初一下册平方根知识点总结

合集下载

(完整版)平方根立方根知识点归纳及常见题型

(完整版)平方根立方根知识点归纳及常见题型

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a ”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30a ≥0。

4、公式:⑴2=a (a ≥0)(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。

平方根知识点总结

平方根知识点总结

平方根知识点总结平方根是代数学中的一个重要概念,经常在各种数学问题中出现。

简单来说,平方根就是一个数与自己相乘等于指定数的操作的逆运算。

本文将为您总结平方根的知识点,并讨论相关概念、性质和应用。

一、基本概念1. 平方根的定义:对于一个非负数a,它的平方根是指满足x * x = a的非负数x。

符号√a表示a的平方根,√a ≥ 0。

2. 平方根的记法:平方根记作√a。

例如√25 = 5,√144 = 12。

二、性质与运算1. 非负数的平方根:对于任意非负实数a,都存在唯一一个非负实数x,使得x * x = a。

2. 平方根的唯一性:每个正实数只有一个正平方根,即√a是唯一的。

但负实数没有实数平方根。

3. 非零实数的平方根:对于任意非零实数a,其平方根√a的正负号取决于a的符号。

当a > 0时,√a > 0;当a < 0时,√a不存在实数解。

4. 平方根的运算性质:a) 两个非负数的积的平方根等于它们的平方根的乘积:√(ab) = √a * √b。

b) 两个非负数的商的平方根等于它们的平方根的商:√(a/b) = √a / √b(b ≠ 0)。

c) 平方根的乘方等于它的被开方数:(√a)² = a。

三、平方根的求解方法1. 估算法:通过估算被开方数的大小,可以快速确定一个近似的平方根。

2. 迭代法:通过迭代运算,逐步逼近平方根的精确值。

3. 牛顿法:利用泰勒级数近似平方根,通过迭代逼近平方根的解。

四、平方根的应用1. 几何应用:平方根在几何图形的计算中有广泛应用,如计算圆的半径或直径、计算三角形的斜边、计算四边形的对角线等。

2. 物理应用:平方根在物理学中的运动学、力学、电磁学等领域广泛应用,如计算速度、加速度、力的大小等。

3. 工程应用:平方根在工程学中的建筑、机械等领域有重要应用,如计算力的大小、材料的强度等。

4. 统计学应用:平方根在统计学中用于计算方差和标准差等。

总结:平方根是数学中一个非常重要的概念,它在各个领域均有广泛的应用。

(完整版)平方根与立方根知识点小结

(完整版)平方根与立方根知识点小结

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3≥0有意义的条件是a ≥0。

4、公式:⑴)2=a (a ≥0)=(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1 求下列各数的平方根和算术平方根(1);(2); (3); ⑷ 642)3(-4915121(3)-例2 求下列各式的值(1); (2); (3); (4).81±16-2592)4(-(5),(6),(7)(8)44.136-4925±2)25(-例3、求下列各数的立方根:⑴ 343; ⑵ ; ⑶ 0.72910227-二、巧用被开方数的非负性求值.大家知道,当a≥0时,a 的平方根是±,即a 是非负数.a 例4、若求y x 的立方根.,622=----y x x 练习:已知求的值.,21221+-+-=x x y y x 三、巧用正数的两平方根是互为相反数求值.我们知道,当a≥0时,a 的平方根是±,而a .0)()(=-++a a 例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若和是数的平方根,求的值.32+a 12-a m m 四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道,即a=0时其值最小,换句话说的最小值是零.0≥a a 例4、已知:y=,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.)1(32++-b a ,求xyz 的值。

七年级数学下册【平方根】知识点

七年级数学下册【平方根】知识点

七年级数学下册【平方根】知识点1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示.(6)<—>a是x的平方 x的平方是ax是a的平方根 a的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式(x≥0)中,规定x=。

(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小(5)(x≥0)<—>a是x的平方x的平方是ax是a的算术平方根 a的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

人教版七年级下册 第六章 实数 第一讲 平方根 讲义(解析版)

人教版七年级下册 第六章 实数 第一讲 平方根 讲义(解析版)

实数第一讲 平方根【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.考点一、算术根 知识讲解定义:如果一个正数的平方等于,即,那么这个正数叫做的算术平方根;,读作“的算术平方根”,叫做被开方数.补充:1.有意义时,≥0,≥0. 2. 规定0的算术平方根还是0.3.算术平方根等于他自己本身的有0和1. 典型例题例1.下列说法正确的是( )A.0的算术平方根是0B.9是3的算术平方根C.±3是9的算术平方根D.-3是9的算术平方根 【答案】A【考点】算术平方根的定义课堂巩固1. 下列说法正确的是 ( )A.因为 5² =25,所以 5 是 25 的算术平方根.B.因为(-5)²=25,所以-5 是 25 的算术平方根.C.因为(±5)²=25,所以 5 和-5 都是 25 的算术平方根.D.以上说法都不对. 【答案】A2. 下列各式正确的是 ( )3- .3B - 3C ± 3±【答案】B3. 算术平方根等于它本身的数是_______ 【答案】0和1例2.求下列各数的算术平方根 (1)100 (2)0.04 (3)1681(4)()22- (5)0 (6)10 x a 2x a =x a a a a a a【答案】(1)10 (2)0.2 (3)49(4)2 (5)0 (6课堂巩固1. 求下列各数的算术平方根(1)121 (2)169 (3)964 (4)1121 (5)0.01 (6)225⎛⎫- ⎪⎝⎭(7)149【答案】(1)11 (2)13 (3)38 (4)111 (5)0.1 (6)25(7)32. 求下列各式的值 (1; (2; (3;(4【答案】1000 (2(3)0.7 (4)9 【点睛】算术平方根为正数的算术平方根是______的算术平方根的相反数是______ 【答案】2,-3例3.. 【答案】6【解析】解:∵25<35<36即5<<6 ∵35比较接近36, 6.课堂同步1. )A. 4 和 5 之间B. 5 和 6 之间C. 6 和 7 之间D. 7 和 8 之间 【答案】C2. .估计与1最接近的整数<35【答案】33.比较下列各数的大小(1 (2) (3)5 (4)12与32【答案】(1 (2) (3) (4)12>32【解析】(4)244>;13>;则12>32例4. 7的a ,7b ,求a +b 的值【答案】a +b=12【解析】273<<,2;7的整数部分是9;即a =9475<-<,7∴74=3=3b .综上,a +b=12 课堂巩固1. a ,小数部分是 b ,求2a b +的值.【答案】20+2. 设4+a ,b ,求a +b 的值. 【答案】13. 已知:m与n互为相反数,c与d互为倒数,a()2m n a+-的值是_____【答案】-1例5(1的取值范围是______________.【答案】≥;【解析】+1≥0,解得≥.有意义时,≥0,≥0. (2)若,为实数,且|+1|=0,则的值是()A.0B.1C.-1D.-2011【答案】C;【解析】+1=0,-1=0,解得=-1;=1.=-1. (3)已知9y=,求()264xy-的算术平方根.【答案】1课堂巩固1.已知()280x-+=,则xy=【答案】-322. 已知2y x=,则=y xxx1-x x1-a ax y x2013xy⎛⎫⎪⎝⎭x y x y2013xy⎛⎫⎪⎝⎭【答案】163.83b -互为相反数,求()2ab 的值. 【答案】164例6 按要求填空 (1)填表(2)根据你发现的规律填空:;.61.64,=则=x 【答案】【总结】被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位课堂同步 1已知,,则= .【答案】578.9; 【解析】解:∵,∴=578.9.故答案为:578.9.2. 2.28422.84≈≈.填空:(1≈ ;(20.02284,=则x ≈【答案】(1)0.2284,228.4 (2)0.0005217 【点睛】被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..考点二、平方根 知识点讲解定义:如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0. 补充:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 平方根的性质典型例题例1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.=5,所以本说法正确;B.=±1,所以l 是l 的一个平方根说法正确; C.=±4,所以本说法错误;250=25= 2.5=0.25=2x a =x a a a a 0)a ≥a 0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20aa =≥()24-D.因为=0=0,所以本说法正确;课堂巩固1.判断下列各题正误,并将错误改正:(1)没有平方根.( ) (2.( ) (3)的平方根是.( ) (4)是的算术平方根.() 【答案】√ ;×; √;×,【点睛】被开方数都是非负数2、填空:(1)是的负平方根. (2表示 的算术平方根,. (3的算术平方根为 .(4,则 ,若,则 . 【答案】(1)16;(2)(3) (4) 9;±3例2 下列各数有平方根的是( )()3.1A - .B - 2.1C m - 2.D a【答案】D课堂巩固判断下列各数是否有平方根,若有,求其平方根,若没有,请说明理由 (1)()23- (2)24- (3)625 (4)()21a -+ (5)m【答案】9-4=±21()10-110±25--4254-=3=x =3=x =11;16413例3 求下列各数的平方根 (1)0.81 (2)916 (3)121 (4)164(5)49 (6)0.25 【答案】(1)0.9±;(2)34±;(3)11±;(4)18±;(5)±7;(6)±0.5.【点睛】一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.课堂巩固1 求下列各数的平方根 (1)81;(2)0.0009;(3)259;(4)7; (5)100; (6)0; (7)925; (8)169.【答案】(1)9±;(2)0.03±;(3)53±;(4);(5)10±;(6)0;(7)35±;(8)13±.2.求下列各数的平方根、算术平方根,并用式子表示出来.(1)|225|-; (2)4121; (3; (4.【答案】(1)15=±15=;(2)2,11=±211=.(3)0.2=±0.2=;(4)==.3.求下列各式的值:(1 ; (2 ;(3 (4 【答案】(1)74±;(2)6;(3)-0.5;(4)53例4求下列各式中的x 的值.(1)2(-1)16x =; (2)()31-3-255x =. (3)()318x -= (4)()242289x +=【答案】(1)15=x ,23x =-; (2)2x =-.(3)3x =;(4)1 6.5x =,210.5x =-.【详解】解:(1)2(-1)16x = -14x =± 15=x ,23x =-;(2)()31-3-255x =. ()3-3-125x = -3-5x = 2x =-. (3)()318x -= 12x -= 3x =; (4)()242289x += ()2272.25+=x28.5x +=±1 6.5x =,210.5x =-.课堂巩固求下列各式中x 的值:(1)25(x -1)2=49 (2) (x +2)2-36=0;(3)2(1)7290x --= (4)16x 2=25(5)(x -3)2=4 (6)()232x + =16. (7)2272x =; (8)2490x -=.(9)24(2)16x += (10)25x 2﹣36=0.【答案】(1)125x =或25x =-;(2)14x =,28x =-;(3)x 1=28,x 2=-26.(4)54=±x ;(5)x =5或1.(6)x=23或x=﹣2.(7)6x =±;(8)32x =±.(9)x=0或x=-4(10)x =±65. 【详解】(1)解:25(x -1)2=49 即:249(1)25x -= ∴227(1)5x ⎛⎫-= ⎪⎝⎭∴715x -=± 解得:125x =或25x =-. (2)解:∵2(2)360x +-=,∴26x +=±,∴14x =,28x =-;(3)由题意可知:x-1=±27,∴x 1=28或x 2=-26 (4)解:因为:16x 2=25,所以:22516=x ,所以:54=±x ; (5)因为:2(3)4x -=,则32x -=或32x -=-,故x =5或1.(6)解:因为()23x 2+=16,开方得3x+2=4或3x+2=﹣4,解得:x=23或x=﹣2. (7)解: 2272x =,系数化为1,得236x =.开平方得6x =±. (8)2490x -=,移项,得249x =.系数化为1,得294x =.开平方,得32x =±. (9)()24216x += (x+2)2=4 x+2=±2 解得x=0或x=-4. (10)整理得,x 2=3625,∴x =±65.故答案为x =±65.例5已知2a -1的平方根是±3,3a +b -1的平方根是±4,求a +2b 的平方根. 【答案】3±【详解】解:∵2a -1的平方根是±3,3a +b -1的平方根是±4,∴()()22213931416a ab ⎧-=±=⎪⎨+-=±=⎪⎩解得:52a b =⎧⎨=⎩∴3==±即a +2b 的平方根为:3±.1.若5a+1和a ﹣19是数m 的平方根.求a 和m 的值.【答案】a=3,m=256.【详解】解:根据题意得:(5a+1)+(a ﹣19)=0,解得:a=3,则m=(5a+1)2=162=256.2.如果一个正数x 的平方根是a +6和2a ﹣15,(1)求a 的值?(2)求正数x =?【答案】(1)3;(2)81【详解】(1)∵一个正数的平方根有两个,且互为相反数,∴6(215)0a a ++-=,解得3a = ;(2)当3a =时,69a +=,∴2981x == .3.已知正实数x 的平方根是a 和a +b .(1)当b =6时,求a ;(2)若a 2x +(a +b)2x =6,求x 的值.【答案】(1)a=-3;(2)x =【详解】解:(1)∵正实数x 的平方根是a 和a +b ,0a a b ∴++=,6b =,260a ∴+=,3a ∴=-;(2)∵正实数x 的平方根是a 和a +b ,2()a b x ∴+=,2a x =,22()6a x a b x ++=,226x x ∴+=,23x ∴=,0x ,x ∴=.4.一个正数x 的两个不同的平方根分别是21a -和 2.a -+(1)求a 和x 的值;(2)化简23a a x -+【答案】(1)-1;9 (2)8-+【详解】(1)根据题意知,()()2120a a -+-+=解得1a =-,所以-a+2=3,可得9x =,故答案为:-1;9;(2)把1a =-,9x =代入23a a x ++,()21319=--⨯-+,268=-+=-+8-+一、单选题1.9的算术平方根是( )A .3B .3-C .3±D .81 【答案】A2.下列计算正确的是( )A 3=±B .239-=C .|5|5-=D .()328-= 【答案】C【详解】解:A 3=,故本项错误;B 、239-=-,故本项错误;C 、|5|5-=,故本项正确;D 、()328-=-,故本项错误;3,则x 等于( )A .1040.4B .10.404C .104.04D .1.0404 【答案】C4.下列说法不正确的是( )A .—2是4的一个平方根B .立方根等于它本身的数只有1和0C .平方根等于它本身的数只有0D .平方等于它本身的数只有0和1 【答案】B【详解】解:A 、 4的一个平方根有±2,故—2是4的一个平方根,故A 正确;B 、立方根等于它本身的数有±1和0,故B 选项的说法不正确;C 、平方根等于本身的数只有0,故C 正确;D 、平方等于它本身的数只有0和1,故D 正确;5.如果一个实数的算术平方根与它的立方根相等,则这个数是( )A .0B .正整数C .0和1D .1 【答案】C6.下列五个命题:①只有正数才有平方根;②−2是4的平方根;③53的平方根;⑤(−2)2的平方根是−2;其中正确的命题是( )A .①②③B .③④⑤C .③④D .②④ 【答案】D【详解】解:①、由于0有平方根,故此选项错误;①、-2是4的一个平方根,此选项正确;①、5①3的平方根,此选项正确; ①(-2)2的平方根是±2,此选项错误.故正确的命题是①①.7.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是±1C 5=±D .2是4的平方根 【答案】D【详解】A 、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B 、1的立方根是1,错误;C 5=,错误;D 、2是4的平方根,正确; 8.下列各式中,正确的是( )A =﹣2B 3C 3D .±3 【答案】D9( ) A .±12 B .±14 C .14 D .12【答案】A10.若x 使(x ﹣1)2=4成立,则x 的值是( )A .3B .﹣1C .3或﹣1D .±2【答案】C【解析】∵①x-1①2=4成立,∴x-1=±2①解得:x 1=3①x 2=-1①二、填空题11()230y -=,则x y +=______.【答案】1()230y -=()20,30y =-=∴2,3x y =-=∴231x y +=-+=故答案为1.12 1.732, 5.477≈≈≈______.【答案】0.5477【详解】解:30 5.477≈,0.5477≈≈故答案为:0.5477.13①15.906①__________.【答案】503.6【详解】解故答案为503.6① 14.如果a +3和2a ﹣6是一个数的平方根,这个数为_____.【答案】16或144【详解】解:根据题意得:a +3+2a ﹣6=0,或a +3=2a ﹣6,移项、合并同类项得:3a =3或﹣a =﹣9,解得:a =1或a =9,则这个数为(1+3)2=16或(9+3)2=144, 故答案为:16或144.15.若1- 2a 与3a -4是同一个数的平方根,则a 的值为_____.【答案】3或1 .【详解】解: 依题意可知:12(34)0a a 或1234a a , 解得:3a =或1a =.故答案为: 3或1 .16.已知2x 2+3=35,则x =_____.【答案】±4.【详解】∵22335x +=,∴2232x =,则216x =,解得:x =±4.故答案为:±4.三、解答题17z 是64的方根,求x y z -+的平方根【答案】【详解】+ ,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是18.探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x= ;y= ;(2)从表格中探究a 数位的规律,并利用这个规律解决下面两个问题: ≈3.16≈;②已知=180,则a= ;(3 2.289≈0.2289=,则b= .【答案】(1)0.1,10;(2)31.6,32400;(3)0.012.【详解】(1)x=0.1,y=10,故答案为:0.1,10;(2,② 3.24=1.8,∴a=32400,故答案为:31.6,32400;(4 2.289≈,∴b=0.012,故答案为:0.012.19.已知2a -1的平方根是±3,3a +b -1的平方根是±4,求a +2b 的平方根.【答案】3±【详解】解:∵2a -1的平方根是±3,3a +b -1的平方根是±4,∴()()22213931416a ab ⎧-=±=⎪⎨+-=±=⎪⎩ 解得:52a b =⎧⎨=⎩∴3==±即a +2b 的平方根为:3±. 20.已知x ﹣2和y ﹣2互为相反数,求x +y 的平方根.【答案】±2【详解】解:∵x ﹣2和y ﹣2互为相反数,∴x ﹣2+y ﹣2=0,∴x +y =4,4的平方根是±2.故x +y 的平方根是±2.21.计算:(1)2|2|(3)-+-(2)()22125x -=【答案】(1)9;(2)3x =或2x =-【详解】(1)2|2|(3)2929-+--=+-=;(2)∵()22125x -=,∴215x -=±,∴215x -=或215x -=-, ∴3x =或2x =-.22.阅读下列解答过程,在横线上填入恰当内容. 2(1)4x -=∵2(1)4x -=(1) 12x ∴-=(2)3x =(3)上述过程中有没有错误?若有,错在步骤__________(填序号) 原因是____________________________________请写出正确的解答过程.【答案】(2),正数的平方根有两个,它们互为相反数 ,解答过程见解析【详解】∵一个正数有两个平方根,它们互为相反数,∴上述解答过程有错误,步骤(2)出现了错误;故答案为:(2),正数的平方根有两个,它们互为相反数 ,正确的解答过程如下:∵2(1)4x -=,∴12x -=±,∴x=3或x=-1.。

初一数学重要知识总结平方根和立方根的计算规则整理

初一数学重要知识总结平方根和立方根的计算规则整理

初一数学重要知识总结平方根和立方根的计算规则整理初一数学重要知识总结-平方根和立方根的计算规则整理在初一数学学习过程中,平方根和立方根是非常重要的概念和计算方法。

它们在解方程、计算几何图形的面积和体积等许多数学问题中都扮演着重要角色。

本文将对平方根和立方根的计算规则进行整理,帮助同学们更好地掌握这些知识。

一、平方根的计算规则平方根是一个数的平方等于这个数的算术平方根,表示为√a。

在计算平方根时,有以下几个基本规则:1. 平方根的基本概念对于非负实数a和非负实数x,如果x²=a,则x称为a的平方根。

2. 平方根的性质- 非负实数a的平方根是非负的。

- 0的平方根是0。

- 正数的平方根有两个,一个正数和一个负数,但通常我们只考虑正数的平方根。

3. 平方根的计算方法平方根的计算可以通过手算或使用计算器进行。

对于手算,可以采用试探的方法,逐步逼近平方根的值。

4. 常见整数的平方根下表是一些常见整数的平方根值。

通过记忆这些值可以在计算中更方便地使用。

整数平方根1 12 1.4143 1.7324 25 2.236二、立方根的计算规则立方根是一个数的立方等于这个数的算术立方根,表示为³√a。

在计算立方根时,有以下几个基本规则:1. 立方根的基本概念对于实数a和实数x,如果x³=a,则x称为a的立方根。

2. 立方根的性质- 实数a的立方根可能是正数、负数或零。

- 零的立方根是0。

- 完全立方数(即一个数的立方)的立方根是一个整数。

3. 立方根的计算方法立方根的计算也可以通过手算或使用计算器进行。

同样,对于手算,可以采用试探的方法或使用近似解法来计算。

4. 常见整数的立方根下表是一些常见整数的立方根值。

整数立方根1 12 1.2593 1.4424 1.5875 1.710三、平方根和立方根的应用举例1. 计算几何图形的边长在计算几何图形的边长时,如果面积或体积已知,可以通过平方根和立方根来计算边长。

平方根和立方根

平方根和立方根

七年级数学下册实数--平方根【知识点总结】1.乘方:“n a ”.乘方的结果叫做幂,a 叫做底数,n 叫做指数,读作a 的n 次方或a 的n 次幂.2.平方:“2a ”,读作a 的平方或a 的二次方.3.平方的性质:任何数的平方都是;算术平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,(x>0)那么x 叫做a 的算术平方根.则a x =算术平方根性质:(1)非负性:(2)个数性质:的算术平方根据都只有一个;(3)还原性质:当0≥a 时,2)(a =,即非负数算术平方根的平方等于该非负数完全平方数:能够完全开方开的尽的数。

如1,4,9,16,...平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,那么x 叫做a 的平方根.则=x 开平方:求一个数...a 的平方根的运算.......叫做开平方.即求a ±的运算叫开平方. 表示方法:一个正数a 的平方根表示为a ±;若x 2=a (a >0)则x=a ±。

平方根的性质:(1)个数性质:(2)还原性质:(由定义得出)当a ≥0时(a ±)2=,即:非负数的平方根的平方等于该数【经典例题】【例1】计算:12=;22=;32=;42=;52=;62=;72=;82=;92=;112=;122=;132=;142=;152=;162=;172=;182=;192=;2≈;3≈;5≈;6≈;7≈;10≈【例2】求下列各式的值:(1)144(2)-36121(3)±00001.(4)214116+ 【例3】判断下列语句是否正确,正确的打“√”,错误的画“×”,并将错误改正。

(1)7是()-72的算术平方根;()(2)-25的平方根是±5;() (3)36等于±6;()(4)16的平方根是±2;()(5)6是()-62的平方根;()(6)10是10的一个平方根;()(7)正数的平方比它的算术平方根大。

七年级数学下册平方根、立方根总结

七年级数学下册平方根、立方根总结

七年级数学下册平方根、立方根总结--------------------------------------------------------------------------作者: _____________简易平方根的运算1(1)利用平方根的乘法运算法则:若a 、b 为正数,则 a ⨯b =ab 去计算两个正平方根的乘积。

(2)利用平方根的除法运算法则:ba =b a 或a ÷b =b a ÷ (a b ,0≥>0)去计算两个正平方根相除的商。

2例1.化简下列各数:(1)(5)2 (2)25 (3)2)5(- (4)(5-)2解:【答:(1) 5 (2) 5 (3) 5 (4)-5】 例2.化简下列各数: (1)8 (2)24 (3)75 (4)84 (5)200 解:【答:(1) 22 (2) 26 (3) 53 (4) 221 (5)102】 例3.化简下列各数: (1)95 (2)32 (3)124 (4)185 (5)322 解: 【答:(1) 35 (2) 36 (3) 33 (4) 610 (5) 362】 例4.求下列各式的积并化简: (1)133⨯ (2)326⨯ (3)287⨯ (4)3152⨯ 解: 【答:(1) 39 (2) 2 (3) 27 (4) 1530】例5.求下列各式的商并化简: (1)2332÷ (2)281÷ (3)3216÷ (4)5752÷ 解: 【答:(1) 32 (2) 41 (3) 26 (4) 714】3 1.化简下列各数: (1)(-3)2 (2)2)3(- (3)(3)22.化简下列各数: (1)12 (2)32 (3)54 (4)90 (5)3633.化简下列各数: (1)163 (2)59 (3)125 (4)203 (5)5334.求下列各式的积并化简: (1)205⨯ (2)1437⨯ (3)9320⨯ (4)335611⨯5.求下列各式的商并化简: (1)3127÷ (2)3151÷ (3)528÷ (4)65320÷4分 母 有 理 化如:计算:23÷时,先写成23,再把分子,分母都乘以2,化去分母中的根号,得:26222323=⋅⋅=,这样就完成了除法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的取值范围是

。若 3x-6 总有平方根,则 x
2
例 3:若 a 4 b 9 0,求 b 的平方根 a
基础过关
1、判断下面说法是否正确: (1)0 的平方根是 0; ( (2)1 的平方根是 1; ( (3) –1 的平方根是– 1; ( (4)(–1)2 的平方根是– 1.( (5)-9 的平方根是-3; ( (6)49 的平方根是 7 ; (
个性化教学辅导方案
教学 内容 教学 目标
重点 难点
平方根
1. 解平方根和算术平方根的概念,了解平方与开平方的关系。 2、学会平方根、算术平方根的表示法和平方根、算术平方根,并运用以上知识解决实际问题。 平方根的概念; 平方根的概念和平方根的表示方法;
知识梳理
知识点一 算术平方根 例 1:一张正方形桌面的面积为 1.44m2,边长是多少 m?
就是说,如果 x2 = a (a≥0),那么 x 就叫做 a 的平方根.记作 a
求一个数 a 的平方根的运算,叫做开平方。
例 1:求下列各数的平方根:
(1)81
(2) 4 (3)100 25
(4)0.49
总结:一个正数 a 的正的平方根,用符号 2 a 表示,一个正数 a 的负的平方根,用符号 2 a 表示。这两个平方根合在起来可以记作 2 a 。根指数是 2 时通常将这个 2 省略不写,如 2 a 记作 a 。 例 2:正数的平方根有什么特点?0 的平方根是多少?负数有平方根吗?
例 1:求下列各数的算术平方根。
(1) 100
(2) 9 16
(3) 0.25
(4)3
例 2:求下列各数的值。
(1) 25
(2平方根
1
例:因为 32 = 9 , (3)2 = 9, 所以一个数的平方等于 9,这个数是 3 或-3。
概念:一般地,如果一个数的平方等于 a ,这个数就叫做 a 的平方根(或二次方根).
(A) 2 (B) x (x 0) (C) 3 (D) 0
4 、若使 a 1 有意义,则 a 的取值范围是 (
)
(A)一切有理数 (B) a ≠-1 (C) a ≤-1 (D) a ≥-1
5、一个数的平方等于它本身,这个数是
;一个数的平方根等于它本身,这个数是

6、若 4a+1 的平方根是±5,则 a=
总结:一个正数有两个平方根,它它们互为相反数; 0 的平方根是 0; 一个负数没有平方根;
注意:因为负数没有平方根,所以 a 中的被开方数 a≥0,当 a <0 时, a 没有意义.
例 1:下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。
-64、
0,
42 ,
例 2:若 3a+1 没有算术平方根,则 a 的取值范围是
) )
) ) ) )
(7) (2)2 的平方根是±2 ;(

(8)-1 是 1 的平方根; ( ) (9)7 的平方根是±49. ( )
(10)若 x2 = 16 ,则 X = 4 (

2、下列各数没有平方根的(

(A) 64 (B)(–2 )3 (C) 0 (D) (–3 )4
3、下列各式没有意义的是 ( )
6、 25 的算术平方根是________.
二、解答题:
7、求满足下列各式的非负数 x 的值:
(1)169x2=100
(2)x2-3=0
4
8、求下列各式的值:
(1) - (0.1)2 ; (2) 25 + 36 ; (3)
0.09 + 1 0.36 5
9、若 2a2 8 b 1 0 ,求 a、b 的值
本节课知识传授完成情况:完全能接受□ 部分能接受□ 不能接受□

学生的接受程度: 很积极□ 比较积极□ 一般□ 不积极□


学生上次的作业完成情况:数量 % 完成质量:优□ 良□ 中□

下节课的教学内容:
备注
核查时 间
教研组长核查
教学主任核查
5
分析:这个问题的本质,即求平方等于 1.44 的数是什么?也就是知道某个数的平 方,如何去求这个数呢?


概念:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 叫做 a 的 过 算术平方根,a 的算术平方根记作 a ,读作“根号 a”,a 叫作被开方数。 程 规定:0 的算术平方根是 0.

3
7、若 x 2 =2,求 2x+5 的算术平方根.
8、已知 2a-1 的平方根是±3,3a+b-1 的平方根是±4,求 a 和 b 的值
9、有一块正方形玻璃重 6.75 千克,已知此种玻璃板每平方厘米重 1.2 克,求这块玻璃板的边
长.
一、填空题 1、36 的算术平方根是______,36 的算术平方根是_____.
2、如果 a3=3,那么 a=______. 如果 a =3,那么 a=_______.
3、一个正方体的表面积是 78,则这个正方体的棱长是_______. 4、算术平方根等于它本身的数是_______.
5、 (6)2 =_______, - (7)2 =_______.± 52 =______, a2 =________.
相关文档
最新文档