC的平分线,∴∠BAE=∠CAE=12∠BAC=25°.∴∠AEB=∠CAE+∠C=25°+78°=103°.6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°.而∠BHC是△HDC的外角,所以∠BHC=∠HDC+∠ACE=90°+30°=120°.7.30°点拨:设∠CAD=2a,由AB=AC知∠B=12(180°-60°-2a)=60°-•a,•∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a,所以∠EDC=180°-∠ADE-∠ADB=30°.8.解法1:如答图1,延长BC交AD于点E,则∠DEB=∠A+∠B=90°+30°=•120°,从而∠DCB=∠DEB+∠D=120°+20°=140°.若零件合格,∠DCB应等于140°.李叔叔量得∠BCD=142°,因此可以断定该零件不合格.(1) (2) (3)点拨:也可以延长DC与AB交于一点,方法与此相同.解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B,因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.解法3:如答图3,过点C作EF∥AB,交AD于E,则∠DEC=90°,∠FCB=∠B=•30°,所以∠DCF=∠D+∠DEC=110°,从而∠DCB=∠DCF+∠FCB=140°.以下同方法1.说明:也可以过点C作AD的平行线.点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.而∠OQA、•∠QPC、∠EOP是△OPQ的三个外角.∴∠OQA+∠QPC+∠EOP=360°.∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°.(2)360°点拨:方法同(1).10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.11.解:(1)∠BDC=90°-12∠A.理由:∠ABC+∠ACB=180°-∠A.∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.∵BD、CD分别为∠EBC、∠FCB的平分线,∴∠CBD=12∠EBC,∠BCD=12∠FCB.∴∠CBD+∠BCD=12(∠EBC+∠FCB)=12×(180°+∠A)=90°+12∠A.在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+12∠A)=90°-12∠A.(2)∠BDC=12∠A.理由:∵∠ACE是△ABC的外角,∴∠ACE=∠A+∠ABC,∵CD是∠ACE的平分线,BD是∠ABC的平分线,∴∠DCE=12∠ACE=12∠A+12∠ABC,∠DBC=12∠ABC.∵∠DCE是△BCD的外角,∴∠BDC=∠DCE-∠DBC=12∠A+12∠ABC-12∠ABC=12∠A.12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.点拨:解此题关键是将生活中的问题抽象为数学问题.数学世界答案:欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,•要想一次无重复地走遍这七座桥是办不到的.。
初一数学三角形的外角试题

初一数学三角形的外角试题1.已知,如图,点是中边上的一点,点是边延长线上一点,说明:.【答案】见解析【解析】本题主要考查的是三角形外角与内角的关系. 由于∠DCB是△DCE的一个外角,所以∠DCB>∠CDE;又因为∠ADB是△BCD的一个外角,所以∠ADB>∠DCB,故∠ADB>∠CDE.证明:∵∠DCB是△DCE的一个外角∴∠DCB>∠CDE∵∠ADB是△BCD的一个外角∴∠ADB>∠DCB∴∠ADB>∠CDE2.已知,如图,中,的平分线与的平分线交于点,若,求的度数.【答案】【解析】本题考查的是三角形内角和定理、三角形内角及外角平分线的性质. 根据三角形外角的性质和角平分线的性质表示出两角和的一半,用180°减去两角和的一半即可.∵∠ACE是△ABC的外角,∴∠ACE=∠A+∠ABC,∵BD是∠ABC的角平分线,∴∠DBC=∠ABC,∵CD是外角∠ACE的角平分线,∴∠DCE=∠ACD=∠ACE,∵∠D=∠DCE-∠DBC=∠ACE-∠ABC=(∠ACE-∠ABC)=∠A=×80°=40°.∴∠D的度数是40°.3.已知,如图,在中,是高和的交点,观察图形,试猜想和之间具有怎样的数量关系,并论证你的猜想.【答案】.证明见解析【解析】本题主要考查了三角形的外角性质和三角形内角和定理. 由于∠DOE是△AOE的外角,故∠DOE=∠OAE+∠AEO=∠OAE+90°=∠OAE+∠ADC,即∠C+∠DOE=∠OAE+∠ADC+∠C=180°解:∠C+∠DOE=180°.∵AD,BE是△ABC的高(已知),∴∠AEO=∠ADC=90°(高的意义),∵∠DOE是△AOE的外角(三角形外角的概念),∴∠DOE=∠OAE+∠AEO(三角形的一个外角等于不相邻的两个内角的和)=∠OAE+90°(∠AEO=90°)=∠OAE+∠ADC(∠ADC=90°)∴∠C+∠DOE=∠OAE+∠C+∠ADC=90°+90°=180°.另法:在四边形CEOD中,∠C+∠EOD+90°+90°=360°,则∠C+∠EOD=180°.4.如图所示,已知AB∥CD,∠A=55°,∠C=20°,则∠P= ;O【答案】35°【解析】本题主要考查的是平行线的性质及三角形内角与外角的关系.∵AB∥CD,∠A=55°∴∠AOC=∠A=55°∵∠C=20°∴∠P=∠AOC-∠C=55°-20°=35°5.如图所示,∠A +∠B+∠C+∠D+∠E= ;【答案】180°【解析】本题主要考查了三角形的外角和内角和定理因为∠1=∠B+∠D,∠2=∠C+∠E,所以∠A +∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°6.如图所示,已知AB∥CD,则()A.∠1=∠2+∠3 .B.∠1=2∠2+∠3C.∠1=2∠2-∠3D.∠1=180°-∠2-∠3【答案】A【解析】本题主要考查的是平行线的性质及三角形内角与外角的关系.因为AB∥CD,所以∠ABD=∠3,因此∠1=∠2+∠ABD=∠2+∠3;7.若一个三角形三个内角的度数之比为1∶2∶3,则与之相邻的三个外角的度数之比为()A.1∶2∶3B.3∶2∶1C.3∶4∶5D.5∶4∶3【答案】D【解析】本题主要考查了三角形内角和定理及内角与外角的关系. 先根据三角形的三个内角度数之比为1∶2∶3及三角形内角和定理求出三个内角的度数,再分别求出其对应的外角度数即可设三角形三个内角分别为,则,解得,所以三角形三个内角分别为30°,60°,90°,与之相邻的三个外角的度数分别为150°,120°,90°,故选D8.一个零件的形状如图所示,按规定∠A应等于90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.【答案】不合格【解析】本题主要考查了三角形内角和定理. 连接AD,利用三角形内角与外角的关系求出此零件合格时∠BDC的度数与已知度数相比较即可.解:如图,连接AD并延长至E,则∠CDE=∠C+∠CAD,∠BDE=∠B+∠BAD,所以∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠BAD=21°+32°+90°=143°≠148°,所以这个零件不合格.9.图中()是△ABC的外角.A.∠1B.∠2C.∠3D.∠4【答案】C【解析】本题考查的是三角形外角的定义根据三角形外角的定义解答.根据三角形外角的定义可知,∠3是此三角形的外角.故选C.10.如图,△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.【答案】【解析】本题考查的是三角形内角和定理、外角定理、对顶角相等由∠B=42°,∠C=59°,根据三角形的外角定理即可求得∠FAE,再根据对顶角相等求得∠AEF,最后根据三角形内角和定理即可求得∠F的度数.∠B=42°,∠C=59°,∠FAE=∠B+∠C=101°,∠DEC=47°,∠AEF=47°,∠∠FAE∠AEF。
三角形的外角(理由挖空)(一)(通用版)(含答案)

三角形的外角(理由挖空)(一)(通用版)试卷简介:利用三角形外角定理进行角的计算,并借助三角形外角定理训练学生有理有据的推理和证明,重点考查学生对每一步推理依据的掌握情况.一、单选题(共10道,每道10分)1.如图,直线∥,若∠1=150°,∠2=70°,则∠3的度数为( )A.70°B.80°C.65°D.60°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理2.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC的度数为( )A.55°B.60°C.80°D.90°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理3.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为()A.70°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:平行线的判定、性质4.一副三角板按如图所示叠放在一起,则图中α的度数为( )A.90°B.105°C.120°D.135°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理5.如图,P为△ABC内任一点,延长CP交AB于点D,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:试题难度:三颗星知识点:三角形外角定理6.已知△ABC中,∠BAC=50°,∠ABC=60°,AD⊥BC,BE⊥AC,垂足分别分D,E,AD,BE相交于点H,则∠AHB的度数为( )A.90°B.100°C.110°D.120°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理7.已知:如图,点D在CA的延长线上,点E在AB的延长线上,点F在BC的延长线上.求证:∠ACF+∠BAD+∠CBE=360°.证明:如图,∵∠ACF是△ABC的一个外角(外角的定义)∴∠ACF=∠1+∠2(_______________________)∵∠BAD是△ABC的一个外角(外角的定义)∴∠BAD=∠2+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠CBE是△ABC的一个外角(外角的定义)∴∠CBE=∠1+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠1+∠2+∠3=180°(_______________________)∴∠ACF+∠BAD+∠CBE=∠1+∠2+∠2+∠3+∠1+∠3=2(∠1+∠2+∠3)=360°(等式的性质)①同角或等角的余角相等;②同角或等角的补角相等;③三角形的内角和是180°;④三角形的一个外角等于和它不相邻的两个内角的和;⑤平角的定义.以上空缺处依次所填正确的是( )A.④⑤B.②③C.④③D.①⑤答案:C解题思路:试题难度:三颗星知识点:三角形外角定理8.已知:如图,AB∥CD,∠EBA=60°,∠D=50°,求∠E的度数.解:如图,∵AB∥CD(已知)∴∠EBA=∠EFC(两直线平行,同位角相等)∵∠EBA=60°(已知)∴∠EFC=60°(等量代换)∵∠EFC是△EDF的一个外角(外角的定义)∴∠EFC=∠D+∠E(_______________________)∵∠D=50°(已知)∴∠E=∠EFC-∠D=60°-50°=10°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.③④B.③⑤C.②④D.①⑤答案:A解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,在△ABC中,AD是∠BAC的角平分线,∠B=∠1,∠ADC=80°.求∠C的角度.解:如图,∵∠ADC是△ABD的一个外角(外角的定义)∴∠ADC=∠1+∠B(_______________________)∵∠B=∠1(已知)∴∠ADC=2∠1(等式的性质)∵∠ADC=80°(已知)∴∠1=∠ADC=40°(_______________________)∵AD是∠BAC的角平分线(已知)∴∠2=∠1=40°(角平分线的定义)∴∠C=180°-∠2-∠ADC=180°-40°-80°=60°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.②④①B.③④①C.③②①D.②⑤④答案:B解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,AB∥EF,∠E=∠CAE,∠DAB=65°.求∠ACF的度数.解:如图,∵AB∥EF(已知)∴∠DAB=∠E(_______________________)∵∠DAB=65°,(已知)∴∠E=65°(等量代换)∵∠E=∠CAE(已知)∴∠CAE=65°(_______________________)∵∠ACF是△ACE的一个外角(外角的定义)∴∠ACF=∠E+∠CAE=65°+65°=130°(_______________________)①两直线平行,同位角相等;②同位角相等,两直线平行;③等量代换;④等式的性质;⑤三角形的一个外角等于和它不相邻的两个内角的和;⑥三角形的内角和是180°.以上空缺处依次所填正确的是( )A.①③⑤B.①③⑥C.②③⑤D.②④⑥答案:A解题思路:试题难度:三颗星知识点:三角形外角定理第11页共11页。
初中数学:三角形的外角检测题(含答案)

初中数学:三角形的外角检测题(含答案)总分100分时间40分钟一、选择题(每题5分)1、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定【答案】C【解析】试题分析:三角形的一个外角和与它相邻的内角互补,当外角小于与它相邻的内角时,所以这个内角是钝角.解:如下图所示,∠ACD<∠ACB,∵∠ACB+∠ACD=180°,∴∠ACB>90°.∴△ACB是钝角三角形.故应选C.考点:三角形的外角2、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100°D.120°【答案】C【解析】试题分析:根据三角形的三个外角的度数比为2:3:4,设三角形的三个外角是2x、3x、4x,根据三角形外角和是360°列方程求出x的值,求出每个外角的度数,根据外角的度数求出三角形的内角度数.解:设三角形的三个外角是2x、3x、4x,根据题意可得:x+3x+4x=360°,解得:x=40°,∴三角形最小的外角的度数是2x=80°,∴三角形最大的内角的度数是180°-80°=100°.考点:三角形外角的性质3、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形【答案】C【解析】试题分析:根据三角形的一个外角是120°,求出三角形的一个内角是60°,根据有一个角是60°的等腰三角形是等边三角形判定结果.解:如下图所示,∵∠ACD=120°,∴∠ACB=60°,又∵△ABC是等腰三角形,∴△ABC是等边三角形.故应选C.考点:1.三角形外角的性质;2.等腰三角形的判定.二、填空题(每题8分)4、如图,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA 到E,连EF,则∠1,∠2,∠3的大小关系是______【答案】∠1>∠2>∠3【解析】试题分析:根据三角形外角大于与它不相邻的任何一个内角.解:∵∠1是△ABC的外角,∴∠1>∠2,∵∠2是△AEF的外角,∴∠2>∠3,∴∠1>∠2>∠3.考点:三角形外角的性质5、△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”)。
三角形的外角性质专题精选习题

三角形一.选择题(共7小题)1.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2B.3C.6D.不能确定2.如图中,CD是△ABC的高的是()A.B.C.D.3.如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABD的中线.其中()A.①、②都正确B.①、②都不正确C.①正确②不正确D.①不正确,②正确4.下列说法:①三角形的高、中线、角平分线都是线段;②垂直于同一条直线的两条直线互相平行;③两条平行直线被第三条直线所截,同位角相等;④因为∠1=∠2,∠2=∠3,所以∠1=∠3.其中正确的是()A.①③④B.②③④C.①②④D.③④5.直角三角形的三条角平分线交点在()A.三角形外B.三角形内C.直角顶点处D.斜边上6.如图,AD是几个三角形的高?()A.4B.5C.6D.77.在三边互不相等的三角形中,最长边的长为a,最长的中线的长为m,最长的高线的长为h,则()A.a>m>h B.a>h>m C.m>a>h D.h>m>a二.填空题(共19小题)8.如图,在△ABC中,CD平分∠ACB,DE∥AC,DC∥EF,则与∠ACD相等角有_________个.9.如图所示,在△ABC中,BC边上的高是_________,AB边上的高是_________;在△BCE 中,BE边上的高是_________;EC边上的高是_________;在△ACD中,AC边上的高是_________;CD边上的高是_________.10.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=_________.11.(2006•威海)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2006,最少经过_________次操作.12.(2012•呼和浩特)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_________.13.(2011•徐州)如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=_________.14.(2008•内江)在如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2=_________度.15.(2006•吉林)如图,∠3=120°,则∠1﹣∠2=_________度.16.(2011•惠安县质检)将一副直角三角尺如图放置,已知AB∥DE,则∠AFC=_________度.17.如图,已知,∠1=∠2,∠3=∠4,∠B=66°,那么∠ADC=_________.18.如图所示,△ABC中,BD,CD分别平分∠ABC和外角∠ACE,若∠D﹦24°,则∠A﹦_________度.19.如图,∠A=α,∠B=40°,∠C=20°,∠O=4α,则α=_________度.20.如图是跷跷板示意图,支柱OC与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A′OA)是_________度.21.如图所示:∠1+∠2+∠3=_________度.22.如图,已知AC∥ED,∠C=28°,∠CBE=39°,则∠BED的度数是_________.23.如图,在△ABC中,∠ABC的外角平分线与∠ACB的外角平分线相交于点D,那么∠BDC与∠A 的数量关系是_________(直接写出结论).24.如图所示,∠C的度数是_________.25.三角形三外角之比为3:4:5,则这个三角形最小内角为_________度.26.如图,在△ABC中,∠BAC=60°,线段BP、BE三等分∠ABC,线段CP、CE三等分∠ACB,那么∠BPE的度数是_________.三.解答题(共4小题)27.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.则图②有_________个三角形;图③有_________个三角形.28.如图,设n是大于1的自然数,从n×n的正方形的一个角上剪去一个1×1的方块将这个图形分成k 个面积都相等的三角形,试求k的最小值.29.如图,D、E分别是△ABC的AC、AB边上的点,BD、CE相交于点O,若S△OCD=2,S△OBE=3,S△OBC=4,求四边形ADOE的面积.30.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.。
三角形的外角练习题

三角形的外角练习题一、选择题1. 三角形的一个外角等于与它不相邻的两个内角的和,这个说法是:A. 正确B. 错误2. 一个三角形的外角和等于多少度?A. 360度B. 180度C. 90度D. 120度3. 如果一个三角形的两个内角分别是40度和60度,那么第三个内角的度数是:A. 40度B. 60度C. 80度D. 100度4. 一个三角形的外角等于它相邻内角的补角,这个说法是:A. 正确B. 错误5. 直角三角形的外角中,最大的外角是:A. 45度B. 90度C. 135度D. 180度二、填空题6. 如果三角形的一个内角是50度,那么它的一个外角是________度。
7. 一个三角形的三个内角之和是________度。
8. 如果一个三角形的外角是120度,那么它相邻的内角是________度。
9. 等边三角形的每个外角是________度。
10. 已知三角形的一个外角是70度,那么它相邻的内角是________度。
三、判断题11. 一个三角形的外角可以大于90度。
()12. 一个三角形的外角可以小于60度。
()13. 等腰三角形的两个底角的外角相等。
()14. 直角三角形的一个锐角的外角等于它的邻角。
()15. 一个三角形的外角和内角的和总是等于180度。
()四、计算题16. 已知三角形ABC中,角A是45度,角B是75度,求角C的度数以及角C的外角。
17. 如果一个三角形的内角之和为180度,且其中一个内角为70度,求另外两个内角的度数,并计算这两个内角的外角。
18. 在三角形DEF中,如果角D是90度,角E是30度,求角F的度数以及角F的外角。
19. 已知三角形GHI的三个内角分别为60度,60度,60度,求这个三角形的外角和。
20. 如果一个三角形的外角和为360度,且其中一个外角为80度,求相邻内角的度数。
五、简答题21. 解释为什么三角形的外角和总是等于360度。
22. 描述在已知三角形一个内角的情况下,如何计算它的外角。
三角形的外角(习题及答案)

度数.
ED
BC
3
思考小结
8.在证明过程中:
(1)要证平行,找_______角、_______角、_______角.
(2)要求一个角的度数:
①由平行,想_______相等、________相等、__________互补;
②由直角考虑互余,由平角考虑_______,由对顶角考虑
的度数为()
A.45°B.60°C.75°D.90
4.如图,已知∠A=25°,∠EFB=95°,∠B=40°,则∠D的度数为
_____________.
E
D
C
A
F
ACD
B
EB
第4题图第5题图
5.如图,已知AD是△ABC的外角∠CAE的平分线,∠B=30°,
∠DAE=50°,则∠D=_______,∠ACB=_______.
三角形的外角(习题)
例题示范
例1:已知:如图,点E是直线AB,CD外一点,连接DE交
AB于点F,∠D=∠B+∠E.
求证:AB∥CD.
E
E
AFBAFB
CDCD
①读题标注
②梳理思路
要证AB∥CD,需要考虑同位角、内错角、同旁内角.
因为已知∠D=∠B+∠E,而由外角定理得∠AFE=∠B+∠E,
故∠D=∠AFE,所以AB∥CD.
∠D=35°,则∠2=________.
D
C
2 E
1
ABF
1
2. 已知:如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,
BE是∠ABC的平分线,AD,BE交于点F,则∠AFB的度数
中考数学专项复习《三角形的外角性质》练习题及答案

中考数学专项复习《三角形的外角性质》练习题及答案一、单选题1.如图所示,下列各式正确的是()A.∠A>∠2>∠1B.∠1>∠2>∠AC.∠2>∠1>∠A D.∠1>∠A>∠22.如图,在△ABC中∠C=90°,AC=2点D在BC上∠ADC=2∠B,AD=√5则BC 的长为()A.√3−1B.√3+1C.√5−1D.√5+13.若正多边形的一个外角为36°,则这个正多边形是()A.正八边形B.正九边形C.正十边形D.正十一边形4.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α-βB.β-αC.180°-α+βD.180°-α-β5.如图,∠CBD、∠ADE为△ABD的两个外角∠CBD=70∘,∠ADE=149∘则∠A的度数是()A.28∘B.31∘C.39∘D.42∘6.如图,在△ABC中∠A=30°,∠ABC=100°观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°7.如图△ABC∠ △A′B′C′,边B′C′过点A且平分∠BAC交BC于点D,∠B=26°,∠CDB′=94°,则∠C′的度数为()A.34°B.40°C.45°D.60°8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180B.210C.360D.2709.如图,在∠ABC中∠C=36°,将∠ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36°B.72°C.50°D.46°10.如图,在∠ABC中AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFE的度数为()A.30°B.40°C.50°D.60°11.已知:如图,l∠m,等边∠ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A.60°B.45°C.40°D.30°12.如图,点P、Q分别是边长为4cm的等边∠ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①∠ABQ∠∠CAP;;②∠CMQ的度数不变,始终等于60°③BP=CM;正确的有几个( )A.0B.1C.2D.3二、填空题13.一副直角三角板如上图放置,点C在FD的延长线上,AB∠CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠DBC=°.14.如图所示则∠2=°.15.如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=;16.如图,等边三角形ABC内接于∠O,D为AĈ上一点,连接BD交AC于点E,若∠ABD=45°,则∠AED=度.17.如图:已知∠ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=度.18.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数为.三、解答题19.如图,在∠ABC中D是AB上一点,E是AC上一点,BE与CD相交于点O,∠A=60°,∠ABE=15°,∠ACD=25°,求∠COE的度数.20.如图,在∠ABC中,∠B=22.5°,AB的垂直平分线交AB于点Q,交BC于点P,PE∠AC于点E,AD∠BC 于点D,AD交PE于点F.求证:DF=DC.21.如图,在∠ABC中点D在BC上,AB=AC=CD且AD=BD.求∠ABC的三个内角的度数?22.已知:如图,在△ABC中AD平分∠BAC∠B=∠1∠ADC=80°.求∠C的度数.23.如图,△ABC是等边三角形∠CBD=90°,BD=BC求∠1的度数.24.如图,在直角∠ABC中∠ACB=90°,CD是AB边上的高,CE是∠ABC的角平分线.已知∠CEB=110°,求∠ECB,∠ECD的度数.参考答案1.【答案】B2.【答案】D3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】B9.【答案】B10.【答案】B11.【答案】C12.【答案】C13.【答案】1514.【答案】3015.【答案】60°16.【答案】10517.【答案】7018.【答案】360°19.【答案】解:在∠ABE中∵∠A=60°,∠ABE=15°∴∠CEO=∠ABE+∠A=15°+60°=75°在∠COE中∠COE=180°-∠CEO-∠ACD=180°-75°-25°=80°.20.【答案】证明:连接PA, 则PA=PB,∴∠B=∠PAB=22.5° ,∴∠APD=45°.又∵AD∠BC∴PD=AD.∵AD∠BC,∴∠DPF+∠PFD=90°.∵PE∠AC,∴∠AFE+∠DAC=90°.又∵∠AFE=∠PFD,∴∠DPF=∠DAC.在∠PDF和∠ADC中{∠PDF=∠ADCPD=AD∠DPF=∠DAC∴∠PDF∠∠ADC(ASA).∴DF=DC.21.【答案】解:因为AB=AC=CD,AD=BD 所以∠B=∠C=∠BAD,∠ ADC=∠DAC设∠B=x,则∠DAC=∠ ADC=∠B+∠BAD=2x 从而∠DAC=2x在∠ACD中∠C+∠ADC+∠DAC=x+2x+2x=180°所以x=36°在∠ABC中∠B=∠C=36°,∠BAC=108°.22.【答案】解:∵∠ADC是△ABD的一个外角∴∠ADC=∠1+∠B.∵∠B=∠1∴∠ADC=2∠1∵∠ADC=80°∴∠1=∠B=40°∵AD平分∠BAC∴∠DAC=∠1=∠B=40°∴∠C=180°-∠1-∠DAC-∠B=180°-120°=60°.23.【答案】解:如图∵△ABC是等边三角形∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°∵∠CBD=90°,BD=BC∴∠BCD=∠BDC=45°,AB=BD,∠ABD=90°+60°=150°∴∠2=∠3=12(180°−150°)=15°∴∠1=∠2+∠ABC=15°+60°=75°. 24.【答案】解:∵CE是∠ABC的角平分线,∠ACB=90°∴∠ECB=45°.∵CD是AB边上的高,∠CEB=110°∴∠CDB=90°∠ECD=110°﹣90°=20°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的外角(习题)
➢ 例题示范
例1:已知:如图,点E 是直线AB ,CD 外一点,连接DE 交AB 于点F ,∠D =∠B +∠E . 求证:AB ∥CD .
D C
E
A B F
①读题标注 ②梳理思路
要证AB ∥CD ,需要考虑同位角、内错角、同旁内角. 因为已知∠D =∠B +∠E ,而由外角定理得∠AFE =∠B +∠E ,故∠D =∠AFE ,所以AB ∥CD . ③过程书写 证明:如图,
∵∠AFE 是△BEF 的一个外角(外角的定义)
∴∠AFE =∠B+∠E (三角形的外角等于与它不相邻的两个内
角的和)
∵∠D =∠B +∠E (已知) ∴∠AFE =∠D (等量代换)
∴AB ∥CD (同位角相等,两直线平行)
➢ 巩固练习
1. 如图,在△ABC 中,∠1是它的一个外角,∠1=115°,∠A =40°,
∠D =35°,则∠2=________.
2
1E F D
C
B
A
D
C E
A B
F
2. 已知:如图,在△ABC 中,∠BAC =50°,∠C =60°,AD ⊥BC ,
BE 是∠ABC 的平分线,AD ,BE 交于点F ,则∠AFB 的度数为____________.
F B
A
E
C D
α
第2题图 第3题图
3. 将一副直角三角板按如图所示的方式叠放在一起,则图中∠α
的度数为( ) A .45°
B .60°
C .75°
D .90
4. 如图,已知∠A =25°,∠EFB =95°,∠B =40°,则∠D 的度数为
_____________.
F
E
D
C
B A
D C
E
A
B
第4题图 第5题图
5. 如图,已知AD 是△ABC 的外角∠CAE 的平分线,∠B =30°,∠DAE =50°,则∠D =_______,∠ACB =_______.
6. 如图,在△ABC 中,∠A =40°,∠ABC 的平分线BD 交AC 于
点D ,∠BDC =70°,求∠C 的度数. 解:如图,
∵∠BDC 是△ABD 的一个外角 (_____________________) ∴∠BDC =∠A +∠ABD
(_____________________) ∵∠A =40°,∠BDC =70° (_____________________)
∴∠ABD =_______-________
=________-________ =________
(_____________________)
第4题图
D
C
A
B
∵BD 平分∠ABC (_____________________)
∴∠ABC =2∠ABD
=_____×______ =__________ (_____________________)
∴∠C =180°-∠A -∠ABC
=180°-________-_______ =________
(_____________________)
7. 已知:如图,CE 是△ABC 的一个外角平分线,且EF ∥BC 交
AB 于点F ,∠A =60°,∠E =55°,求∠B 的度数.
8. 已知:如图,在△ABC 中,BD 平分∠ABC ,交AC 于点D ,
DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,求∠AED 的度数.
E
D
C
B
A
F
E
D
C B A
➢思考小结
1.在证明过程中:
(1)要证平行,找_______角、_______角、_______角.
(2)要求一个角的度数:
①由平行,想_______相等、________相等、__________互补;
②由直角考虑互余,由平角考虑_______,由对顶角考虑
____________;
③若把一个角看作三角形的内角,考虑__________________
_____________;
④若把一个角看作三角形的外角,考虑__________________
________________________.
2.阅读材料
欧几里得公理体系
几何学创建的初期,内容是繁杂和混乱的.人们进行几何推理时,总是拿自己掌握的一些“基本事实”作为大前提去进行推理,而每个人心中的“基本事实”不尽相同.这就导致很多内容无法沟通,也没有统一的标准.这时,有必要将几何的内容,用逻辑的“锁链”整理、穿连起来.第一个完成这件工作的是古希腊数学家欧几里得(Euclid).
欧几里得知识渊博,数学造诣精湛,尤其擅长几何证明.当他意识到几何学有必要做出系统整理的时候,就开始着手编写自己的著作《原本》了.
他的思路是这样的:首先给出一些最基本的定义,如“点是没有部分的”,“线是没有宽度的”等;接着他列出了5条公设和5条公理作为推理的基本事实,而之后所有的推理都必须建立在这5条公设和5条公理基础上来进行.
5条公设是:
(1)从任意点到任意点作直线是可能的.
(2)把有限直线不断沿直线延长是可能的.
(3)以任意点为中心和任意距离为半径作一圆是可能的.
(4)所有直角彼此相等.
(5)若一直线与两条直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的另一点.
5条公理是:
(1)跟同一件东西相等的一些东西,它们彼此也是相等的.
(2)等量加等量,总量仍相等.
(3)等量减等量,余量仍相等.
(4)彼此重合的东西是相等的.
(5)整体大于部分.
其中5条公设主要对作图进行了相应的规范,而5条公理则主要从代数推理上进行规定.
欧几里得基于上述这些公设和公理,推导出了平面几何中几乎所有的结论,从而构成了一个完整的几何体系,我们称之为欧氏几何.而他的著作《原本》中关于平面几何的部分,被翻译成中文叫做《几何原本》,正是我们平面几何的原型.而欧几里得这种对几何知识进行系统化、理论化的总结方法就被称之为公理法,而《原本》正是公理化体系的最好阐释.
【参考答案】
➢巩固练习
1.40°
2.125°
3.C
4.20°
5.20°,70°
6.∵∠BDC是△ABD的一个外角(外角的定义)
∴∠BDC=∠A+∠ABD(三角形的外角等于与它不相邻
的两个内角的和)
∵∠A=40°,∠BDC=70°(已知)
∴∠ABD=∠BDC-∠A
=70°-40°
=30°(等式的性质)
∵BD平分∠ABC(已知)
-40°-60°
=80°(三角形的内角和等于180°)
7.解:如图,
∵EF∥BC(已知)
∴∠ECD=∠E(两直线平行,内错角相等)
∵∠E=55°(已知)
∴∠ECD=55°(等量代换)
∵CE是△ABC的一个外角平分线(已知)
∴∠ACD=2∠ECD
=2×55°
=110°(角平分线的定义)
∵∠ACD是△ABC的一个外角(外角的定义)
∴∠ACD=∠A+∠B(三角形的外角等于与它不相邻的两个内
角的和)
∵∠A=60°(已知)
∴∠B=∠ACD-∠A
=110°-60°
=50°(等式的性质)
8.解:如图,
∵∠BDC是△ABD的一个外角(外角的定义)
∴∠BDC=∠ABD+∠A(三角形的外角等于与它不相邻的两
个内角的和)
∵∠A=45°,∠BDC=60°(已知)
∴∠ABD=∠BDC-∠A
=60°-45°
=15°(等式的性质)
∵BD平分∠ABC(已知)
∴∠ABC=2∠ABD
=2×15°
=30°(角平分线的定义)
∵DE∥BC(已知)
∴∠AED=∠ABC(两直线平行,同位角相等)
∴∠AED=30°(等量代换)
➢思考小结
1.(1)同位、内错、同旁内.
(2)①同位角、内错角、同旁内角;
②互补,对顶角相等;
③三角形的内角和等于180°.
④三角形的外角等于与它不相邻的两个内角的和.。