人教版七年级下册数学6.1平方根练习题

合集下载

(完整版)人教版七年级数学下6.1《平方根》同步练习试题及答案(可编辑修改word版)

(完整版)人教版七年级数学下6.1《平方根》同步练习试题及答案(可编辑修改word版)

1.A16一、选择题人教版七年级数学下 6.1《平方根》同步练习1. 下列说法正确的是( )A .25 的平方根是B . - 22 的算术平方根是 25 25C .8 的立方根是D .6 是 36 的平方根 2. 如果一个实数的平方根与它的立方根相等,则这个数是( )A .0B .正实数C .0 和 1D .1 3.(﹣3)2 的平方根是( )A .3B .﹣3C .±3D .94.若 a 2=25,|b|=3,则 a+b 的值是( )A .﹣8B .±8C .±2D .±8 或±25.下列说法不正确的是( )A . 的平方根是B .﹣9 是 81 的一个平方根C .0.2 的算术平方根是 0.04D .﹣27 的立方根是﹣3 6.16 的算术平方根和 25 的平方根的和是( )A .9B .﹣1C .9 或﹣1D .﹣9 或 1二、填空题7. 的算术平方根是; 8. 的值等于,2 的平方根为 . 9. 若 x ,y 为实数,且+|y+2|=0,则 xy 的值为 .10.下列各数:0,﹣4,(﹣3)2,﹣32,﹣(﹣2),有平方根的数有 个.11. 如果一个数的平方根是(﹣a+3)和(2a ﹣15),则这个数为 .12. 已知一个正数的平方根是 3x ﹣2 和 5x+6,则这个数是. 三、解答题13.解方程 4(x ﹣1)2=914.2a ﹣3 与 5﹣a 是同一个正数 x 的平方根,求 x 的值.15.已知 2a ﹣1 的平方根是±3,3a+b ﹣1 的算术平方根是 4,求 a+2b 的值.参考答案试题分析:一个正数的平方根有两个,它们互为相反数;负数没有平方根;一个正数有一25个正的立方根,一个负数有一个负的立方根.则25 的平方根是±5;的平方根是365± ;8 的立方根是2;-=-4,则-没有平方根.62.A【解析】试题分析:根据立方根和平方根的性质可知,只有0 的立方根和它的平方根相等,解决问题.解:0 的立方根和它的平方根相等都是0;1 的立方根是1,平方根是±1,∴一个实数的平方根与它的立方根相等,则这个数是0.故选A.3.C【解析】试题分析:首先根据平方的定义求出(﹣3)2,然后利用平方根的定义即可求出结果.解:∵(﹣3)2=9,而9 的平方根是±3,∴(﹣3)2的平方根是±3.故选:C.4.D【解析】试题分析:根据平方根的定义可以求出a,再利用绝对值的意义可以求出b,最后即可求出a+b 的值.解:∵a2=25,|b|=3∴a=±5,b=±3,则a+b 的值是±8 或±2.故选D.5.C【解析】试题分析:根据平方根的意义,可判断A、B,根据算术平方根的意义.可判断C,根据立方根的意义,可判断D.解:A 、,故A 选项正确;B、=﹣9,故B 选项正确;C、=0.2,故C 选项错误;D、=﹣3,故D 选项正确;故选:C.【解析】16 【解析】试题分析:利用算术平方根及平方根定义求出值,进而确定出之和即可. 解:根据题意得:16 的算术平方根为 4;25 的平方根为 5 或﹣5,则 16 的算术平方根和 25 的平方根的和是 9 或﹣1,故选 C7.2【解析】试题分析: =4,本题实际上就是求 4 的算术平方根.8.2;±.【解析】试题分析:根据一个正数有两个平方根,它们互为相反数,其中正的平方根叫做算术平方根,即可得到结果.解:∵22=4,∴4 的算术平方根是 2,即=2.∵正数由两个平方根,∴2 的平方根是±. 故答案为:2;±. 9.﹣2【解析】试题分析:首先根据非负数的性质可求出 x 、y 的值,进而可求出 xy 的值. 解:由题意,得:x ﹣1=0,y+2=0;即 x=1,y=﹣2;因此 xy=1×(﹣2)=﹣2,故答案为:﹣2.10.3.【解析】试题分析:先求得各数的值,然后根据正数有两个平方根,0 的平方根是 0,负数没有平方根解答即可.解:(﹣3)2=9;﹣32=﹣9;﹣(﹣2)=2∵正数和零有平方根,∴有平方根的是:0,(﹣3)2,﹣(﹣2),共 3个.故答案为:3.11.81.试题分析:依据正数的两个平方根互为相反数,列方程可求得a 的值,然后可求得这个正数的平方根,最后依据平方根的定义可求得这个正数.解:∵一个数的平方根是(﹣a+3)和(2a﹣15),∴﹣a+3+2a﹣15=0.解得:a=12.∴﹣a+3=﹣12+3=﹣9.∵(﹣9)2=81,∴这个数为81.故答案为:81.12.【解析】试题分析:由于一个非负数的平方根有 2 个,它们互为相反数.依此列出方程求解即可.解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.13.x1= ,x2=﹣【解析】试题分析:直接开平方法必须具备两个条件:(1)方程的左边是一个完全平方式;(2)右边是非负数.将右边看做一个非负已知数,利用数的开方解答.解:把系数化为 1,得(x﹣1)2=开方得 x ﹣1=解得x1=,x2=﹣.14.49【解析】试题分析:根据正数的平方根有 2 个,且互为相反数,求出 a 的值,即可确定出 x 的解得:a=﹣2,值.解:∵2a﹣3 与5﹣a 是同一个正数 x 的平方根,∴2a﹣3+5﹣a=0,解得:a=﹣2,则 x=49.考点:平方根.15.9【解析】试题分析:根据平方根的定义列式求出 a 的值,再根据算术平方根的定义列式求出 b 的值,然后代入代数式进行计算即可得解.解:∵2a﹣1 的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1 的算术平方根是 4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.。

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。

人教版七年级下册6.1平方根同步测试(有答案)

人教版七年级下册6.1平方根同步测试(有答案)

绝密★启用前6.1 平方根班级:姓名:1.下列判断:①0.25的平方根是0.5;②只有正数才有平方根;③-7是-49的平方根;④的平方根是.正确的有()个。

A.1B.2C.3D.42.计算的结果是()A. B. C. D.3.当a2=b2时,下列等式中成立的是()A.a=bB.C.a3=b3 D.4.若和都有意义,则的值是()A. B. C. D.5. 的平方根是()A.3B.±3C.D.±6.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C.x+1 D.21x+7.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-18.1681的平方根是;9的立方根是.9.在下列各数中0,254,21a+,31()3--,2(5)--,222x x++,|1|a-,||1a-,16有平方根的个数是个.10.计算下列各式:(1)719;(2)0.81-0.04;(3)224140-.(4)2(3)1+ (5)1316(6)0 (7)21-1.()20.7- 的平方根是( )A .-0.7 B.±0.7 C.0.7 D.0.49 2.有下列说法中正确的说法的个数是( ) (1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数; (4)无理数都可以用数轴上的点来表示. A.1 B.2 C.3 D.4 3. 已知4b -+()21a - =0,则 ab的平方根是( ) A .±12 B . 12 C .14 D .±144.9的算术平方根是( )A .-3B .3C .±3D .815.若a<0,则aa 22等于( ) A .21 B .21- C .±21 D .0 6.如果a(a >0)的平方根是±m ,那么( ) A .a 2=±mB .a=±m 2C .a =±mD .±a =±m7.若正方形的边长是a,面积为S ,那么( ) A.S 的平方根是a B.a 是S 的算术平方根 C.a=±SD.S=a8.±=9.的平方根是10.若一个正数的两个不同的平方根为2m ﹣6与m+3,则这个正数为 . 11.比较下列各组数的大小:(1)12与14;(2)-5与-7; (3)5与24; (4)2412-与1.5.12.已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.1.(2019·株洲)28⨯=( )A .42B .4C .10D .22 2.(2019·益阳)下列运算正确的是( )A.2)2(2-=-B.6)32(2=C.532=+D.632=⨯3.(2019·常德)下列运算正确的是( )A .3+4=7B .12=32C .2(2)-=-2D .146=2134.(2019·武汉)式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x ≥-1C .x ≥1D .x ≤1参考答案1-5.ABCD 6-7.DC 8.±23,39 9.710.(1)原式=43; (2)原式=0.9-0.2=0.7; (3)原式=81=9. (4)±2 (5)74±(6)0 (7)没有平方根1-5.BBABB 6-7.DB8.答案为:±9.答案为:±2;10.答案为:1611.(1)12<14;(2)-5>-7;(3)5>24;(4)2412>1.5.12.解答:∵2m+2的平方根是±4,3m+n+1的平方根是±5,∴2m+2=16,3m+n+1=25,联立解得,m=7,n=3,∴m+2n=7+2×3=13.1-4.BDDC。

七年级数学下册第六章实数6.1平方根练习卷含解析新版新人教版

七年级数学下册第六章实数6.1平方根练习卷含解析新版新人教版

6.1 平方根一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2 2.|﹣9|的平方根等于()A.±3 B.3 C.±D.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5 4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81 5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.6.(﹣2)2的平方根是.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3 10.化简的结果是()A.﹣4 B.4 C.±4 D.2 11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3 12.的算术平方根是()A.±13 B.13 C.﹣13 D.13.若=1,则﹣(2x﹣3)=.14.若5x﹣19的算术平方根是4,求3x+9的平方根.15.的算术平方根是()A.B.﹣C.D.±16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣17.的算术平方根是()A.2 B.4 C.±2 D.±418.请你观察,思考下列计算过程:,由此猜想=.19.已知=1.8,若=180,则a=.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是.人教新版七年级下学期《6.1 平方根》2020年同步练习卷参考答案与试题解析一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2【分析】原式利用算术平方根,平方根定义计算即可得到结果.【解答】解:=4,4的平方根是±2,故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.|﹣9|的平方根等于()A.±3 B.3 C.±D.【分析】根据平方根的定义解答即可.【解答】解:|﹣9|的平方根等于±3,故选:A.【点评】此题考查平方根的问题,关键是根据一个正数的平方根有两个.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a ﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为 4 .【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.6.(﹣2)2的平方根是±2 .【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.【分析】利用正数的两平方根和为0,进而求出m的值,即可得出答案.【解答】解:∵一正数a的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得:m=﹣2,则2m﹣3=﹣7,解得a=49.【点评】此题主要考查了平方根的定义,得出m的值是解题关键.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.【分析】根据题意可求出2x﹣y及3x+y的值,从而可得出x﹣y的值,继而可求出x﹣y的平方根.【解答】解:由题意得:2x﹣y=9,3x+y=16,解得:x=5,y=1,∴x﹣y=4,∴x﹣y的平方根为±=±2.【点评】本题主要考查了平方根的知识,难度不大,解题的关键是求x、y的值.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3【分析】先将原数化简,然后根据平方根的性质即可求出答案.【解答】解:∵=3,∴3的平方根是±,故选:B.【点评】本题考查平方根的概念,解题的关键是将原数进行化简,属于基础题型.10.化简的结果是()A.﹣4 B.4 C.±4 D.2【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3【分析】直接化简数据,再利用算术平方根的定义得出答案.【解答】解:(﹣3)2=9,则9算术平方根是:3.故选:B.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题关键.12.的算术平方根是()A.±13 B.13 C.﹣13 D.【分析】本身是一个算术平方根的运算,表示13,求的算术平方根即为求13的算术平方根.【解答】解:∵=13∴的算术平方根即为13的算术平方根结果为故选:D.【点评】本题考查的是算术平方根的运算,关键是要看清本题中涉及两次算术平方根的运算.13.若=1,则﹣(2x﹣3)= 3 .【分析】直接利用算术平方根的定义得出x的值,进而得出答案.【解答】解:∵=1,∴x+1=1,解得:x=0,则﹣(2x﹣3)=3.故答案为:3.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.14.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.15.的算术平方根是()A.B.﹣C.D.±【分析】直接利用算术平方根的定义得出答案.【解答】解:=的算术平方根是:.故选:C.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣【分析】观察所给数字可知:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是=;第四个数字是﹣=﹣;继而即可总结规律,求出第2015个数.【解答】解:观察可以发现:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是==;第四个数字是﹣=﹣;…;可得第2015个数即是﹣,故选:D.【点评】本题主要考查了数字变化,算式平方根的性质,数列规律问题,找出一般规律是解题的关键.17.的算术平方根是()A.2 B.4 C.±2 D.±4【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.18.请你观察,思考下列计算过程:,由此猜想=111 111 111 .【分析】观察给出的计算过程,可以看出被开方数中间每增加两位数结果就增加一个1,因为12345678987654321比121多出7个两位数,所以可得结果是111 111 111.【解答】解:∵,∴=111 111 111.故答案为:111 111 111.【点评】本题考查了信息获取能力,先利用已知的计算,认真观察是解决此类问题的关键.19.已知=1.8,若=180,则a=32400 .【分析】根据被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位求解可得.【解答】解:∵=1.8,∴=180,则a=32400,故答案为:32400.【点评】本题主要考查算术平方根,解题的关键是掌握被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为(17,2).【分析】根据规律发现,被开方数是从2开始的偶数列,最后一个数的被开方数是204,所以最大的有理数是被开方数是196的数,然后求出196在这列数的序号,又6个数一组,求出是第几组第几个数,即可确定它的位置.【解答】解:∵2=,∴这列数中最大的数是=14,设196是这列数中的第n个数,则2n=196,解得n=98,观察发现,每6个数一行,即6个数一循环,∴98÷6=16…2,∴是第17组的第2个数.最大的有理数n的位置记为(17,2).故答案为:(17,2).【点评】本题利用算术平方根考查了数字的规律变化问题,求出最大的有理数的序号,并6个数作为一个循环组是解题的关键.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是 2 .【分析】根据算术平方根恒大于等于0,即可确定出最小值.【解答】解:∵≥0,∴+2≥2,即的最小值是2.故答案为:2.【点评】此题考查了非负数的性质.熟练掌握算术平方根的非负数性质是解本题的关键.。

人教版数学七年级下册 6.1《平方根》课时练习(无答案)

人教版数学七年级下册 6.1《平方根》课时练习(无答案)

七年级数学6.1《平方根》课时练习一、选择题:1、下列说法正确的是()A.169的平方根是13B.1.69的平方根是±1.3C.(-13)²的平方根是-13D.-(-13)没有平方根2、81的平方根是()A.9 B.3 C.±9 D.±33、下列说法错误的是()A. 1的平方根是±1B. –1的立方根是–1C.√2是2的算术平方根D. –3是√(−3)2的平方根4、下列说法正确的是( )A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术根5、一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C.√x +1 D.2+16、估算√12的值在( )A.1与2之间B.2与3之间C.3与4之间D.5与6之间7、一个数的算术平方根是a,则比这个数大8数是()A.a+8B.a-4C.a²-8D.a²+88、若2m-4与3m-1是同一个正数的平方根,则m为( )A.-3B.1C.-1D.-3或1二、填空题:9、一个数的平方根是±3,则这个数的平方是______.10、已知a 为实数,那么√−a 2等于 .11、0的平方根是______; 25111的平方根是______;0.01算术平方根是______.12、一个正方形的面积是6平方厘米,则这个正方形的边长等于__________厘米.13、若2m -4与3m -1是同一个数的平方根,则m 为 .14、已知实数a ,b ,c 满足b-4=√−(a 2c 的平方根等于它本身,则a-√b −c 的值为 .三、解答题:15、求下列各式的值:(1)√25 +3√8 -√2(2)49.0381003⨯-⨯16、x 为何值时,下列各式有意义?(1)√2x (2) √−x (3)√x 2 (4) √2x −117、实数x、y在数轴上的位置如图所示,请化简:∣x∣-√x2-√y218、国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.。

初中数学同步训练必刷题(人教版七年级下册 6

初中数学同步训练必刷题(人教版七年级下册 6

初中数学同步训练必刷题(人教版七年级下册 6.1 平方根)一、单选题(每题3分,共30分)1.(2023八上·榆林期末)64的平方根是()A.±8B.±4C.±2D.8【答案】A【知识点】平方根【解析】【解答】解:64的平方根为±8.故答案为:A【分析】根据正数的平方根有两个,它们互为相反数,可得到64的平方根.2.(2022八上·兴平期中)计算:√16=()A.-8B.8C.-4D.4【答案】D【知识点】算术平方根【解析】【解答】解:√16=4.故答案为:D【分析】利用正数的算术平方根是正数,可得答案.3.(2022七上·余杭月考)若x的平方等于3,则x等于()A.√3B.9C.√3或−√3D.9或-9【答案】C【知识点】平方根【解析】【解答】解:∵x的平方等于3即x2=3∴x=±√3.故答案为:C【分析】利用正数的平方根有两个,它们互为相反数,可得到x的值.4.(2022八上·乐山期中)下列说法中正确的是()A.-4的平方根为±2B.-4的算术平方根为-2C.0的平方根与算术平方根都是0D.(−4)2的平方根为-4【答案】C【知识点】平方根;算术平方根【解析】【解答】解:A、-4没有平方根,故A不符合题意;B、-4没有算术平方根,故B不符合题意;C、0的平方根与算术平方根都是0,故C符合题意;D、(-4)2的平方根为±4,故D不符合题意;故答案为:C【分析】利用负数没有平方根和算术平方根,可对A,B作出判断;利用0的平方根和算术平方根都是0,可对C作出判断;利用正数的平方根有两个,它们互为相反数,可对D作出判断.5.(2022七上·杭州期中)√116的算术平方根是()A.12B.14C.18D.±12【答案】A【知识点】算术平方根【解析】【解答】解:∵√116=14,∴14的算术平方根为12,故答案为:A.【分析】先求出√116=14,再求14的算术平方根即可.6.√16的平方根是()A.2B.﹣2C.±2D.4【答案】C【知识点】平方根;算术平方根【解析】【解答】解:由题意可得√16=4因为(±2)2=4所以4的平方根为±2即√16的平方根为±2.故答案为:C.【分析】要求√16的平方根就是求4的平方根,即可解答。

七年级数学下6.1平方根 每日小测

七年级数学下6.1平方根 每日小测

日期: 姓名: 成绩: 日期: 姓名: 成绩:1.填空 ①∵(±4)2=16,∴16的平方根是 ②∵( )2= 0.01, ∴0.01的平方根是 ③∵224525⎛⎫±=⎪⎝⎭,∴ . ④∵02=0,∴0的平方根是 . ⑤∵在我们所学的数中,没有一个数的平方等于-4,∴-4的平方根 .(填存在不存在)2.判断下列说法是否正确:(1) 5是25的算术平方根 ( ) (2) 65是3625的一个平方根 ( )(3)(-4)2的平方根是-4 ( ) (4)81的平方根是81=±9 ( )(5)4. ( ) 3. =36- =±8144. 若一个数有两个平方根,则这个 数是_____5. 64的平方根是____, 7是____的一个平方根6.求下列各数的平方根: (1)121 (2)9711.填空 ①∵(±4)2=16,∴16的平方根是 ②∵( )2= 0.01, ∴0.01的平方根是 ③∵224525⎛⎫±=⎪⎝⎭,∴ . ④∵02=0,∴0的平方根是 . ⑤∵在我们所学的数中,没有一个数的平方等于-4,∴-4的平方根 .(填存在不存在)2.判断下列说法是否正确:(1) 5是25的算术平方根 ( ) (2)65是3625的一个平方根 ( ) (3)(-4)2的平方根是-4 ( ) (4)81的平方根是81=±9 ( ) (5)的平方根是4. ( )3.=36- =±8144. 若一个数有两个平方根,则这个 数是_____5. 64的平方根是____, 7是____的一个平方根6.求下列各数的平方根: (1)121 (2)971。

人教版数学七年级下册6.1平方根算术平方根 同步练习

人教版数学七年级下册6.1平方根算术平方根 同步练习

6.1 平方根第1课时算术平方根基础训练知识点1 算术平方根的定义1.算术平方根等于它本身的数是_________;_________的算术平方根等于它的相反数.2.(2016·黄冈)错误!未找到引用源。

的算术平方根是_________.3.下列说法正确的是()A.因为62=36,所以6是36的算术平方根B.因为(-6)2=36,所以-6是36的算术平方根C.因为(±6)2=36,所以6和-6都是36的算术平方根D.以上说法都不对4.下列说法正确的是()A.错误!未找到引用源。

表示25的算术平方根B.-错误!未找到引用源。

表示2的算术平方根C.2的算术平方根记作±错误!未找到引用源。

D.2是错误!未找到引用源。

的算术平方根知识点2 求算术平方根5.(2016·杭州)错误!未找到引用源。

=()A.2B.3C.4D.56.设错误!未找到引用源。

=a,则下列结论正确的是()A.a=441B.a=4412C.a=-21D.a=217.已知边长为m的正方形的面积为12,则下列关于m的说法中,错误的是()①m不是有理数;②m是方程m2-12=0的解;③m满足不等式组错误!未找到引用源。

④m是12的算术平方根.A.①②B.①③C.③D.①②④8.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a+1B.a2+1C.错误!未找到引用源。

D.错误!未找到引用源。

+19.已知一个表面积为12 dm2的正方体,则这个正方体的棱长为()A.1 dmB.错误!未找到引用源。

dmC.错误!未找到引用源。

dmD.3 dm知识点3 算术平方根的非负性(错误!未找到引用源。

≥0,a≥0)10.(1)错误!未找到引用源。

中,被开方数a是_________,即a_________0;(2)错误!未找到引用源。

是_________,即错误!未找到引用源。

_________0,即非负数的算术平方根是_________;负数没有算术平方根,即当a_________0时,错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1平方根练习题
一、选择题
1. 若一个数的平方根与它的立方根完全相同.则这个数是( )
A. 1
B. -1
C. 0
D. ±1,0
2. 一个正数的两个平方根分别是2a −1与−a +2,则a 的值为( )
A. 1
B. −1
C. 2
D. −2
3. 若x −3是4的平方根,则x 的值为( )
A. 2
B. ±2
C. 1或5
D. 16
4. 若a 2=4,b 2=9,且ab >0,则a −b 的值为( )
A. ±5
B. ±1
C. 5
D. −1
5. 下列说法中错误的是( )
A. 12是0.25的一个平方根
B. 正数a 的两个平方根的和为0
C. 916的平方根是34
D. 当x ≠0时,−x 2没有平方根
6. 下列说法中,其中不正确的有( ) ①任何数都有算术平方根;②一个数的算术平方根一定是正数;
③a 2的算术平方根是a ;④算术平方根不可能是负数.
A. 0个
B. 1个
C. 2个
D. 3个
7. 若a =√3b -1-√1-3b +6,则ab 的算术平方根是( )
A. 2
B. √2
C. ±√2
D. 4
8. 一个正偶数的算术平方根是a ,那么与这个正偶数相邻的下一个正偶数的算术平方根是
( )
A. a +2
B. a 2+2
C. √a 2+2
D. √a +2
9.若a,b满足(a−1)2+√b−15=0,则a+b的平方根是()
A. ±4
B. ±2
C. 4
D. 2
10.若x,y满足(x+2)2+√y−18=0,则√x+y的平方根是()
A. ±4
B. ±2
C. 4
D. 2
二、填空题
11.若√a的平方根为±3,则a=______ .
12.若一个正数的两个平方根分别是a−5和2a−4,则这个正数为______.
13.若x−2有平方根,则实数x的取值范围是______.
14.已知:m、n为两个连续的整数,且m<√13<n,则mn的平方根=______.
15.64的算术平方根与√81的平方根之和是______ .
16.如果√y−3与(2x−4)2互为相反数,那么2x−y的平方根是____.
17.7的平方根是______.
18.√(−4)2的平方根是______.
19.若m是√16的算术平方根,则m+3= ______ .
20.若√2≈1.414,√20≈4.472,则√2000≈______.
三、解答题
21.已知2a−1的算术平方根是3,3a+b−1的平方根是±4,c是√13的整数部分,求a+
2b−c的平方根.
22.一个正数x的两个不同的平方根分别是2a−1和−a+2.
(1)求a和x的值;
(2)化简:2|a+√2|+|x−2√2|−|3a+x|
23.已知√2a−1=3,3a+b−1的平方根是±4,c是√60的整数部分,求a+2b+c的算
术平方根。

1.C
2.B
3.C
4.B
5.C
6.D
7.B
8 C
9.A
10.B
11.81
12.4
13.x≥2
14.±2√3
15.11或5
16.±1
17.±√7
18.±2
19.5
20.44.72
21.解:由题意得:{2a −1=9
3a +b −1=16, ∴a =5,b =2.
∵9<13<16,
∴3<√13<4.
∴c =3.
∴a +2b −c =6.
∴a +2b −c 的平方根是±√6. 22.解:(1)由题意,得(2a −1)+(−a +2)=0, 解得a =−1.
∴x =(2a −1)2=(−3)2=9;
(2)原式=2|−1+√2|+|9−2√2|−|3×(−1)+9|
=2√2−2+9−2√2−6
=1.
23.解:∵√2a −1=3,
∴2a −1=9,
∴a =5,
∵3a +b −1的平方根是±4,
∴3a +b −1=16,
∴b =2,
∵c 是√60的整数部分,
∴c =7,
∴a +2b +c =5+2×2+7=16, ∴a +2b +c 的算术平方根是4.。

相关文档
最新文档