2021年2021年人教版七年级数学下册6.1 平方根 同步练习
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
初中数学同步训练必刷题(人教版七年级下册 6

初中数学同步训练必刷题(人教版七年级下册 6.1 平方根)一、单选题(每题3分,共30分)1.(2023八上·榆林期末)64的平方根是()A.±8B.±4C.±2D.8【答案】A【知识点】平方根【解析】【解答】解:64的平方根为±8.故答案为:A【分析】根据正数的平方根有两个,它们互为相反数,可得到64的平方根.2.(2022八上·兴平期中)计算:√16=()A.-8B.8C.-4D.4【答案】D【知识点】算术平方根【解析】【解答】解:√16=4.故答案为:D【分析】利用正数的算术平方根是正数,可得答案.3.(2022七上·余杭月考)若x的平方等于3,则x等于()A.√3B.9C.√3或−√3D.9或-9【答案】C【知识点】平方根【解析】【解答】解:∵x的平方等于3即x2=3∴x=±√3.故答案为:C【分析】利用正数的平方根有两个,它们互为相反数,可得到x的值.4.(2022八上·乐山期中)下列说法中正确的是()A.-4的平方根为±2B.-4的算术平方根为-2C.0的平方根与算术平方根都是0D.(−4)2的平方根为-4【答案】C【知识点】平方根;算术平方根【解析】【解答】解:A、-4没有平方根,故A不符合题意;B、-4没有算术平方根,故B不符合题意;C、0的平方根与算术平方根都是0,故C符合题意;D、(-4)2的平方根为±4,故D不符合题意;故答案为:C【分析】利用负数没有平方根和算术平方根,可对A,B作出判断;利用0的平方根和算术平方根都是0,可对C作出判断;利用正数的平方根有两个,它们互为相反数,可对D作出判断.5.(2022七上·杭州期中)√116的算术平方根是()A.12B.14C.18D.±12【答案】A【知识点】算术平方根【解析】【解答】解:∵√116=14,∴14的算术平方根为12,故答案为:A.【分析】先求出√116=14,再求14的算术平方根即可.6.√16的平方根是()A.2B.﹣2C.±2D.4【答案】C【知识点】平方根;算术平方根【解析】【解答】解:由题意可得√16=4因为(±2)2=4所以4的平方根为±2即√16的平方根为±2.故答案为:C.【分析】要求√16的平方根就是求4的平方根,即可解答。
【优课件】6.1 平方根(第1课时)-2021-2022学年七年级数学下册同步备课系列(人教版)

9
⑵
25
⑶ 2
⑷
3
9 3
(2)
= .
25 5
解: (1) 1=1.
(4) (-3)=-3.
2
2
(3) 2 =2.
2
2
2
(5) 13 -12 =5.
2
⑸ 132 122
4. 自由下落物体的高度(单位:m)与下落时间(单位:s)的关系
是 = . . 如图,有一个物体从490m高的建筑物上自由落下,
那么乘方与谁互为逆运算呢?
引入新课
学校要举行美术作品比赛,小红想裁出一块面积为25 dm2的
正方形画布,画上自己的得意之作参加比赛,这块正方形画
布的边长应取多少?你能帮小红算一算吗?
面积
=
边长
1
1
1.96
1. 4
2.25
1.5
9
3
16
4
36
6
这个问题,实际上是已知一个正数的平方,求这个正数.
人教版 七年级数学下册
第6章 实数
6.1 平方根
第1课时
引入新课
学习目标
1. 了解算术平方根的概念,会用根号表示一个数的算术平方根.
2. 会求非负数的算术平方根,掌握算术平方根的非负性.
回顾旧知
我们已学过了有理数的加法、减法、乘法、除法、乘方这五种运算.
在这五种运算中:
加法与减法互为逆运算;
乘法与除法互为逆运算;
如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在
一起,就得到一个面积为2的大正方形. 你知道这个大正方形的边长
是多少吗?
解:设大正方形的边长为,则 =2.
人教版七年级数学下册《6.1第2课时用计算器求一个正数的算数平方根》同步练习(含答案)

第2课时数的估计及大小比较关键问答①用计算器计算一个正数的算术平方根的步骤是什么?②估算一个正数的算术平方根的大小时,常需要用到什么知识?③比较两个数的大小的方法有哪些?1.①用计算器计算44.86的值为(精确到0.01)()A.6.69 B.6.7 C.6.70 D.±6.702.②2017·天津估计38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间3.③比较大小:10__________11.命题点1用计算器求正数的算术平方根[热度:86%]4.2017·淄博运用科学计算器(如图6-1-1是其面板的部分截图)进行计算,按键顺序如下:图6-1-1( 3.5- 4.5)×3x2+4则计算器显示的结果是________.5.天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h来估计,其中h(单位:m)是眼睛离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是1.5 m时,能看到多远(精确到0.01 km)?如果登上一个观望台,当眼睛离海平面的高度是35 m时,能看到多远(精确到0.01 km)?命题点2数的估算[热度:88%]6.④2018·台州估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解题突破④7介于哪两个连续整数之间?7.⑤17的整数部分是__________,小数部分是________.模型建立⑤若a(a>0)的整数部分为n,则其小数部分为a-n.8.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[3]=1,按此规定[13-1]=________.9.⑥如图6-1-2所示,在数轴上点A和点B之间表示整数的点有________个.图6-1-2⑥-2与7分别介于哪两个连续整数之间?10.⑦用“逐步逼近”的方法可以求出7的近似值.先阅读,再答题:因为22<7<32,所以2<7<3.第一步:取2+32=2.5,由2.52=6.25<7,得2.5<7<3. 第二步:取2.5+32=2.75,由2.752=7.5625>7,得2.5<7<2.75. 请你继续上面的步骤,写出第三步,并通过第三步的结论对7十分位上的数字作估计. 方法点拨⑦本题需先取数,再计算所取数的平方,最后比较大小.命题点 3 数的大小比较 [热度:92%]11.在数-5,0,3,2中,比3大的数是( )A .-5B .0C .3 D. 212.⑧2017·酒泉 估计5-12与0.5的大小关系:5-12________0.5(填“>”“<”或“=”). 方法点拨 ⑧作差法是比较两个数大小的一种常用方法.13.比较5-3与5-22的大小.命题点 4 算术平方根的应用 [热度:94%]14.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块面积为18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形工件的长和宽的比为3∶2,则能用这块正方形工料裁剪出符合要求的长方形工件吗?15.⑨在地球引力的作用下,物体从某一高度落下,速度会越来越快,即地球引力会使下落的物体加速下落.在物理学中,把地球引力给下落物体带来的加速度称为重力加速度,用g 表示,g =9.8 m/s 2,物体自由下落的高度h (m)与物体下落的时间t (s)之间的函数关系是h =12gt 2.某人头顶上空490 m 处有一杀伤半径为50 m 的炸弹自由下落,此人发现后,立即以6 m/s 的速度逃离,那么此人能脱离危险吗?⑨炸弹落在地面上的时间是多少?在这个时间内,此人跑的路程是多少?16.⑩一个标有高度的圆柱形容器,加入一些水后观察水面高度如图6-1-3①所示,这时将一个直径为2 cm的圆柱形玻璃棒竖直插至容器底部,水面高度如图②所示,求容器的内口直径(圆柱的容积=底面圆面积×高).(精确到0.1 cm)图6-1-3解题突破⑩玻璃棒在水中部分的体积是多少?容器中插入玻璃棒后,水面以下部分的体积比原来多了多少?17.⑪用计算器计算:(1)9×9+19=__________;(2)99×99+199=__________;(3)999×999+1999=__________;(4)9999×9999+19999=__________.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:__________.方法点拨⑪利用计算器计算结果,观察9的个数与结果之间存在的规律.典题讲评与答案详析1.C 2.C 3.<4.-7 [解析] 根据按键顺序可得算式为(3.5-4.5)×32+4=(-1)×9+2=-9+2 =-7.5.解:把h =1.5代入s 2=16.88h ,得s 2=16.88×1.5=25.32,所以s ≈5.03. 即当眼睛离海平面的高度是1.5 m 时,能看到的最远距离约为5.03 km.把h =35代入s 2=16.88h ,得s 2=16.88×35=590.8,所以s ≈24.31.即当眼睛离海平面的高度是35 m 时,能看到的最远距离约为24.31 km.6.B [解析] 由于2<7<3,所以7+1的值在3和4之间.7.4 17-48.2 [解析]∵3<13<4,∴2<13-1<3,∴[13-1]=2.9.4 [解析] 由于-2<-2<-1,2<7<3,所以-2与7之间的整数有-1,0,1,2,所以A ,B 两点之间的整数点有4个.10.解:第三步:取2.5+2.752=2.625, 由2.6252=6.890625<7,得2.625<7<2.75, 所以7十分位上的数字可能是6或7.11.C12.> [解析]∵0.5=12,又5>2,∴5-1>1,即5-12>12. 13.解:∵4<5<9,∴2<5<3,∴5-3<0,5-22>0,∴5-3<5-22. 14.解:(1)5分米.(2)设长方形工件的长为3x (x >0)分米,宽为2x (x >0)分米.根据题意,得3x ·2x =18,解得x = 3.∴长方形工件的长为3 3分米,宽为2 3分米.∵3 3>5,∴不能用这块正方形工料裁剪出符合要求的长方形工件.15.解:能脱离危险.当h =490时,即490=12×9.8×t 2,解得t =10, 在这个时间内,此人跑的路程为6×10=60(m)>50 m ,所以此人能脱离危险.16.解:圆柱形玻璃棒的底面半径为2÷2=1(cm).设圆柱形容器的内口半径为r cm ,则有πr 2×(8-7)=π×12×8,πr 2=8π,r 2=8,r =8,所以圆柱形容器的内口直径为2×8=2 8≈5.7(cm).17.(1)10 (2)100 (3)1000【关键问答】①先按键,再输入这个正数,最后按=键.②一个正数越大,它的算术平方根越大;另外需记住正整数如2,3,5等的算术平方根.③正数大于0,0大于负数,正数大于负数,两个负数比较大小时,绝对值大的负数反而小.还可以用作差法、作商法等.。
人教版数学七年级下册6.1平方根算术平方根 同步练习

6.1 平方根第1课时算术平方根基础训练知识点1 算术平方根的定义1.算术平方根等于它本身的数是_________;_________的算术平方根等于它的相反数.2.(2016·黄冈)错误!未找到引用源。
的算术平方根是_________.3.下列说法正确的是()A.因为62=36,所以6是36的算术平方根B.因为(-6)2=36,所以-6是36的算术平方根C.因为(±6)2=36,所以6和-6都是36的算术平方根D.以上说法都不对4.下列说法正确的是()A.错误!未找到引用源。
表示25的算术平方根B.-错误!未找到引用源。
表示2的算术平方根C.2的算术平方根记作±错误!未找到引用源。
D.2是错误!未找到引用源。
的算术平方根知识点2 求算术平方根5.(2016·杭州)错误!未找到引用源。
=()A.2B.3C.4D.56.设错误!未找到引用源。
=a,则下列结论正确的是()A.a=441B.a=4412C.a=-21D.a=217.已知边长为m的正方形的面积为12,则下列关于m的说法中,错误的是()①m不是有理数;②m是方程m2-12=0的解;③m满足不等式组错误!未找到引用源。
④m是12的算术平方根.A.①②B.①③C.③D.①②④8.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a+1B.a2+1C.错误!未找到引用源。
D.错误!未找到引用源。
+19.已知一个表面积为12 dm2的正方体,则这个正方体的棱长为()A.1 dmB.错误!未找到引用源。
dmC.错误!未找到引用源。
dmD.3 dm知识点3 算术平方根的非负性(错误!未找到引用源。
≥0,a≥0)10.(1)错误!未找到引用源。
中,被开方数a是_________,即a_________0;(2)错误!未找到引用源。
是_________,即错误!未找到引用源。
_________0,即非负数的算术平方根是_________;负数没有算术平方根,即当a_________0时,错误!未找到引用源。
2021-2022学年七年级数学下册6.1《平方根》同步达标测试题(含答案)

2021-2022学年人教版七年级数学下册《6-1平方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列各式中正确的是()A.B.C.D.2.下列关于数的平方根说法正确的是()A.3的平方根是B.2的平方根是±4C.1的平方根是±1D.0没有平方根3.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣54.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个5.若x+3是9的一个平方根,则x的值为()A.0B.﹣6C.0或﹣6D.±66.的算术平方根是()A.±3B.3C.﹣3D.97.数学式子±=±3表示的意义是()A.9的平方根是±3B.±9的平方根是±3C.9的算术平方根是±3D.±9的算术平方根是±38.有一个数值转换器,原理如下,当输入的x为81时,输出的y是()A.B.9C.3D.2二.填空题(共6小题,满分30分)9.已知某数的一个平方根为,则该数是,它的另一个平方根是.10.若+|y﹣1|=0,则(y﹣x)2022=.11.在做浮力实验时,小华用一根细线将一圆柱体铁块拴住,完全浸入盛满水的溢水杯中,并用量筒量得从溢水杯中溢出的水的体积为60立方厘米,小华又将铁块从溢水杯中拿出来,量得溢水杯的水位下降了0.8厘米,则溢水杯内部的底面半径为厘米(π取3).12.已知a2+=4a﹣4,则的平方根是.13.若|a﹣2021|+=2,其中a,b均为整数,则符合题意的有序数对(a,b)的组数是.14.若一个正数的两个平方根分别为x﹣7和x+1,则这个正数是.三.解答题(共6小题,满分50分)15.已知一个数m的两个不相等的平方根分别为a+2和3a﹣6.(1)求a的值;(2)求这个数m.16.解方程:(1)4x2=16;(2)9x2﹣121=0.17.(1)已知+|2x﹣3|=0,求x+y的平方根.(2)已知a、b满足+|b﹣|=0,解关于x的方程(a+2)x2﹣b2=a﹣1.18.已知a2=16,|﹣b|=3,解下列问题:(1)求a﹣b的值;(2)若|a+b|=a+b,求a+b的平方根.19.列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为294cm2.(1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为157cm2的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14)20.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.参考答案一.选择题(共8小题,满分40分)1.解:A.=5,故A不符合题意;B.=5,故B符合题意;C.被开方数小于0,无意义,故C不符合题意;D.被开方数小于0,无意义,故D不符合题意;故选:B.2.解:A、3的平方根是±,原说法错误,故本选项不合题意;B、2的平方根是±,原式说法错误,故本选项不合题意;C、1的平方根是±1,原说法正确,故本选项符合题意;D、0的平方根是0,原说法错误,故本选项不合题意;故选:C.3.解:∵+|b﹣4|=0,而,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,∴a﹣b=﹣1﹣4=﹣5.故选:D.4.解:①=9,﹣3是的平方根,故①正确;②7是(﹣7)2的算术平方根,故②错误;③25的平方根是±5,故③正确;④﹣9没有平方根,故④错误;⑤0的算术平方根是0,故⑤错误;⑥=3,的平方根为,故⑥正确;⑦平方根等于本身的数有0,故⑦错误.故选:C.5.解:∵x+3是9的一个平方根,∴x+3=3或x+3=﹣3,解得:x=0或x=﹣6.故选:C.6.解:∵=9,∴的算术平方根是:=3.故选:B.7.解:根据平方根的定义,±=±3表示的意义是9的平方根是±3.故选:A.8.解:由题意可得:81的算术平方根是9,9的算术平方根是3,则3的算术平方根是,故输出的y是.故选:A.二.填空题(共6小题,满分30分)9.解:某数的一个平方根是,那么这个数是6,它的另一个平方根是﹣,故答案为:6,﹣.10.解:∵+|y﹣1|=0,∴x﹣2=0,y﹣1=0,∴x=2,y=1,∴(y﹣x)2022=(1﹣2)2022=(﹣1)2022=1.故答案为:1.11.解:设溢水杯内部的底面半径为x,由题意得:πx2×0.8=60.∴x2==25.∵x>0.∴x==5(厘米).故答案为:5.12.解:a2+=4a﹣4,,,a﹣2=0,b﹣2=0,解得a=2,b=2,∴,∴的平方根是.故答案为:.13.解:∵|a﹣2021|+=2,其中a,b均为整数,又∵|a﹣2021|≥0,≥0,∴可分以下三种情况:①|a﹣2021|=0,=2,解得:a=2021,b=﹣2017;②|a﹣2021|=1,=1,解得:a=2020或2022,b=﹣2020;③|a﹣2021|=2,=0,解得:a=2023或2019,b=﹣2021;∴符合题意的有序数对(a,b)的组数是5.故答案为:5.14.解:根据题意,(x﹣7)+(x+1)=0,解得x=3,∴x+1=3+1=4,∵42=16,∴这个正数是16.故答案为:16.三.解答题(共6小题,满分50分)15.解:(1)∵数m的两个不相等的平方根为a+2和3a﹣6,∴(a+2)+(3a﹣6)=0,∴4a=4,解得a=1;(2)∴a+2=1+2=3,3a﹣6=3﹣6=﹣3,∴m=(±3)2=9,∴m的值是9.16.解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.17.解:(1)∵+|2x﹣3|=0,又∵≥0,|2x﹣3|≥0,∴x=,y=﹣,∴x+y=1,∴x+y的平方根为±1.(2)∵+|b﹣|=0,又∵≥0,|b﹣|≥0,∴a=﹣4,b=,∴方程为﹣2x2﹣3=﹣5,∴x2=1,∴x=±1.18.解:(1)∵a2=16,|﹣b|=3,∴a=±4,b=±3.∴当a=4,b=3,则a﹣b=4﹣3=1;当a=4,b=﹣3,则a﹣b=4﹣(﹣3)=7;当a=﹣4,b=3,则a﹣b=﹣4﹣3=﹣7;当a=﹣4,b=﹣3,则a﹣b=﹣4﹣(﹣3)=﹣1.综上:a﹣b=±1或±7.(2)∵|a+b|=a+b,∴a+b≥0.∴a+b=1或7.∴当a+b=1时,a+b的平方根为±1;当a+b=7时,a+b的平方根为±.综上:a+b的平方根为±1或±.19.解:设长方形纸片的长为3xcm,宽为2xcm.依题意,3x•2x=294,6x2=294,x2=49,x=±7,∵x>0,∴x=7,∴长方形的纸片的长为21厘米,宽为14厘米,(21+14)×2=70厘米.答:纸片的周长是70厘米.(2)设圆形纸片的半径为r,S=πr2=157,r2=50,由于长方形纸片的宽为14厘米,则圆形纸片的半径最大为7,72=49<50,所以不能裁出想要的圆形纸片.20.解:(1)裁剪方案如图所示:(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3xcm,则宽为2xcm,则3x•2x=300,解得:x=5或x=﹣5(舍),∴长方形纸片的长为15cm,又∵(15)2=450>202即:15>20,∴小丽不能用这块纸片裁出符合要求的纸片.。
最新人教版七年级数学下册《6.1第3课时平方根》同步练习(含答案)

第3课时 平方根关键问答①正数的平方根之间有什么关系?②请用符号表示正数a 的平方根及算术平方根.1.①25的平方根是( )A .5B .-5C .±5D .±52.②“3625的平方根是±65”用数学式表示为( ) A.3625=±65B .±3625=±65 C.3625=65D .-3625=-65命题点 1 平方根的意义 [热度:90%]3.若x -3是4的平方根,则x 的值为( )A .2B .±2C .1或5D .16 4.若x +2=2,则2x +5的平方根是( )A .2B .±2C .3D .±35.③(-6)2的平方根是________.易错警示③先计算(-6)2的值,再求这个数的平方根.6.81的平方根是________.命题点 2 平方根的性质 [热度:92%]7.④如果一个正数的两个平方根为x +1和x -3,那么x 的值是( )A .4B .2C .1D .±2解题突破④一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.8.⑤若m ,n 是一个正数的两个平方根,则3m +3n -5=__________.方法点拨⑤一个正数的两个平方根互为相反数.9.已知2a +3的平方根是±3,5a +2b -1的平方根是±4.求3a +2b 的平方根.10.⑥王老师给同学们布置了这样一道习题:一个数的算术平方根为2m -6,它的平方根为±(m -2).求这个数.小张的解法如下:依题意可知2m -6是m -2或者-(m -2)两数中的一个.(1)当2m -6=m -2时,解得m =4.(2)2m -6=2×4-6=2.(3)这个数为4.当2m -6=-(m -2)时,解得m =83.(4) 2m -6=2×83-6=-23.(5) 这个数为49. 综上可得,这个数为4或49.(6) 王老师看了小张的解法后,说他的解法是错误的.你知道小张错在哪里吗?请改正.易错警示⑥算术平方根具有非负性,因此m 的取值需保证算术平方根大于或等于0.命题点 3 开平方 [热度:94%]11.下列结论中,正确的个数是( ) ①0.4=0.2;②179=±43;③-20192的平方根是-2019; ④(-5)2的算术平方根是-5;⑤±76是11336的平方根. A .1 B .2 C .3 D .412.⑦若x 能使(x -1)2=4成立,则x 的值是( )A .3B .-1C .3或-1D .±2易错警示⑦容易丢掉4的其中一个平方根-2,从而误选A.13.图6-1-4是一台数值转换机的运算程序,若输出的结果为-32,则输入的x 的值为________.图6-1-414.⑧已知4,9和a 三个数,使这三个数中的一个数是另外两个数乘积的一个平方根,写出所有符合条件的a 的值.解题突破⑧本题需分情况进行讨论,使其中任意一个数是另外两个数乘积的平方根.15.求下列各式的值: (1)225; (2)-0.0004; (3)±1214;(4)-(-0.1)2; (5)0.81-0.04; (6)412-402.16.求下列式子中x 的值:⑨(1)49(5-3x )2=121; (2)2(x -1)2-8=0.解题突破⑨若把5-3x 看作一个整体,你能利用平方根的定义求出5-3x 的值吗?进而能求出x 的值吗?命题点 4 新定义问题 [热度:96%]17.⑩用“★”规定新运算:对于任意数a ,b ,都有a ★b =a 2-b ,如果x ★13=2,那么x 等于( )A .15B.15C .-15D .±15方法点拨⑩根据新定义,转化成平方根的意义来求解.18.定义一种叫做“@ ”的运算,对于任意两个数m ,n ,有m @n =m 2-n 2.请你解方程:x @(-1)=4@2.19.⑪一天,蚊子落在狮子的身上对它说:“狮子,别看你高大威猛,而实际上我们俩的体重相同!”狮子不屑一顾地对蚊子说:“别瞎说了,那怎么可能!”蚊子不慌不忙地说:“不信,我给你证明一下.”说着,蚊子便在地上写出了证明过程:证明:设蚊子重m 克,狮子重n 克.又设m +n =2a ,则有m -a =a -n .两边平方,即(m -a )2=(a -n )2.∵(a -n )2=(n -a )2,∴(m -a )2=(n -a )2, 两边开平方,即(m -a )2=(n -a )2,∴m -a =n -a ,∴m =n ,即蚊子与狮子一样重.蚊子的证法对吗?为什么?模型建立 ⑪a 2=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).典题讲评与答案详析1.D 2.B3.C [解析] 因为4的平方根是±2,所以x -3=2或x -3=-2,解得x =5或x =1.4.D [解析] 因为x +2=2,所以x =2,所以2x +5=9,所以2x +5的平方根是±3.5.±6 6.±37.C [解析] 由一个正数的平方根是互为相反数的两个数,得x +1+x -3=0,解得 x =1.8.-59.解:由2a +3的平方根是±3,得2a +3=9,所以a =3.由5a +2b -1的平方根是±4,得5a +2b -1=16,所以b =1,所以3a +2b =11,所以3a +2b 的平方根是±11.10.解:小张错在没有确定m 的取值范围.∵2m -6是某数的算术平方根,∴2m -6≥0,即m ≥3.当m =83时,2m -6<0,∴应舍去.故这个数为4. 11.A [解析] 因为0.22=0.04,所以①错;因为179表示179,即169的算术平方根,结果为43,所以②错;因为负数没有平方根,所以③错;因为(-5)2的算术平方根是5,所以④错;因为11336=4936,它的平方根是±76,所以⑤正确.所以正确的有1个. 12.C [解析] 由(x -1)2=4,得x -1=2或x -1=-2,解得x =3或x =-1.13.±4 [解析] 由题意,得-2x 2=-32,所以x =±4.14.解:若a 是36的平方根,则a =±6;若9是4a 的平方根,则a =814;若4是9a 的平方根,则a =169. 综上,a 的值可以是±6,814,169. 15.(1)15 (2)-0.02 (3)±72(4)-0.1 (5)0.7 (6)9 16.解:(1)整理得(5-3x )2=12149,则5-3x =±12149,所以5-3x =117或5-3x =-117, 解得x =87或x =4621. (2)整理得(x -1)2=4,开方得x -1=2或x -1=-2,解得x =3或x =-1.17.D [解析] 因为x ★13=2,所以x 2=15,所以x =±15.故选D.18.解:x @(-1)=4@ 2可以转化成x 2-12=42-22,即x 2=13,所以x =±13.19.解:不对.理由如下:由题设,应有关系式:m <a <n ,则m -a <0,n -a >0, ∴(m -a )2=a -m ,(n -a )2=n -a ,∴蚊子的证法不对.【关键问答】①它们是互为相反数的两个数.②正数a 的平方根是±a ,正数a 的算术平方根是 a.。
6.1 平方根 练习 2020-2021学年人教版数学七年级下册

6.1 平方根第1课时 算术平方根课前预习1.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的 算术平方根 .a 的算术平方根记为 a ,读作“ 根号a ”,a 叫做 被开方数 .2.规定:0的算术平方根是 0 .注意:(1)在算术平方根a 中,①被开方数a 是非负数,即a ≥ 0,②算术平方根a 的值 ≥ 0;(2)只有正数和0有算术平方根,负数没有算术平方根.3.被开方数越大,对应的算术平方根也 越大 .4.估算:在确定一个正数的算术平方根时,可以通过每次增加一位小数计算平方与被开方数比较大小,如此进行下去,在精确度范围内逐步确定出正数的算术平方根的取值范围,这种方法称为夹逼法.课堂练习知识点1 算术平方根1.9的算术平方根是 3 .2.计算16的结果是( C )A.-4B.2C.4D.±43.(2020 玉溪红塔区期末)41的算术平方根是( B ) A.±2 B.21 C.±21 D.2知识点2 估算算术平方根4.比较大小:(1)12 < 4;(2)213 < 21.5.如图,在数轴上表示7的点在哪两个点之间( A )A.C 与DB.A 与BC.A 与CD.B 与C知识点3 用科学计算器求一个正数的算术平方根6.用计算器求下列各式的值(结果精确到0.01):(1)75; 解:75≈8.66.(2)8.28; 解:8.28≈5.37.(3)8000. 解:8000≈89.44.课时作业练基础 1.81的算术平方根是 3 .2.若x-3的算术平方根是3,则x= 12 .3.(2019 昭通期末)已知a 为17的整数部分,b-1是400的算术平方根,则b a +的值为 5 .4.若a ,b 为实数,且满足|a-2|+b -3=0,则a-b 的值为 -1 .5.(2020 巍山期末)一个正方形的面积是15,估计它的边长大小在( B )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.下列计算正确的是( C ) A.9=±3 B.|-3|=-3 C.4=2 D.-32=97.下列说法正确的是( D )A.2是-4的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.1的算术平方根是它本身8.计算下列各式的值:(1)0016.0;解:(1)0016.0=0.04.(2)431-; 解:431-=41=21.(3)2)4(-. 解:2)4(-=16=4.9.求下列各数的算术平方根.(1)49;解:因为72=49,所以49的算术平方根是7,即49=7.(2)2516; 解:因为(54)2=2516,所以2516的算术平方根是54,即2516=54.(3)0.36; 解:因为(0.6)2=0.36,所以0.36的算术平方根是0.6,即36.0=0.6.(4)972; 解:因为972=925=(35)2,所以972的算术平方根是35,即972=35. (5)(-83)2. 解:因为(-83)2=649=(83)2,所以(-83)2的算术平方根是83,即2)83( =83.10.求下列代数式的值.(1)如果a 2=4,b 的算术平方根为3,求a+b 的值.解:∵a 2=4,b 的算术平方根为3,∴a=±2,b=9.∴a+b=-2+9=7或a+b=2+9=11.(2)已知x 是25的算术平方根,|y|=6,且x <y ,求x-y 的值.解:∵x 是25的算术平方根,|y|=6,∴x=5,y=±6.∵x<y ,∴y=6.∴x -y=5-6=-1.11.若一个正方形的面积增加56 cm 2就能与一个边长为15 cm 的正方形面积相等,求原正方形的边长.解:设原正方形的边长为x cm.根据题意,得x 2+56=152.解得x=13.答:原正方形的边长为13 cm.12.【核心素养·理性思维】已知25=x ,y =2,z 是9的算术平方根,求2x+y-5z 的值. 解:∵25=x ,y =2,z 是9的算术平方根,∴x=5,y=4,z=3.∴2x+y -5z=2×5+4-5×3=10+4-15=-1.提能力13.【核心素养·勇于探究】(1)先完成下列表格:(2)由上表你发现的规律是: 被开方数扩大或缩小100倍,则算术平方根扩大或缩小10倍 ;(3)根据你发现的规律填空:①已知3≈1.732,则300≈ 17.32 ,03.0≈ 0.173 2 ; ②已知003136.0≈0.056,则313600≈ 560 .14.根据图所示的程序计算,若输入x 的值为64,则输出结果为 -25 .15.【核心素养·理性思维】已知a ,b 互为相反数,c ,d 互为倒数,x 是9的算术平方根.试求x 2-(a+b+cd )x+(a+b )2 021+(-cd )2 021的值.解:根据题意,得a+b=0,cd=1,x=3;∴原式=32-(0+1)×3+02 021+(-1)2 021=5.第2课时平方根课前预习1.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.a的平方根记作±2.求一个数a的平方根的运算,叫做开平方.其中a叫做被开方数.3.正数有两个平方根,它们互为相反数;0的平方根是 0 ;负数没有平方根.课堂练习知识点1 平方根的定义1.【核心素养·批判质疑】下列说法正确的是(D)A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根2.若一个数的平方根等于它本身,则这个数是(A)A.0B.1C.0或1D.0或±1知识点2 开平方3.(2020 西山区期末)4的平方根是±2 .4.求下列各数的平方根:(1)144;解:∵(±12)2=144,∴144的平方根是±12.(2)0.000 1;解:∵(±0.01)2=0.000 1,∴0.000 1的平方根是±0.01.(3)1613; 解:∵1613=1649,(±47)2=1649, ∴1613的平方根是±47. (4)(-119)2. 解:∵(±119)2=(-119)2, ∴(-119)2的平方根是±119.知识点3 平方根的性质5.若2a-1和a-5是一个正数m 的两个平方根,则m= 9 .6.下列各数中,没有平方根的是( B )A.(-3)2B.-|-1|C.0D.47.若x 的算术平方根是2,则x 的平方根是( C )A.-4B.-2C.±2D.±4课时作业练基础1.(2020巍山期末)49的平方根是 ±23 .2.已知一个数的一个平方根是-3,则这个数的另一个平方根是 3 .3.已知03.54=7.35,则0.005 403的平方根是 ±0.073 5 .4.已知x ,y 满足(x 2+y 2)2-9=0,则x 2+y 2= 3 .5.实数9的平方根( D )A.3B.-3C.±3D.±36.(2020 云大附中期末)下列说法错误的是( C )A.5是25的算术平方根B.1是1的一个平方根C.(-4)2的平方根是4D.0的平方根与算术平方根都是07.如果x 是4的算术平方根,那么x 的平方根是( C )A.4B.2C.±2D.±48.若8x m y 与6x 3y n 的和是单项式,则(m+n )3的平方根为( D )A .4B .8C .±4 D.±89.求下列各式的值:(1)±1000000;解:∵1 0002=1 000 000,∴±1000000=±1 000.(2)-1691+; 解:∵1+169=1625=(45)2, ∴-1691+=-45.(3)2021)1(--;解:∵-(-1)2 021=1=12,∴2021)1(--=1;(4)±2)7221(-. 解:∵(1-722)2=(-715)2=(715)2, ∴±2)7221(-=±715. 10.求下列各式中x 的值:(1)4x 2=9; 解:等式两边同乘41,得x 2=49. 等式两边开平方,得x=±23.(2)(x-2)2-5=0;解:移项,得(x-2)2=5.等式两边开平方,得x-2=±5.则x-2=5,或x-2=-5.解得x=2+5,或x=2-5.(3)(2x-1)2=25.解:等式两边开平方,得2x-1=±5.则2x-1=5,或2x-1=-5.解得x=3,或x=-2.11.已知x=1-a ,y=2a-5.若x 的值为4,求a 的值及x+y+16的平方根. 解:∵x 的值为4,∴1-a=4.∴a=-3.∴y=2a -5=2×(-3)-5=-11.∴x+y+16=4-11+16=9.∴x+y+16的平方根为±3.12.(1)已知m+5的平方根是±3,n-2的平方根是±5,求m+n 的平方根; 解:根据题意,得m+5=(±3)2,n-2=(±5)2.解得m=4,n=27.∴m+n=31.∴m+n 的平方根为±31;(2)若2a-4与3a+1是同一个正数x 的两个平方根,求a 的值. 解:根据同一个正数的两个平方根互为相反数,得2a-4+3a+1=0. ∴5a=3.∴a=35.提能力13.下列表示方法正确的是( C )A.49的平方根是±7,可表示为49=±7B.49开方能得到49的算术平方根,即49=±7C.±7是49的平方根,可表示为±49=±7D.-7是49的一个平方根,可表示为49=-714.一个自然数的正的平方根为m ,则下一个自然数的正的平方根为( B ) A.m +1 B.12+m C.m+1 D.m 2+115.若a ,b ,c 满足|a-3|+2)5(b ++14+c =0,求a cb -的平方根. 解:根据题意,得a-3=0,5+b=0,c+14=0.解得a=3,b=-5,c=-14. ∴a cb -=3,即ac b -的平方根为±3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以a﹣b的值为﹣2或﹣12.
故选:D.
二.填空题
10.解:由题意知, ,
解得 ,
∴(a﹣b)2=(2+3)2=25.
11.解:∵一个正数的平方根是2x和x﹣6,
∴2x+x﹣6=0,
解得x=2,
∴这个数的正平方根为2x=4,
∴这个数是16.
故答案为:16.
B、由于负数没有平方根,故选项B错误;
C、 ,故选项C错误;
D、 ,故选项正确.
故选:D.
8.解:∵ ,
∴x﹣1=0,x+y =0,
∴x=1,y=﹣1,
∴x2015+y2016=2,
故选:D.
9.解:∵|a|=5,
∴a=±5,
∵ =7,
∴b=±7,
∵3;b>0,
所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,
A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12
二.填空题
10.已知 =0,则(a﹣b)2=.
11.已知一个正数的平方根是2x和x﹣6,这个数是.
三.解答题
12.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.
13.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.
= =4,
= =5,
…
观察上述算式可知: =n.
(2) = ,
= =2 ,
= =3 ,
…
= =26 .
故答案为:3;4;5;(1)n;(2)26 .
15.解:∵2a﹣1的平方根为±3,
∴2a﹣1=9,解得,2a=10,
a=5;
∵3a+b﹣1的算术平方根为4,
∴3a+b﹣1=16,即15+b﹣1=16,
14.先计算下列各式: =1, =2, =, =, =.
(1)通过观察并归纳,请写出: =.
(2)计算: =.
15.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.
16.已知A= 是a+b+36的算术平方根,B=a﹣2b是9的算术平方根,求A+B的平方根.
17.(1)填写下表.
a
0.0001
0.01
1
100
10000
0.01
0.1
1
10
100
想一想上表中已知数a的小数点的移动与它的算术平方根 的小数点移动间有何规律?
(2)利用规律计算:已知 , , ,用k的代数式分别表示a、b.
(3)如果 ,求x的值.
参考答案
一.选择题
1.解:4的算术平方根是2.
故选:C.
2.解:∵当a为任意实数时, =|a|,
(2)∵ , , ,
∴ ,b=10k.
(3)∵ ,
∴x=70000.
6.1 平方根
一.选择题
1.4的算术平方根是( )
A. B.±2C.2D.±
2.实数 的平方根为( )
A.aB.±aC.± D.±
3. 的平方根是( )
A.±3B.3C.±9D.9
4.如果 (0<x<150)是一个整数,那么整数x可取得的值共有( )
A.3个B.4个C.5个D.6个
5.若8xmy与6x3yn的和是单项式,则(m+n)3的平方根为( )
三.解答题
12.解:∵一个正数的x的平方根是2a﹣3与5﹣a,
∴2a﹣3+5﹣a=0,
解得:a=﹣2,
∴2a﹣3=﹣7,
∴x=(﹣7)2=49.
13.解:由题意得:2x﹣y=9,3x+y=16,
解得:x=5,y=1,
∴x﹣y=4,
∴x﹣y的平方根为± =±2.
14.解:(1) =1;
= =2
= =3,
A.4B.8C.±4D.±8
6.下列说法中错误的是( )
A. 是0.25的一个平方根
B.正数a的两个平方根的和为0
C. 的平方根是
D.当x≠0时,﹣x2没有平方根
7.下列等式正确的是( )
A. B. C. D.
8.若 ,则x2015+y2016的值为( )
A.0B.1C.﹣1D.2
9.已知|a|=5, =7,且|a+b|=a+b,则a﹣b的值为( )
解得b=2,
∴a+2b=5+4=9,
∴a+2b的平方根为:±3.
16.解:根据题意得,a﹣b=2,a﹣2b=3,
解得a=1,b=﹣1,
所以,A= =6,B=1﹣2×(﹣1)=3,
所以,A+B=6+3=9,
∵(±3)2=9,
∴A+B的平方根是±3.
17.解:(1)0.01,0.1,1,10,100,
被开方数的小数点每移动两位,它的算术平方根的小数点向相同方向移动一位.
(m+n)3=(3+1)3=64,64的平方根为±8.
故选:D.
6.解: 是0.25的一个平方根,故选项A正确,
因为正数的两个平方根互为相反数,故它们的和为0,故选项B正确,
的平方根是 ,故选项C错误,
因为负数没有平方根,故当x≠0时,﹣x2没有平方根,故选项D正确,
故选:C.
7.解:A、 ,故选项A错误;
而|a|的平方根为 .
∴实数 的平方根为 .
故选:D.
3.解:∵ ,
9的平方根是±3,
故选:A.
4.解:∵ = ,
而 (0<x<150)是一个整数,且x为整数,
∴5×5×2×3x一定可以写成平方的形式,
所以可以是6,24,54,96共有4个.
故选:B.
5.解:由8xmy与6x3yn的和是单项式,得
m=3,n=1.