三角形的外角的练习题

合集下载

初二数学三角形外角练习题

初二数学三角形外角练习题

初二数学三角形外角练习题三角形是初中数学中重要的几何形状之一,了解三角形的性质和特点对我们解题非常有帮助。

在三角形中,外角是一个重要的概念,它与内角有着特定的关系。

本文将围绕初二数学的三角形外角展开,提供一些练习题,旨在帮助同学们加深对该知识点的理解和掌握。

一、选择题1. 在三角形ABC中,已知∠ACB=90°,∠B=30°,那么∠C的外角为:A. 60°B. 90°C. 120°D. 150°2. 在三角形DEF中,已知∠D=75°,∠E=60°,那么∠F的外角为:A. 60°B. 75°C. 105°D. 120°3. 在三角形GHI中,已知∠G=40°,∠H=80°,那么∠I的外角为:A. 60°B. 80°C. 100°D. 120°二、填空题1. 在三角形JKL中,已知∠J=50°,∠K=70°,∠L的外角为__________.2. 在三角形MNO中,已知∠M=30°,∠N=110°,∠O的外角为__________.3. 在三角形PQR中,已知∠P=80°,∠Q=50°,∠R的外角为__________.三、解答题1. 在三角形STU中,已知∠S=40°,∠T=60°,求∠U的外角大小及其所对的边的名称。

2. 在三角形VWX中,已知∠V=70°,∠W=110°,求∠X的外角大小及其所对的边的名称。

3. 在三角形YZA中,已知∠Y=75°,∠Z=65°,求∠A的外角大小及其所对的边的名称。

四、解题步骤和答案解析1. 选择题1. 解答:A根据三角形的外角性质可知,三角形的外角等于其不相邻内角的和。

八上三角形外角经典题型

八上三角形外角经典题型

人教版八年级上册三角形的外角经典题训练一.选择题1.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°2.如图,在△ABC中,∠A=45°,△ABC的外角∠CBD=75°,则∠C的度数是()A.30°B.45°C.60°D.75°3.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°4.如图所示,∠1=∠2=145°,则∠3=()A.80°B.70°C.60°D.50°5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°二.填空题7.如图,根据三角形的有关知识可知图中的x的值是.8.一副三角板如图放置,若∠1=90°,则∠2的度数为.9.如图,∠BCD=150°,则∠A+∠B+∠D的度数为.10.已知:如图,在△ABC中,∠A=55°,H是高BD、CE的交点,则∠BHC=度.11.将一副直角三角板按如图放置,使两直角重合,则∠1的度数为.15°,∠ACP=50°,则∠P=°.三.解答题13.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.14.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=25°,∠E=30°,求∠BAC的度数.15.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.16.已知:如图,△ABC的两个外角的平分线交于点P,如果∠A=40°,求∠BPC的度数.17.如图,在△ABC中,AD是高,∠DAC=10°,AE是∠BAC外角的平分线,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数.18.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案一.选择题1.解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选:B.2.解:∵∠A=45°,△ABC的外角∠CBD=75°,∴∠C=∠CBD﹣∠A=75°﹣45°=30°,故选:A.3.解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.4.解:∵∠1、∠2、∠3是△ABC的三个外角,∴∠1+∠2+∠3=360°,∵∠1=∠2=145°,∴∠3=360°﹣145°×2=70°,故选:B.5.解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.6.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.二.填空题7.解:根据三角形的外角性质得:x+80=x+20+x,解得:x=60,故答案为:60.8.解:由题意得:∠B=30°,∠A=45°,∵∠1=90°,∴∠A+∠3=90°,∴∠3=45°,∴∠4=45°,∵∠B=30°,∴∠2=45°+30°=75°,故答案为:75°.9.解:延长DC交AB于E,∠CEB是△ADE的一个外角,∴∠CEB=∠A+∠D,同理,∠BCD=∠CEB+∠B,∴∠A+∠B+∠D=∠CEB+∠B=∠BCD=150°,故答案为:150°.10.解:在△ABD中,∵BD⊥AC,∴∠ABD=90°﹣∠A=35°,∴∠BHC=90°+35°=125°.11.解:如图,由题意知,∠CAD=60°,∠B=90°﹣45°=45°,∴∠CAB=120°,∴∠1=∠B+∠CAB=45°+120°=165°.故答案为:165°.12.解:∵BP是△ABC中∠ABC的平分线,∠ABP=15°,∴∠CBP=∠ABP=15°,∵CP是∠ACB的外角的平分线,∠ACP=50°,∴∠PCM=∠ACP=50°,∴∠P=∠PCM﹣∠CBP=50°﹣15°=35°,故答案为:35.三.解答题13.解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.14.解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.15.解:∵∠ABC=∠C=70°,BD平分∠ABC,∴∠DBC=35°,∴∠ADB=∠C+∠DBC=70°+35°=105°.16.解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠EBC+∠FCB=360°﹣140°=220°,∵BP、CP是△ABC的外角平分线,∴∠PBC=∠EBC,∠PCB=∠FCB,∴∠PBC+∠PCB=(∠EBC+∠FCB)=110°,∴∠BPC=180°﹣(∠PBC+∠PCB)=70°.17.解:∵AD是高,∴∠ADB=90°,∴∠BAD=90°﹣∠ABC=44°,又∠DAC=10°,∴∠BAC=54°,∴∠MAC=126°,∵AE是∠BAC外角的平分线,∴∠MAE=∠MAC=63°,∵BF平分∠ABC,∴∠ABF=∠ABC=23°,∴∠AFB=∠MAE﹣∠ABF=40°.18.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。

三角形的外角(理由挖空)(一)(通用版)(含答案)

三角形的外角(理由挖空)(一)(通用版)(含答案)

三角形的外角(理由挖空)(一)(通用版)试卷简介:利用三角形外角定理进行角的计算,并借助三角形外角定理训练学生有理有据的推理和证明,重点考查学生对每一步推理依据的掌握情况.一、单选题(共10道,每道10分)1.如图,直线∥,若∠1=150°,∠2=70°,则∠3的度数为( )A.70°B.80°C.65°D.60°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理2.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC的度数为( )A.55°B.60°C.80°D.90°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理3.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为()A.70°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:平行线的判定、性质4.一副三角板按如图所示叠放在一起,则图中α的度数为( )A.90°B.105°C.120°D.135°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理5.如图,P为△ABC内任一点,延长CP交AB于点D,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:试题难度:三颗星知识点:三角形外角定理6.已知△ABC中,∠BAC=50°,∠ABC=60°,AD⊥BC,BE⊥AC,垂足分别分D,E,AD,BE相交于点H,则∠AHB的度数为( )A.90°B.100°C.110°D.120°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理7.已知:如图,点D在CA的延长线上,点E在AB的延长线上,点F在BC的延长线上.求证:∠ACF+∠BAD+∠CBE=360°.证明:如图,∵∠ACF是△ABC的一个外角(外角的定义)∴∠ACF=∠1+∠2(_______________________)∵∠BAD是△ABC的一个外角(外角的定义)∴∠BAD=∠2+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠CBE是△ABC的一个外角(外角的定义)∴∠CBE=∠1+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠1+∠2+∠3=180°(_______________________)∴∠ACF+∠BAD+∠CBE=∠1+∠2+∠2+∠3+∠1+∠3=2(∠1+∠2+∠3)=360°(等式的性质)①同角或等角的余角相等;②同角或等角的补角相等;③三角形的内角和是180°;④三角形的一个外角等于和它不相邻的两个内角的和;⑤平角的定义.以上空缺处依次所填正确的是( )A.④⑤B.②③C.④③D.①⑤答案:C解题思路:试题难度:三颗星知识点:三角形外角定理8.已知:如图,AB∥CD,∠EBA=60°,∠D=50°,求∠E的度数.解:如图,∵AB∥CD(已知)∴∠EBA=∠EFC(两直线平行,同位角相等)∵∠EBA=60°(已知)∴∠EFC=60°(等量代换)∵∠EFC是△EDF的一个外角(外角的定义)∴∠EFC=∠D+∠E(_______________________)∵∠D=50°(已知)∴∠E=∠EFC-∠D=60°-50°=10°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.③④B.③⑤C.②④D.①⑤答案:A解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,在△ABC中,AD是∠BAC的角平分线,∠B=∠1,∠ADC=80°.求∠C的角度.解:如图,∵∠ADC是△ABD的一个外角(外角的定义)∴∠ADC=∠1+∠B(_______________________)∵∠B=∠1(已知)∴∠ADC=2∠1(等式的性质)∵∠ADC=80°(已知)∴∠1=∠ADC=40°(_______________________)∵AD是∠BAC的角平分线(已知)∴∠2=∠1=40°(角平分线的定义)∴∠C=180°-∠2-∠ADC=180°-40°-80°=60°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.②④①B.③④①C.③②①D.②⑤④答案:B解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,AB∥EF,∠E=∠CAE,∠DAB=65°.求∠ACF的度数.解:如图,∵AB∥EF(已知)∴∠DAB=∠E(_______________________)∵∠DAB=65°,(已知)∴∠E=65°(等量代换)∵∠E=∠CAE(已知)∴∠CAE=65°(_______________________)∵∠ACF是△ACE的一个外角(外角的定义)∴∠ACF=∠E+∠CAE=65°+65°=130°(_______________________)①两直线平行,同位角相等;②同位角相等,两直线平行;③等量代换;④等式的性质;⑤三角形的一个外角等于和它不相邻的两个内角的和;⑥三角形的内角和是180°.以上空缺处依次所填正确的是( )A.①③⑤B.①③⑥C.②③⑤D.②④⑥答案:A解题思路:试题难度:三颗星知识点:三角形外角定理第11页共11页。

小学五年级数学《三角形的外角》练习题

小学五年级数学《三角形的外角》练习题

《三角形的外角》习题11、如图,轮船要从A港驶往B港,因受风浪影响,一开始就偏离航线(AB)18°(即∠A=18°)到了C地,已知∠ABC=10°,问轮船现在应以怎样角度航行才能到达B港?(即求∠BCD的度数)BA C D2、三角形的三个外角之比为2︰3︰4,则与它们相邻的内角分别是多少?3、在绿茵场上,小罗在E处受到阻挡需要传球,请帮助作出选择,应传给在B处的球员还是C处的球员,其射门不易射偏.(不考虑其他因素). EBCA《三角形的外角》习题21、已知,如图1,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是( )图1A、∠BAC<∠ADCB、∠BAC=∠ADCC、∠BAC>∠ADCD、不能确定2、如图2,∠A、∠DOE和∠BEC的大小关系是( )图2A 、∠A >∠DOE >∠BECB 、∠DOE >∠A >∠BECC 、∠BEC >∠DOE >∠AD 、∠DOE >∠BEC >∠A3、如图3,∠B =∠C ,则∠ADC 与∠AEB 的关系是( )图3A 、∠ADC >∠AEB B 、∠ADC=∠AEBC 、∠ADC <∠AEBD 、不能确定《 三角形的外角》习题31、若三角形的外角中有一个是锐角,则这个三角形是________三角形.2、△ABC 中,若∠C -∠B=∠A ,则△ABC 的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3、如图,∠A=50°,∠B=40°,∠C=30°,则∠BDC=_______.4、如图,D 是△ABC 的BC 边上一点,且∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.D CB A5、如图所示,AE ∥BD ,∠1=95°,∠2=28°,求∠C 的度数.6、如图,已知在△ABC 中,AB=AC ,∠A=40°,∠ABC 的平分线BD 交AC 于D . 求:∠ADB 和∠CDB 的度数.《 三角形的外角》习题41、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ).A 、直角三角形B 、锐角三角形C 、钝角三角形D 、无法确定2、如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE=( ).A 、120°B 、115°C 、110°D 、105°3、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( ) .A 、30°B 、60°C 、90°D 、120°4、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) .A 、90°B 、110°C 、100°D 、1205、如图,x=______.F B C AED6、已知等腰三角形的一个外角是120°,则它是( ) .A、等腰直角三角形B、一般的等腰三角形C、等边三角形D、等腰钝角三角形7、如图,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是______.。

三角形的外角性质

三角形的外角性质

三角形的外角性质精选题35道一.选择题(共14小题)1.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°2.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β3.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°5.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°6.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°7.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°8.如图所示,△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°9.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边对齐,则∠1的度数为()A.30°B.45°C.60°D.75°10.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC 的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°11.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°12.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°13.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°14.如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A=25°,∠B=45°,∠C=36°,则∠DFE=()A.103°B.104°C.105°D.106°二.填空题(共15小题)15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.16.将一副三角板如图叠放,则图中∠α的度数为.17.如图,∠A+∠B+∠C+∠D+∠E的度数为度.18.如图是一副三角板叠放的示意图,则∠α=.19.如图,在△ABC中,∠BAC=40°,∠ACB=60°,D为△ABC形外一点,DA平分∠BAC,且∠CBD=50°,求∠DCB=.20.如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=.21.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=°.22.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.23.如图,∠BCD=150°,则∠A+∠B+∠D的度数为.24.点O是△ABC内一点,∠A=85°,∠1=15°,∠2=40°,则∠BOC=.25.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=°.26.如图,∠ACD是△ABC的外角,若∠B=50°,∠ACD=120°,∠A=.27.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=度.28.一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于.29.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.三.解答题(共6小题)30.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.31.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∠1=12∠ABC,∠2=12∠ACB∴∠1+∠2=12(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A∴∠1+∠2=12(180°−∠A)=90°−12∠A∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°−12∠A)=90°+12∠A探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC 与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC 与∠A有怎样的关系?(只写结论,不需证明)结论:.32.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.33.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.34.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.35.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.。

初中数学:三角形的外角检测题(含答案)

初中数学:三角形的外角检测题(含答案)

初中数学:三角形的外角检测题(含答案)总分100分时间40分钟一、选择题(每题5分)1、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定【答案】C【解析】试题分析:三角形的一个外角和与它相邻的内角互补,当外角小于与它相邻的内角时,所以这个内角是钝角.解:如下图所示,∠ACD<∠ACB,∵∠ACB+∠ACD=180°,∴∠ACB>90°.∴△ACB是钝角三角形.故应选C.考点:三角形的外角2、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100°D.120°【答案】C【解析】试题分析:根据三角形的三个外角的度数比为2:3:4,设三角形的三个外角是2x、3x、4x,根据三角形外角和是360°列方程求出x的值,求出每个外角的度数,根据外角的度数求出三角形的内角度数.解:设三角形的三个外角是2x、3x、4x,根据题意可得:x+3x+4x=360°,解得:x=40°,∴三角形最小的外角的度数是2x=80°,∴三角形最大的内角的度数是180°-80°=100°.考点:三角形外角的性质3、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形【答案】C【解析】试题分析:根据三角形的一个外角是120°,求出三角形的一个内角是60°,根据有一个角是60°的等腰三角形是等边三角形判定结果.解:如下图所示,∵∠ACD=120°,∴∠ACB=60°,又∵△ABC是等腰三角形,∴△ABC是等边三角形.故应选C.考点:1.三角形外角的性质;2.等腰三角形的判定.二、填空题(每题8分)4、如图,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA 到E,连EF,则∠1,∠2,∠3的大小关系是______【答案】∠1>∠2>∠3【解析】试题分析:根据三角形外角大于与它不相邻的任何一个内角.解:∵∠1是△ABC的外角,∴∠1>∠2,∵∠2是△AEF的外角,∴∠2>∠3,∴∠1>∠2>∠3.考点:三角形外角的性质5、△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”)。

三角形的外角练习题

三角形的外角练习题

三角形的外角练习题一、选择题1. 三角形的一个外角等于与它不相邻的两个内角的和,这个说法是:A. 正确B. 错误2. 一个三角形的外角和等于多少度?A. 360度B. 180度C. 90度D. 120度3. 如果一个三角形的两个内角分别是40度和60度,那么第三个内角的度数是:A. 40度B. 60度C. 80度D. 100度4. 一个三角形的外角等于它相邻内角的补角,这个说法是:A. 正确B. 错误5. 直角三角形的外角中,最大的外角是:A. 45度B. 90度C. 135度D. 180度二、填空题6. 如果三角形的一个内角是50度,那么它的一个外角是________度。

7. 一个三角形的三个内角之和是________度。

8. 如果一个三角形的外角是120度,那么它相邻的内角是________度。

9. 等边三角形的每个外角是________度。

10. 已知三角形的一个外角是70度,那么它相邻的内角是________度。

三、判断题11. 一个三角形的外角可以大于90度。

()12. 一个三角形的外角可以小于60度。

()13. 等腰三角形的两个底角的外角相等。

()14. 直角三角形的一个锐角的外角等于它的邻角。

()15. 一个三角形的外角和内角的和总是等于180度。

()四、计算题16. 已知三角形ABC中,角A是45度,角B是75度,求角C的度数以及角C的外角。

17. 如果一个三角形的内角之和为180度,且其中一个内角为70度,求另外两个内角的度数,并计算这两个内角的外角。

18. 在三角形DEF中,如果角D是90度,角E是30度,求角F的度数以及角F的外角。

19. 已知三角形GHI的三个内角分别为60度,60度,60度,求这个三角形的外角和。

20. 如果一个三角形的外角和为360度,且其中一个外角为80度,求相邻内角的度数。

五、简答题21. 解释为什么三角形的外角和总是等于360度。

22. 描述在已知三角形一个内角的情况下,如何计算它的外角。

三角形的外角(习题及答案)

三角形的外角(习题及答案)
DE∥BC交AB于点E,∠A=45°,∠BDC=60°,求∠AED的
度数.
ED
BC
3
思考小结
8.在证明过程中:
(1)要证平行,找_______角、_______角、_______角.
(2)要求一个角的度数:
①由平行,想_______相等、________相等、__________互补;
②由直角考虑互余,由平角考虑_______,由对顶角考虑
的度数为()
A.45°B.60°C.75°D.90
4.如图,已知∠A=25°,∠EFB=95°,∠B=40°,则∠D的度数为
_____________.
E
D
C
A
F
ACD
B
EB
第4题图第5题图
5.如图,已知AD是△ABC的外角∠CAE的平分线,∠B=30°,
∠DAE=50°,则∠D=_______,∠ACB=_______.
三角形的外角(习题)
例题示范
例1:已知:如图,点E是直线AB,CD外一点,连接DE交
AB于点F,∠D=∠B+∠E.
求证:AB∥CD.
E
E
AFBAFB
CDCD
①读题标注
②梳理思路
要证AB∥CD,需要考虑同位角、内错角、同旁内角.
因为已知∠D=∠B+∠E,而由外角定理得∠AFE=∠B+∠E,
故∠D=∠AFE,所以AB∥CD.
∠D=35°,则∠2=________.
D
C
2 E
1
ABF
1
2. 已知:如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,
BE是∠ABC的平分线,AD,BE交于点F,则∠AFB的度数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求证:AD∥BC.
13.如图,x=______.
14.(2012•长沙)如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=_________度.
15.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C 、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_______ __度.
16.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则α=________.
11.2.2三角形的外角
一、选择题:
1.(2011•襄阳)如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是( )
第1题
第2题
第3题
A.
40°
B.
60°
C.
80°
D.
120°
2.(2011•娄底)如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )
三、解答题:
19.已知:如图, ∠2是△ABC的一个外角.
求证:∠2=∠A+∠B
证明:如1=180°( )
∠1+∠2=180°()
∴∠2=∠A+∠B()
20.(2012•贵港)如图所示,直线a∥b,∠1=130°,∠2=70°,求则∠3的度数.
21.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.
∠2=∠4+∠7
B.
∠3=∠1+∠6
C.
∠1+∠4+∠6=180°
D.
∠2+∠3+∠5=360°
5.(2013•鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )
A.
165°
B.
120°
C.
150°
D.
135°
6.(2011•枣庄)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于( )
10.(2011•泰安)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为_______ _
11.若三角形的外角中有一个是锐角,则这个三角形是________三角形.
12.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).
17.(2013•威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=_____.
18.(2013•龙岩)如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB=____ .
A.
80
B.]
50
C.
30
D.
20
3.(2013•毕节地区)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为( )
A.
30°
B.
60°
C.
90°
D.
45°
4.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L 3、L4所截出的七个角.关于这七个角的度数关系,下列 何者正确( )
A.
A.
30°
B.
4 0°
C.
60°
D.
70°
7.(2011•桂林)下面四个图形中,∠1=∠2一定成立的是( )
A.
B.
C.
D.
8.(201 1•怀化)如图所示,∠A,∠1,∠2的大小关系是( )
A.
∠A>∠1>∠2
B.
∠2>∠1>∠A
C.
∠A> ∠2 >∠1
D.
∠2>∠A>∠1
二、填空题
9.(2011•绵阳)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为____ ____
相关文档
最新文档