6.1 平方根 基础题 人教版七年级数学下册同步练习(含答案)

合集下载

数学人教版七年级下册同步训练:6.1 平方根(有答案)

数学人教版七年级下册同步训练:6.1 平方根(有答案)

数学人教版七年级下册同步训练:6.1 平方根一、单选题1.下列说法不正确的是()A. 2是4的算术平方根B.5=±C. 36的平方根6D.27-的立方根3-2.5的算术平方根是( )A.25 B.C D.3.9的平方根是( )A.3±B.3 C.81 D.81±4.面积为4的正方形的边长是()A.4的平方根 B.4的算术平方根 C.4开平方的结果D.4的立方根5.81的平方根是()A.9 B.3 C.9±D.3±6.3的算术平方根是( )A.B.C.3D.3±7.4的平方根是()A.2± B.2-C.2 D=( ).4 CA.D.9.1+的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题10.如果21649a =,那么a 的值为 .11.0=,那么()2019a b +的值为 . 12.观察下表,按规律填空.13.若34x +的平方根是1±,则x= . 三、计算题14.求下列各数的算术平方根: 1.0.16 2.25363.7294.()29-四、解答题15.小明打算用一块面积为9002cm 的正方形木板,沿着边的方向裁出一个面积为5882cm 的长方形桌面,并且其长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.参考答案1.答案:C36的平方根是6±.故选C. 2.答案:C解:5,∴53.答案:A 解:()239±=,9∴的平方根是3±,故选:A .4.答案:B解:面积为44的算术平方根; 故选:B .5.答案:D819=,∴9的平方根是3±6.答案:A∵233,=∴故选A7.答案:A4的平方根是2±,故选A. 8.答案:B4==.故选:B .9.答案:C47923<<<<23134和的值介于和之间10.答案:74±方程两边都除以16,得24916a =.开方,得74a =±11.答案:-1由题意,得20,30,a b -=+=解得2,3a b ==-,()()20192019231a b ∴+=-=-12.答案:387.315 3.873,387.3≈≈13.答案:-11的平方根是1341,1x x ±∴+==-,14.答案:1. 因为20.40.16=,所以0.16的算术平方根是0.4.2.因为2525636⎛⎫= ⎪⎝⎭,所以2536的算术平方根是56。

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。

人教版七年级数学下册 第六章 实数 6.1 平方根 同步练习(有答案)

人教版七年级数学下册 第六章 实数 6.1 平方根  同步练习(有答案)

人教版七年级数学下册第六章实数 6.1 平方根同步练习(含答案)一.选择题(共12小题)1.的平方根是()A.B.C.D.2.下列各式中,正确的是()A.B.C.D.3.如果b是1的平方根,那么b2017等于()A.±1B.-1C.1D.±20174.下列各数13,π,0,-4,(-3)2,-32,-|-3|,-(-3),3.14-π中有平方根的个数为()A.2个B.3个C.4个D.5个5.下列说法正确的是()A.2是-4的算术平方根B.±4是16的算术平方根C.-6是(-6)2的平方根D.1的平方根是它本身6.若(x+y)2=25,则x+y的值为()A.10B.5C.-5D.±57.若2m-4与3m-11是同一个数的平方根,则m的值是()A.-3B.1C.-3或-1D.3或78.若,则x2006+y2005的值为()A.0B.1C.-1D.29.圆的面积增加到原来的n倍,则它的半径增加到原来的()A.n倍B.2n倍C.D.10.已知a-1=20172+20182,则=()A.4033B.4034C.4035D.403611.请你观察、思考下列计算过程:因为112=121,所以;因为1112=12321,所以;…,由此猜想=()A.111111B.1111111C.11111111D.111111111 12.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为()A.B.C.2D.二.填空题(共6小题)13.已知,那么a= .14.已知5是x+8的算术平方根,则x=15.若某一个数的算术平方根为2m+6,它的平方根为±(m-2),则这个数是16.若2x-4与1-3x是同一个正数的平方根,则x的值为17.当x取时,代数式取值最大,并求出这个最大值.18.已知有理数x,y,z满足,那么(x-yz)2的平方根为三.解答题(共7小题)19.已知2a-1的平方根是±,3a+b-1的算术平方根是6,求a+4b的算术平方根.20.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为6km,那么这场雷雨大约能持续多长时间?(结果如有根号,请保留根号)(2)如果一场雷雨持续了0.9h,那么这场雷雨区域的直径大约是多少?21.小明把一张长为24厘米,宽为18厘米的长方形纸板剪成一些面积相等的正方形没有剩余,那么每个正方形的边长最大是多少厘米,他至少可以剪出多少个这样的正方形?22.已知一个长方形的长为10m,宽为7m,按照长方形的边进行裁剪,裁剪出两个大小不一的正方形,使它们的边长之比为4:3,面积之和为75m2,这两个正方形的面积分别是多少?能否裁剪出这两个正方形,并说明理由.23.如图,公园里有一块面积为400平方米的正方形空地,园林设计师计划按图中方法在此空地上建一个面积为300平方米的长方形花坛,使长方形的长宽之比为5:3.(1)求计划设计的花坛的长和宽;(2)请你通过计算说明设计师能否实现这个计划?24.如图,用两个边长为的小正方形拼成一个大的正方形.①求大正方形的边长?②若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3且面积为720cm2.若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由?25.喜欢探索数学知识的小明遇到一个新的定义:对于三个正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“和谐组合”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”.例:1,4,9这三个数,,其结果分别为2,3,6,都是整数,所以1,4,9三个数称为“和谐组合”,其中最小算术平方根是2,最大算术平方根是6.(1)请证明2,18,8这三个数是“和谐组合”,并求出最小算术平方根和最大算术平方根.(2)已知9,a,25三个数是“和谐组合”,且最大算术平方根是最小算术平方根的3倍,求a的值.参考答案1-5:CDADC 6-10:DDACC 11-12:DA13、0或114、1715、16、-3或117、218、±219、由题意得,2a-1=17,3a+b-1=62,解得a=9,b=10,所以,a+4b=9+4×10=9+40=49,∵72=49,∴a+4b的算术平方根是719、(1)(2)920、解:24=2×2×2×3,18=2×3×321、24和18的最大公因数是6,24÷6=4,18÷6=34×3=12∴他至少可以剪出12个这样的正方形22、不能裁剪出这两个正方形23、24、25、。

人教版七年级下册6.1平方根同步测试(有答案)

人教版七年级下册6.1平方根同步测试(有答案)

绝密★启用前6.1 平方根班级:姓名:1.下列判断:①0.25的平方根是0.5;②只有正数才有平方根;③-7是-49的平方根;④的平方根是.正确的有()个。

A.1B.2C.3D.42.计算的结果是()A. B. C. D.3.当a2=b2时,下列等式中成立的是()A.a=bB.C.a3=b3 D.4.若和都有意义,则的值是()A. B. C. D.5. 的平方根是()A.3B.±3C.D.±6.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C.x+1 D.21x+7.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-18.1681的平方根是;9的立方根是.9.在下列各数中0,254,21a+,31()3--,2(5)--,222x x++,|1|a-,||1a-,16有平方根的个数是个.10.计算下列各式:(1)719;(2)0.81-0.04;(3)224140-.(4)2(3)1+ (5)1316(6)0 (7)21-1.()20.7- 的平方根是( )A .-0.7 B.±0.7 C.0.7 D.0.49 2.有下列说法中正确的说法的个数是( ) (1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数; (4)无理数都可以用数轴上的点来表示. A.1 B.2 C.3 D.4 3. 已知4b -+()21a - =0,则 ab的平方根是( ) A .±12 B . 12 C .14 D .±144.9的算术平方根是( )A .-3B .3C .±3D .815.若a<0,则aa 22等于( ) A .21 B .21- C .±21 D .0 6.如果a(a >0)的平方根是±m ,那么( ) A .a 2=±mB .a=±m 2C .a =±mD .±a =±m7.若正方形的边长是a,面积为S ,那么( ) A.S 的平方根是a B.a 是S 的算术平方根 C.a=±SD.S=a8.±=9.的平方根是10.若一个正数的两个不同的平方根为2m ﹣6与m+3,则这个正数为 . 11.比较下列各组数的大小:(1)12与14;(2)-5与-7; (3)5与24; (4)2412-与1.5.12.已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.1.(2019·株洲)28⨯=( )A .42B .4C .10D .22 2.(2019·益阳)下列运算正确的是( )A.2)2(2-=-B.6)32(2=C.532=+D.632=⨯3.(2019·常德)下列运算正确的是( )A .3+4=7B .12=32C .2(2)-=-2D .146=2134.(2019·武汉)式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x ≥-1C .x ≥1D .x ≤1参考答案1-5.ABCD 6-7.DC 8.±23,39 9.710.(1)原式=43; (2)原式=0.9-0.2=0.7; (3)原式=81=9. (4)±2 (5)74±(6)0 (7)没有平方根1-5.BBABB 6-7.DB8.答案为:±9.答案为:±2;10.答案为:1611.(1)12<14;(2)-5>-7;(3)5>24;(4)2412>1.5.12.解答:∵2m+2的平方根是±4,3m+n+1的平方根是±5,∴2m+2=16,3m+n+1=25,联立解得,m=7,n=3,∴m+2n=7+2×3=13.1-4.BDDC。

初中数学同步训练必刷题(人教版七年级下册 6

初中数学同步训练必刷题(人教版七年级下册 6

初中数学同步训练必刷题(人教版七年级下册 6.1 平方根)一、单选题(每题3分,共30分)1.(2023八上·榆林期末)64的平方根是()A.±8B.±4C.±2D.8【答案】A【知识点】平方根【解析】【解答】解:64的平方根为±8.故答案为:A【分析】根据正数的平方根有两个,它们互为相反数,可得到64的平方根.2.(2022八上·兴平期中)计算:√16=()A.-8B.8C.-4D.4【答案】D【知识点】算术平方根【解析】【解答】解:√16=4.故答案为:D【分析】利用正数的算术平方根是正数,可得答案.3.(2022七上·余杭月考)若x的平方等于3,则x等于()A.√3B.9C.√3或−√3D.9或-9【答案】C【知识点】平方根【解析】【解答】解:∵x的平方等于3即x2=3∴x=±√3.故答案为:C【分析】利用正数的平方根有两个,它们互为相反数,可得到x的值.4.(2022八上·乐山期中)下列说法中正确的是()A.-4的平方根为±2B.-4的算术平方根为-2C.0的平方根与算术平方根都是0D.(−4)2的平方根为-4【答案】C【知识点】平方根;算术平方根【解析】【解答】解:A、-4没有平方根,故A不符合题意;B、-4没有算术平方根,故B不符合题意;C、0的平方根与算术平方根都是0,故C符合题意;D、(-4)2的平方根为±4,故D不符合题意;故答案为:C【分析】利用负数没有平方根和算术平方根,可对A,B作出判断;利用0的平方根和算术平方根都是0,可对C作出判断;利用正数的平方根有两个,它们互为相反数,可对D作出判断.5.(2022七上·杭州期中)√116的算术平方根是()A.12B.14C.18D.±12【答案】A【知识点】算术平方根【解析】【解答】解:∵√116=14,∴14的算术平方根为12,故答案为:A.【分析】先求出√116=14,再求14的算术平方根即可.6.√16的平方根是()A.2B.﹣2C.±2D.4【答案】C【知识点】平方根;算术平方根【解析】【解答】解:由题意可得√16=4因为(±2)2=4所以4的平方根为±2即√16的平方根为±2.故答案为:C.【分析】要求√16的平方根就是求4的平方根,即可解答。

人教版七年级数学下册《6.1第2课时用计算器求一个正数的算数平方根》同步练习(含答案)

人教版七年级数学下册《6.1第2课时用计算器求一个正数的算数平方根》同步练习(含答案)

第2课时数的估计及大小比较关键问答①用计算器计算一个正数的算术平方根的步骤是什么?②估算一个正数的算术平方根的大小时,常需要用到什么知识?③比较两个数的大小的方法有哪些?1.①用计算器计算44.86的值为(精确到0.01)()A.6.69 B.6.7 C.6.70 D.±6.702.②2017·天津估计38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间3.③比较大小:10__________11.命题点1用计算器求正数的算术平方根[热度:86%]4.2017·淄博运用科学计算器(如图6-1-1是其面板的部分截图)进行计算,按键顺序如下:图6-1-1( 3.5- 4.5)×3x2+4则计算器显示的结果是________.5.天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h来估计,其中h(单位:m)是眼睛离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是1.5 m时,能看到多远(精确到0.01 km)?如果登上一个观望台,当眼睛离海平面的高度是35 m时,能看到多远(精确到0.01 km)?命题点2数的估算[热度:88%]6.④2018·台州估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解题突破④7介于哪两个连续整数之间?7.⑤17的整数部分是__________,小数部分是________.模型建立⑤若a(a>0)的整数部分为n,则其小数部分为a-n.8.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[3]=1,按此规定[13-1]=________.9.⑥如图6-1-2所示,在数轴上点A和点B之间表示整数的点有________个.图6-1-2⑥-2与7分别介于哪两个连续整数之间?10.⑦用“逐步逼近”的方法可以求出7的近似值.先阅读,再答题:因为22<7<32,所以2<7<3.第一步:取2+32=2.5,由2.52=6.25<7,得2.5<7<3. 第二步:取2.5+32=2.75,由2.752=7.5625>7,得2.5<7<2.75. 请你继续上面的步骤,写出第三步,并通过第三步的结论对7十分位上的数字作估计. 方法点拨⑦本题需先取数,再计算所取数的平方,最后比较大小.命题点 3 数的大小比较 [热度:92%]11.在数-5,0,3,2中,比3大的数是( )A .-5B .0C .3 D. 212.⑧2017·酒泉 估计5-12与0.5的大小关系:5-12________0.5(填“>”“<”或“=”). 方法点拨 ⑧作差法是比较两个数大小的一种常用方法.13.比较5-3与5-22的大小.命题点 4 算术平方根的应用 [热度:94%]14.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块面积为18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形工件的长和宽的比为3∶2,则能用这块正方形工料裁剪出符合要求的长方形工件吗?15.⑨在地球引力的作用下,物体从某一高度落下,速度会越来越快,即地球引力会使下落的物体加速下落.在物理学中,把地球引力给下落物体带来的加速度称为重力加速度,用g 表示,g =9.8 m/s 2,物体自由下落的高度h (m)与物体下落的时间t (s)之间的函数关系是h =12gt 2.某人头顶上空490 m 处有一杀伤半径为50 m 的炸弹自由下落,此人发现后,立即以6 m/s 的速度逃离,那么此人能脱离危险吗?⑨炸弹落在地面上的时间是多少?在这个时间内,此人跑的路程是多少?16.⑩一个标有高度的圆柱形容器,加入一些水后观察水面高度如图6-1-3①所示,这时将一个直径为2 cm的圆柱形玻璃棒竖直插至容器底部,水面高度如图②所示,求容器的内口直径(圆柱的容积=底面圆面积×高).(精确到0.1 cm)图6-1-3解题突破⑩玻璃棒在水中部分的体积是多少?容器中插入玻璃棒后,水面以下部分的体积比原来多了多少?17.⑪用计算器计算:(1)9×9+19=__________;(2)99×99+199=__________;(3)999×999+1999=__________;(4)9999×9999+19999=__________.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:__________.方法点拨⑪利用计算器计算结果,观察9的个数与结果之间存在的规律.典题讲评与答案详析1.C 2.C 3.<4.-7 [解析] 根据按键顺序可得算式为(3.5-4.5)×32+4=(-1)×9+2=-9+2 =-7.5.解:把h =1.5代入s 2=16.88h ,得s 2=16.88×1.5=25.32,所以s ≈5.03. 即当眼睛离海平面的高度是1.5 m 时,能看到的最远距离约为5.03 km.把h =35代入s 2=16.88h ,得s 2=16.88×35=590.8,所以s ≈24.31.即当眼睛离海平面的高度是35 m 时,能看到的最远距离约为24.31 km.6.B [解析] 由于2<7<3,所以7+1的值在3和4之间.7.4 17-48.2 [解析]∵3<13<4,∴2<13-1<3,∴[13-1]=2.9.4 [解析] 由于-2<-2<-1,2<7<3,所以-2与7之间的整数有-1,0,1,2,所以A ,B 两点之间的整数点有4个.10.解:第三步:取2.5+2.752=2.625, 由2.6252=6.890625<7,得2.625<7<2.75, 所以7十分位上的数字可能是6或7.11.C12.> [解析]∵0.5=12,又5>2,∴5-1>1,即5-12>12. 13.解:∵4<5<9,∴2<5<3,∴5-3<0,5-22>0,∴5-3<5-22. 14.解:(1)5分米.(2)设长方形工件的长为3x (x >0)分米,宽为2x (x >0)分米.根据题意,得3x ·2x =18,解得x = 3.∴长方形工件的长为3 3分米,宽为2 3分米.∵3 3>5,∴不能用这块正方形工料裁剪出符合要求的长方形工件.15.解:能脱离危险.当h =490时,即490=12×9.8×t 2,解得t =10, 在这个时间内,此人跑的路程为6×10=60(m)>50 m ,所以此人能脱离危险.16.解:圆柱形玻璃棒的底面半径为2÷2=1(cm).设圆柱形容器的内口半径为r cm ,则有πr 2×(8-7)=π×12×8,πr 2=8π,r 2=8,r =8,所以圆柱形容器的内口直径为2×8=2 8≈5.7(cm).17.(1)10 (2)100 (3)1000【关键问答】①先按键,再输入这个正数,最后按=键.②一个正数越大,它的算术平方根越大;另外需记住正整数如2,3,5等的算术平方根.③正数大于0,0大于负数,正数大于负数,两个负数比较大小时,绝对值大的负数反而小.还可以用作差法、作商法等.。

2022-2023学年人教版七年级数学下册《6-1平方根》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《6-1平方根》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《6.1平方根》同步练习题(附答案)一.选择题1.25的算术平方根是()A.±5B.5C.±D.2.计算的结果是()A.2B.±2C.D.43.已知a﹣7和2a+1是一个正数x的平方根,则这个正数x=()A.2B.2或﹣8C.25D.25或225 4.如图,输入m=2,则输出的数为()A.8B.16C.32D.645.已知a,b满足(a﹣1)2+=0,则a+b的值是()A.﹣2B.2C.﹣1D.06.若≈7.149,≈22.608,则的值约为()A.71.49B.226.08C.714.9D.2260.8 7.平方根是±的数是()A.B.C.D.±8.一个正数的两个平方根分别为2m﹣1与2﹣m,则m的值为()A.1B.2C.﹣1D.﹣2 9.若m2=4,则m=()A.2B.﹣2C.±2D.±10.下列说法正确的是()A.的平方根是B.﹣25的算术平方根是5C.(﹣5)2的平方根是﹣5D.0的平方根和算术平方根都是0二.填空题11.物体在月球上自由下落的高度h(米)和下落时间t(秒)的关系:大约是h=0.8t2.(1)一物体从高空下落2秒时,下落的高度为;(2)当h=20时,物体下落所需要的时间为.12.若一个正数的两个平方根分别为a与﹣2a+3,则这个正数为.13.若|4﹣2x|+(y﹣3)2=0,则x+y=.14.已知=1.8,若=18,则a=.15.若在两个连续整数a、b之间,那么a+b的值是.16.已知一个数的一个平方根是﹣10,则另一个平方根是.17.若的值为有理数,请你写出一个符合条件的实数a的值.18.计算:=.19.若(a﹣2)2+|b+3|+=0,则6a+2b﹣c=.20.已知3a m b5与﹣b n a3的和是单项式,则n2﹣m2的平方根是.三.解答题21.求下列各式中x的值.(1)9x2﹣25=0;(2)(x﹣1)2=36.22.已知x=1﹣2a,y=a+4.(1)若x的算术平方根为3,求a的值;(2)如果一个正数的平方根分别为x,y,求这个正数.23.已知正实数x的平方根分别是n和n+a(n<0),若a=4,求n+a的平方根.24.已知x=,z是9的平方根,求5z﹣2x的值.25.如果A的两个平方根分别是2x﹣1与3x﹣4,求A的值.26.已知2a﹣1的平方根是±3,4a+2b+1的算术平方根是5,求a﹣2b的平方根.27.小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为2:3,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.28.若一个含根号的式子可以写成的平方(其中a,b,m,n都是整数,x 是正整数),即,则称为完美根式,为的完美平方根.例如:因为,所以是的完美平方根.(1)已知是的完美平方根,求a的值;(2)若是的完美平方根,用含m,n,x的式子分别表示a,b;(3)已知是完美根式,请写出它的一个完美平方根.参考答案一.选择题1.解:∵52=25,∴25的算术平方根是5,故选:B.2.解:原式=2,故选:A.3.解:∴a﹣7和2a+1是一个正数x的平方根,当a﹣7=2a+1时,解得a=﹣8,∴﹣8﹣7=﹣15,∴(﹣15)2=225;当a﹣7和2a+1互为相反数时,﹣(a﹣7)=2a+1,解得a=2,∴7﹣a=5,∴x=52=25.故x的值为25或225.故选:D.4.解:∵m=2时,m2=(2)2=8<10,∴=4,再输入4,42=16>10,∴输出的数是16.故选:B.5.解:∵(a﹣1)2+=0,(a﹣1)2≥0,≥0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,则a+b=1+(﹣2)=﹣1.故选:C.6.解:==×100≈7.149×100=714.9,故选:C.7.解:∵()2=,∴平方根是±的数是,故选:C.8.解:∵一个正数的两个平方根分别为2m﹣1与2﹣m,∴2m﹣1=m﹣2,解得m=﹣1.故选:C.9.解:∵m2=4,∴m=±=±2.故选:C.10.解:A.的平方根为±,所以A选项不符合题意;B.﹣25没有算术平方根,所以B选项不符合题意;C.(﹣5)2=25,25的平方根为±5,所以C选项不符合题意;D.0的平方根为0,0的算术平方根为0,所以D选项符合题意.故选:D.二.填空题11.解:(1)当t=2时,h=0.8t2=0.8×22=3.2(米),故答案为:3.2米;(2)当h=20时,即0.8t2=20,解得t=5或t=﹣5<0,舍去,故答案为5s.12.解:∵一个正数的两个平方根为a与﹣2a+3,∴a+(﹣2a+3)=0,解得:a=3,∴这个正数为32=9,故答案为:9.13.解:根据题意得:4﹣2x=0,y﹣3=0,解得:x=2,y=3,则x+y=2+3=5.故答案是:5.14.解:∵=×10=1.8×10=18,而=18,∴a=324,故答案为:324.15.解:∵62=36,72=49,而36<39<49,∴6<<7,∵在两个连续整数a、b之间,∴a=6,b=7,∴a+b=6+7=13,故答案为:13.16.解:∵一个数的一个平方根是﹣10,∴这个数是(﹣10)2=100,∴100的平方根为±10,∴另一个平方根是10,故答案为:10.17.解:=3,3是有理数.故答案为:(答案不唯一).18.解:=4﹣π,故答案为:4﹣π.19.解:根据题意得:a﹣2=0,b+3=0,c﹣1=0,解得a=2,b=﹣3,c=1.则原式=6×2+2×(﹣3)﹣1=12﹣6﹣1=5.故答案是:5.20.解:由题意得:m=3,n=5,∴n2﹣m2=52﹣32=25﹣9=16,∴n2﹣m2的平方根是±4,故答案为:±4.三.解答题21.解:(1)移项得,9x2=25,两边都除以9得,x2=,由平方根的定义得,x=±;(2)(x﹣1)2=36,由平方根的定义得,x﹣1=±6,即x=7或x=﹣5.22.解:(1)∵x的算术平方根为3,∴x=32=9,∵x=1﹣2a,∴1﹣2a=9,∴a=﹣4;(2)根据题意得:x+y=0,即:1﹣2a+a+4=0,∴a=5,∴x=1﹣2a=1﹣2×5=1﹣10=﹣9,∴这个正数为(﹣9)2=81.23.解:∵正实数x的平方根是n和n+a,∴n+n+a=0,∴a=﹣2n,∵a=4,∴n=﹣2,∴n+a=2.∴n+a的平方根是.24.解:∵x=,∴x=5,∵z是9的平方根,∴z=±3,∴分两种情况:当z=+3时,5z﹣2x=3×5﹣2×5=5;当z=﹣3时,5z﹣2x=﹣3×5﹣2×5=﹣25.故5z﹣2x的值为:5或﹣25.25.解:∵A的两个平方根分别是2x﹣1与3x﹣4,∴①(2x﹣1)+(3x﹣4)=0,2x﹣1+3x﹣4=0,5x﹣5=0,x=1,此时2x﹣1=2×1﹣1=1,3x﹣4=3×1﹣4=﹣1,∴A的值为12=1;②2x﹣1=3x﹣4,﹣x=﹣3,x=3,∴2x﹣1=2×3﹣1=5,3x﹣4=3×3﹣4=5,∴A的值为52=25;∴A的值为:1或25.26.解:∵2a﹣1的平方根是±3,4a+2b+1的算术平方根是5,∴2a﹣1=9,∴,∴a﹣2b=5﹣2×2=1,∴1的平方根是±1,即a﹣2b的平方根是±1.27.解:(1)解:设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得,3x•2x=300,6x2=300,x2=50,∵x>0,∴x==5,∴长方形纸片的长为15cm,答:长方形纸片的长是15cm,宽是10cm;(2)不同意小于同学的说法.理由:∵50>49,∴5 >7,∴15>21.∴长方形纸片的长大于20cm,由正方形纸片的面积为400cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长,∴不能用这块纸片裁出符合要求的长方形纸片.28.解:(1)∵2﹣3是a﹣12的完美平方根,∴a﹣12=(2﹣3)2,∴a﹣12=21﹣12,∴a=21;(2)∵m+n是a+b的完美平方根,∴a+b=(m+n)2,∴a+b=m2+n2x+2mn,∴a=m2+n2x,b=2mn;(3)∵17﹣12是完美根式,∴17﹣12=(m+n)2,∴17﹣12=m2+2n2+2mn,∴17=m2+2n2,﹣12=2mn,∴m2=9,n2=4或m2=8,n2=,∵m,n都是整数,∴m=±3,n=±2,∴17﹣12的完美平方根是3﹣2或﹣3+2.。

人教版数学七年级下册 6.1-平方根 同步练习(含答案)

人教版数学七年级下册 6.1-平方根  同步练习(含答案)

七年级下册 6.1-平方根 同步练习一、选择题1. 下列算式有意义的是( )A. −√−3B. (−√−3)2C. −√(−3)2D. √−(−3)2 2. √16的算术平方根是( )A. 4B. ±4C. 2D. ±23. 下列式子正确的是( )A. √144=±12B. √(−2)2=−2C. (√2)2=2D. −√−27=−3 4. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个5. 下列说法正确的是( )A. 0的算术平方根是0B. 9是3的算术平方根C. ±3是9的算术平方根D. −3是9的算术平方根 6. 平方根等于本身的有( )A. 0B. 1C. 0,±1D. 0和17. 一个正数的两个平方根是a +3和2a −6,则这个正数是( )A. 1B. 4C. 9D. 168. “425的平方根是±25”,用数学式子可以表示为( )A. √425=±25B. ±√425=±25C. √425=25D. −√425=−25 9. 若√a =2,则a 的值为( )A. −4B. 4C. −2D. √210.若√x2=9,则x的取值是().A. 3B. ±3C. 9D. ±911.若一个自然数的算术平方根是a,则比这个自然数大4的自然数的算术平方根是()A. a+2;B. a2+4;C. a+4;D. √a2+4二、填空题12.若一个数的算术平方根是√6,则这个数的平方根是.13.已知(x−1)2+√y+2=0,则(x+y)2的算术平方根是______.14.若√2a−2与|b+2|互为相反数,则(a−b)2的平方根=______.15.(3+a)的算术平方根是5,则a=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 平方根基础题一、选择题1. 4的平方根是( )A. −2B. 2C. ±2D. 没有平方根2. 下列各式中,正确的是( )A. √(−4)2=4B. √−4=−2C. √16=±4D. ±√4=23. (−6)2的平方根是( )A. −6B. 36C. ±6D. ±√64. 若|x−5|+√y=0,则x+y=( )A. −5B. 6C. 0D. 55. 已知:√20n是整数,则满足条件的最小正整数n为( )A. 2B. 3C. 4D. 56. 如图,长方形内有两个相邻的正方形,面积分别是x2(x>0)和4,那么阴影部分的面积为( )A. 2x+4B. 2x−4C. x2−4D. 2x−27. 一个自然数的算术平方根为√m,则与它相邻的下一个自然数的平方根是( )A. ±√m+1B. ±√m+1C. ±√m2+1D. ±√m2+18. 若2m−4与3m−1是同一个数的平方根,则m的值是( )A. −3B. −1C. 1D. −3或19. 如果y=√x−2+√2−x+3,那么y x的算术平方根是( )A. 2B. 3C. 9D. ±310. 已知9.972=99.4009,9.982=99.6004,9.992=99.8001,则√997000的个位数字为( )A. 0B. 4C. 6D. 811. 将一组数√2,2,√6,√8,√10,…,√40,按下列方式进行排列:√2,2,√6,√8,√10;√12,√14,4,√18,√20;...若2的位置记为(1,2),√12的位置记为(2,1),则√38这个数的位置记为( )A. (5,4)B. (4,4)C. (4,5)D. (3,5)12. 在下列说法中:①10的平方根是±√10;②−2是4的一个平方根;③4的9平方根是2;④0.01的算术平方根是0.1;⑤√(−2)2=2=2,正确的有( )3A. 2个B. 3个C. 4个D. 5个13. 如图,按下面的程序计算:若开始输入的x值为1,则最后输出的结果是( )A. √7B. 4C. 7D. 1314. 如图,是按照一定规律排成的数阵,按图中数阵的排列规律,第9行从左到右第8个数是( )A. 2√11B. 3√5C. 3√6D. 7二、填空题(本大题共6小题,共18.0分)15. 若√102.01=10.1,则√1.0201=_________.16. 已知|a|=5,√b2=7,且|a+b|=a+b,则a−b=________.17. 若将三个数−√3,√7,√11表示在数轴上,其中能被如图的墨迹覆盖的数是.18. 已知(a+6)2+√b2−2b−3=0,则2b2−4b−a的值为__________.19. 若数a,b,c满足√a+3+|b−3|+(c−1)2=0,则(a+b−c)2021的值为.20. a1=1+112+122,a2=1+122+132,a3=1+132+142,⋯⋯,a n=1+1n2+1(n+1)2其中n为正整数,则√a1+√a2+√a3+⋯+√a2020的值是答案和解析1.【答案】C【解析】【分析】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.【答案】A【解析】解:∵√(−4)2=√16=4,∴A正确;∵√−4无意义,∴B不正确;∵√16=4≠±4,∴C不正确;∵±√4=±2≠2,∴D不正确;故选:A.根据算术平方根和立方根的定义分别计算各个式子得出结果,容易得出结论.本题考查了算术平方根和立方根的定义;熟练计算算术平方根和立方根是解题的关键.3.【答案】C【解析】略4.【答案】D【解析】解:∵|x−5|≥0,√y≥0,∴当|x−5|+√y=0时,|x−5|=0,√y=0.∴x=5,y=0.∴x+y=5+0=5.故选D.根据绝对值的非负性、算术平方根的非负性解决此题.本题主要考查绝对值、算术平方根,熟练掌握绝对值的非负性、算术平方根的非负性是解决本题的关键.5.【答案】D【解析】【分析】本题考查算术平方根,属于基础题.根据题意,即可得解.【解答】解:∵√20n=√4×5n,且n是正整数,∴当n=5时,√5n=5,∴√20n=2×5=10,∴n的最小值为5.故选D.6.【答案】B【解析】解:∵两个相邻的正方形,面积分别是x2(x>0)和4,∴它们的边长分别为x和2,∴阴影部分是一个长为2,宽为(x−2)的长方形,∴阴影部分的面积为2(x−2)=2x−4,故选:B.根据两正方形面积,利用算术平方根定义求出各自的边长,表示出阴影部分面积即可.本题考查算术平方根的应用.7.【答案】A【解析】【分析】本题考查了求一个数的算术平方根,平方根,比较简单.根据算术平方根的定义得这个自然数为m,则与这个自然数相邻的后续自然数m+1,由此即可得到其平方根.【解答】解:∵一个自然数的算术平方根是√m,∴这个自然数为m,∴与这个自然数相邻的后续自然数m+1,∴其平方根为±√m+1.故选A.8.【答案】D【解析】【分析】本题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.明确2m−4与3m−1相等或互为相反数是解题的关键.依据平方根的性质列方程求解即可.【解答】解:当2m−4=3m−1时,m=−3,当2m−4+3m−1=0时,m=1.故选D.9.【答案】B【解析】【分析】本题主要考查了二次根式有意义的条件.根据被开放数非负求出x,再求出y,计算y x的算术平方根.【解答】解:根据题意得:x−2≥0,2−x≥0,解得:x=2,y=3,y x=9,9的算术平方根是3.故选B.10.【答案】D【解析】解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴√99.6004<√99.7<√99.8001,∴9.98<√99.7<9.99,∴998<√997000<999,即其个位数字为8,故选D.11.【答案】B【解析】【分析】本题主要考查的是数字的变化规律,解题的关键在于找出其中的规律,先找出被开方数的规律,然后再求得√38的位置即可得出答案.【解答】解:这组数据可表示为:√2,√4,√6,√8,√10,√12,√14,√16,√18,√20,…∵19×2=38,∴√38为第4行,第4个数字.故选B.12.【答案】C【解析】略13.【答案】A【解析】【分析】本题主要考查算术平方根,代数式求值,熟练掌握运算法则是解题的关键,由题中的程序框图确定出满足题意x的值即可.【解答】解:当x=1时,3x+1=4,4的算术平方根为2,2=2输入x=2,3×2+1=7,7的算术平方根为√7,故输出结果为√7,故选A.14.【答案】A【解析】【分析】此题考查了最简二次根式,数字规律问题,正确理解数阵的排列找出规律是关键,由图形可知,第n行最后一个数为√1+2+3+⋯+n=√n(n+1),得到第8行最2=√36=6,即可得到第9行从左到右第8个数.后一个数为√8×92【解答】,解:由图形可知,第n行最后一个数为√1+2+3+⋯+n=√n(n+1)2∴第8行最后一个数为√8×9=√36=6,2则第9行从左至右第8个数是√36+8=√44=2√11,故选A.15.【答案】1.01【分析】本题主要考查的是算术平方根的性质,掌握算术平方根小数点移动规律是解题的关键.依据被开方数小数向左移动两位,对应的算术平方根小数点向左移动一位解答即可.【解答】解:∵√102.01=10.1,∴√1.0201=1.01.故答案为1.01.16.【答案】−2或−12【解析】【分析】本题考查了绝对值,算术平方根,代数式求值.根据绝对值,算术平方根的定义求出a、b,再代入计算即可.【解答】解:∵|a|=5,√b2=7,∴a=±5,b=±7.又∵|a+b|=a+b,∴a=5,b=7或a=−5,b=7.当a=5,b=7时,a−b=−2;当a=−5,b=7时,a−b=−12.故答案为−2或−12.17.【答案】√7【解析】略18.【答案】12【解析】本题主要考查非负数的性质,代数式的值.掌握非负数的性质:几个非负数的和为零,这几个非负数分别等于0是解题的关键.根据非负数的性质,求出a、b的值,然后把a、b的值代入代数式计算即可.【解答】解:因为(a+b)2≥0,√b2−2b−3≥0,且(a+6)2+√b2−2b−3=0,所以(a+b)2=0,√b2−2b−3=0,所以a=−6,b2−2b−3=0,即b2−2b=3,所以2b2−4b−a=2(b2−2b)−a=6−(−6)=12.故答案为12.19.【答案】−1【解析】解:∵√a+3+|b−3|+(c−1)2=0,∴a+3=0,b−3=0,c−1=0,解得a=−3,b=3,c=1,∴(a+b−c)2021=(−3+3−1)2021=(−1)2021=−1.20.【答案】40844402021【解析】【试题解析】【分析】本题考查数式规律问题、算术平方根、有理数的加减混合运算等知识点,先求出a1,a2,a3,a n的值,代入原式利用算术平方根和公式1n(n+1)=1n−1n+1进行化简与计算,即可求解.【解答】解:∵a1=1+112+122=(32)2,a2=1+122+132=(76)2,a3=1+132+142=(1312)2,……a n=1+1n2+1(n+1)2=[n(n+1)+1n(n+1)]2,∴√a1+√a2+√a3+···+√a2020,=32+76+1312+···+2020×2021+12020×2021,=1+12+1+16+1+112+···+1+12020×2021,=2020+(1−12+12−13+13−14+···+12020−12021),=2020+1−12021,=40844402021.故答案为40844402021.。

相关文档
最新文档