《平方根》同步练习题(1)及答案

合集下载

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)本文档包含了60道关于平方根的专项练题,每道题后附有答案供参考。

第一部分:基础练题1. 计算下列数的平方根:- 16- 25- 36- 49- 642. 下列数中,哪个数的平方根是8?- 64- 81- 100- 121- 1443. 判断下列等式是否正确:- √9 = 3- √16 = 4- √25 = 6- √36 = 6- √49 = 74. 计算下列数的平方根,并将结果四舍五入到最接近的整数:- 19- 37- 55- 73- 915. 计算下列平方根的值,并将结果保留两位小数:- √20- √32- √45- √58- √72第二部分:复杂练题1. 计算下列数的平方根,并将结果保留三位有效数字:- 1000----2. 判断下列等式是否成立:- (√4)^2 = 4- (√9)^2 = 9- (√16)^2 = 16- (√25)^2 = 25- (√36)^2 = 363. 解方程:√(x-7) = 54. 解方程:2√x = 105. 计算下列表达式的值:- √(64 + 36)- √(100 - 25)- √(144 - 9)- √(81 + 16)- √(121 + 25)以上为平方根的专项练题,答案请参考附后,希望对你的研究有所帮助。

答案:1.- √16 = 4- √25 = 5- √36 = 6- √49 = 7- √64 = 82. 643.- 正确- 正确- 错误(正确答案是5)- 正确- 正确4.- 19 ≈ 4- 37 ≈ 6- 55 ≈ 7- 73 ≈ 9- 91 ≈ 105.- √20 ≈ 4.47- √32 ≈ 5.66- √45 ≈ 6.71- √58 ≈ 7.62 - √72 ≈ 8.49。

平方根3套练习题(有答案)

平方根3套练习题(有答案)

平方根3套练习题(有答案)篇一:八年级数学平方根练习题包含答案第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)2的算术平方根C、11的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7●拓展提高一、选择1?2,则(m?2)2的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)2=0,则yx三、解答题5、若a是(?2)2的平方根,ba+2b的值6、已知ab-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a?1 22 CD12、(08;若b,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:a=(?2)2= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.22??0.4,所以每块瓷砖的边长篇二:七年级下册第6章-平方根习题题精选(含答案)6.1平方根习题题精选______班别______姓名______考号______一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是() 5.(2021?张家界)若+(y+2)2=0,则(x+y)2021等于()6.(2021?泸州)已知实数x、y满足+|y+3|=0,则x+y的值为()8.(2021?新泰市一模)的平方根是()9.(2021?德州一模)|﹣4|的平方根是() 10.(2021?资阳一模)下列说法正确的是()13.(2021?邻水县模拟)16的算术平方根的平方根是()14.(2021?南充)0.49的算术平方根的相反数是() 15.(2021?黄石模拟)算术平方根等于2的数是()的平方根是() 18.下列说法正确的是() 19.下列说法正确的是()20.一个数如果有两个平方根,那么这两个平方根之和是()21.下列说法正确的()(1)9的平方根是±3(2)平方根等于它本身的数是0和1 (3)﹣2是4的平方根(4)的算术平方根是4.22.81的平方根是±9的数学表达式是()23.已知3m﹣1和m﹣7是数p的平方根,则p的值为() 24.如果一个数的平方根是这个数本身,那么这个数是()27.一个正数的平方根是2m+3和m+1,则这个数为() 28.下列说法正确的是() 30.下列说法正确的是()一.填空题(共8小题)1.(2021?本溪)一个数的算术平方根是2,则这个数是.2.(2021?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为 3.(2021?江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=4.(2021?普陀区二模)5.(2021?道里区一模)6.(2021?高港区二模)7.(2021?高淳县二模)如果a、b分别是9的两个平方根,则ab的值为的平方根是的算术平方根是.的平方根是8.(2021?潮安县模拟)如果二.解答题(共12小题) 9.解方程:(1)x﹣与(2x﹣4)互为相反数,那么2x﹣y= _________ .2=0;(2)(x﹣1)=36. 10.解方程:0.25(3x+1)﹣15=0.2211.解方程:196x﹣1=0. 12.解方程:(1)13.解方程:(2x+1)﹣6=0.14.观察下列表格,并完成下列问题(1)求a和b的值;(2)用一句话概括你发现的规律.22=0;(2)(x﹣1)=36.2(1)268.96的平方根是多少?(2)(3)(4)表中与≈ _________ .在哪两个数之间?为什么?最接近的是哪个数?16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值. 17.计算:(1)(2)(3)= _________ ,= _________ ;= _________ ,= _________ .= _________ ;仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值. 19.若 20.己知+(x﹣2)=0,求x﹣y的平方根.,求(x+2)的平方根.26.1平方根习题题精选(参考答案与解析)一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是()5.(2021?张家界)若+(y+2)=0,则(x+y)22021等于()篇三:八年级数学平方根练习题包含平方根检测题◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)的算术平方根C、211的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7◆课下作业●拓展提高一、选择1?2,则(m?2)的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)=0,则y三、解答题25、若a是(?2)的平方根,ba+2b的值 22x26、已知ab-1是400的值●体验1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a2?1CD12、(08;若,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥-2,≥4、D拓展提高:1、C2、D3、04、165、由题意知:a=(?2)= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.222??0.4,所以每块瓷砖的边长。

北师大版八年级上2.2平方根同步练习含答案解析

北师大版八年级上2.2平方根同步练习含答案解析

北师大新版八年级数学上册同步练习:2.2 平方根一、选择题(共18小题)1.16的平方根是()A.4 B.±4 C.8 D.±82.25的算术平方根是()A.5 B.﹣5 C.±5 D.3.4的算术平方根是()A.﹣2 B.2 C.﹣D.4.4的算术平方根是()A.±2 B.2 C.﹣2 D.5.9的平方根是()A.±3 B.±C.3 D.﹣36.下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是37.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根8.(﹣3)2的平方根是()A.3 B.﹣3 C.±3 D.99.a2的算术平方根一定是()A.a B.|a|C.D.﹣a10.数5的算术平方根为()A.B.25 C.±25 D.±11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④12.的算术平方根是()A.﹣2 B.±2 C.D.213.己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm14.9的算术平方根是()A.﹣3 B.±3 C.3 D.15.下列各式正确的是()A.﹣22=4 B.20=0 C.=±2 D.|﹣|=16.的算术平方根是()A.2 B.±2 C.D.±17.8的平方根是()A.4 B.±4 C.2D.18.)的平方根是()A.±3 B.3 C.±9 D.9二、填空题(共12小题)19.81的平方根为.20.4是的算术平方根.21.实数4的平方根是.22.的算术平方根是.23.4的平方根是;4的算术平方根是.24.4的平方根是.25.16的平方根是.26.9的平方根是.27.计算:25的平方根是.28.求9的平方根的值为.29.9的算术平方根是.30.的平方根是.北师大新版八年级数学上册同步练习:2.2 平方根参考答案与试题解析一、选择题(共18小题)1.16的平方根是()A.4 B.±4 C.8 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.25的算术平方根是()A.5 B.﹣5 C.±5 D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵(5)2=25,∴25的算术平方根是5.故选A.【点评】本题考查的是算术平方根的概念,即如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.3.4的算术平方根是()A.﹣2 B.2 C.﹣D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.【点评】本题考查了算术平方根的定义,熟记定义是解题的关键.4.4的算术平方根是()A.±2 B.2 C.﹣2 D.【考点】算术平方根.【分析】根据开方运算,可得一个数的算术平方根.【解答】解:4的算术平方根是2,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.5.9的平方根是()A.±3 B.±C.3 D.﹣3【考点】平方根.【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:A.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.6.下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是3【考点】平方根;相反数;绝对值;倒数.【专题】计算题.【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.【解答】解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D【点评】此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.7.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:±2是4的平方根.故选:A.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.8.(﹣3)2的平方根是()A.3 B.﹣3 C.±3 D.9【考点】平方根;有理数的乘方.【分析】首先根据平方的定义求出(﹣3)2,然后利用平方根的定义即可求出结果.【解答】解:∵(﹣3)2=9,而9的平方根是±3,∴(﹣3)2的平方根是±3.故选:C.【点评】本题考查了平方根的意义,有理数的乘方.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9.a2的算术平方根一定是()A.a B.|a|C.D.﹣a【考点】算术平方根.【分析】根据算术平方根定义,即可解答.【解答】解:=|a|.故选:B.【点评】本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.10.数5的算术平方根为()A.B.25 C.±25 D.±【考点】算术平方根.【分析】根据算术平方根的含义和求法,可得:数5的算术平方根为,据此解答即可.【解答】解:数5的算术平方根为.故选:A.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④【考点】算术平方根;平方根;无理数;不等式的解集.【分析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.【点评】(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.12.的算术平方根是()A.﹣2 B.±2 C.D.2【考点】算术平方根.【分析】首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.【解答】解:∵,2的算术平方根是,∴的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.13.己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【考点】算术平方根.【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.14.9的算术平方根是()A.﹣3 B.±3 C.3 D.【考点】算术平方根.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:9的算术平方根是3.故选:C.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.15.下列各式正确的是()A.﹣22=4 B.20=0 C.=±2 D.|﹣|=【考点】算术平方根;有理数的乘方;实数的性质;零指数幂.【分析】根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.【解答】解:A、﹣22=﹣4,故本选项错误;B、20=1,故本选项错误;C、=2,故本选项错误;D、|﹣|=,故本选项正确.故选D.【点评】本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.16.的算术平方根是()A.2 B.±2 C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.17.8的平方根是()A.4 B.±4 C.2D.【考点】平方根.【分析】直接根据平方根的定义进行解答即可解决问题.【解答】解:∵,∴8的平方根是.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【专题】计算题.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.【点评】本题考查了算术平方根,平方运算是求平方根的关键.二、填空题(共12小题)19.81的平方根为±9.【考点】平方根.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±9.故答案为:±9.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.20.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.21.实数4的平方根是±2.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.的算术平方根是.【考点】算术平方根.【分析】直接根据算术平方根的定义求解即可.【解答】解:∵()2=,∴的算术平方根是,即=.故答案为.【点评】本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.23.4的平方根是±2;4的算术平方根是2.【考点】算术平方根;平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.【点评】此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.24.4的平方根是±2.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.26.9的平方根是±3.【考点】平方根.【专题】计算题.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.27.计算:25的平方根是±5.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,结合(±5)2=25即可得出答案.【解答】解:∵(±5)2=25∴25的平方根±5.故答案为:±5.【点评】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握平方根的定义,注意一个正数的平方根有两个且互为相反数.28.求9的平方根的值为±3.【考点】平方根.【分析】根据平方根的定义解答.【解答】解:∵(±3)2=9,∴9的平方根的值为±3.故答案为:±3.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.29.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.30.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.。

人教版七年级数学下册6.1《平方根(第1课时)算术平方根 》习题含答案

人教版七年级数学下册6.1《平方根(第1课时)算术平方根 》习题含答案

6.1 平方根第1课时算术平方根一、选择题(共10小题)1.9的算术平方根为()A.3 B.C.D.±32.的值等于()A.4 B.﹣4 C.±4 D.±23.如果=5,那么y的值是()A.5 B.﹣5 C.10 D.254.某数的算术平方根等于它本身,那么这个数一定是()A.0 B.1 C.1或0 D.﹣15.一个自然数的算术平方根为a,则下一个自然数的算术平方根是()A.B.C.﹣a+1 D.a2+16.的值等于()A.B.﹣C.±D.7.的算术平方根是()A.±B.C.±D.58.一个矩形的围栏,长是宽的2倍,面积是30m2,则它的宽为()A.m B.2m C.m D.2m 9.若|x|=3,y是4的算术平方根,且|y﹣x|=x﹣y,则x+y的值是()A.5 B.﹣5 C.1 D.﹣110.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对二、填空题(共8小题)11.(﹣9)2算术平方根是.12.的算术平方根是.13.计算:(﹣2)3+=;1﹣=.14.若=2,则x的值为.15.的算术平方根是3,则a=.16.若与互为相反数,则x=,y=.三、解答题(共6小题)17.求下列各式的值:(1);(2);(3);(4);(5).18.求下列各数的算术平方根:121,,1.96,(-10)6.19.已知2a﹣1的算术平方根是3,18﹣b的算术平方根是4,求a+2b的算术平方根.20.小华的书房面积为10.8m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?21.探究发散:(1)填空:①=;②=;③=;④=;⑤=;⑥=.(2)根据计算结果回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.22.根据如表回答下列问题:x16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 x2262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289 (1)275.56的平方根是;(2)=;(3)在哪两个相邻数之间?为什么?参考答案与试题解析一、选择题(共10小题)1.实数9的算术平方根为()A.3 B.C.D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.的值等于()A.4 B.﹣4 C.±4 D.±2【解答】解:=4.故选:A.3.如果=5,那么y的值是()A.5 B.﹣5 C.10 D.25【解答】解:因为=5,所以y=25,故选:D.4.某数的算术平方根等于它本身,那么这个数一定是()A.0 B.1 C.1或0 D.﹣1【解答】解:某数的算术平方根等于它本身,那么这个数一定是1或0.故选:C.5.一个自然数的算术平方根为a,则下一个自然数的算术平方根是()A.B.C.﹣a+1 D.a2+1【解答】解:一个自然数的算术平方根为a,则下一个自然数的算术平方根是,故选:B.6.的值等于()A.B.﹣C.±D.【解答】解:原式==,故选:A.7.的算术平方根是()A.±B.C.±D.5【解答】解:因为=5,所以的算术平方根是,故选:B.8.一个矩形的围栏,长是宽的2倍,面积是30m2,则它的宽为()A.m B.2m C.m D.2m【解答】解:∵一个矩形的围栏,长是宽的2倍,面积是30m2,∴它的宽为:=(m).故选:A.9.若|x|=3,y是4的算术平方根,且|y﹣x|=x﹣y,则x+y的值是()A.5 B.﹣5 C.1 D.﹣1【解答】解:因为|y﹣x|≥0,所以x﹣y≥0,即x≥y.由|x|=3,y是4的算术平方根可知x=3、y=2.则x+y=5,故选:A.10.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.二、填空题(共8小题)11.(﹣9)2的算术平方根是9 .【解答】解:∵(﹣9)2=81,∴(﹣9)2的算术平方根是9,故答案为:912.的算术平方根是.【解答】解:∵=,∴的算术平方根为,故答案为:.13.计算:(﹣2)3+=﹣5 .计算:1﹣=.【解答】解;原式=﹣8+3=﹣5;原式=1﹣=,故答案为:﹣5,14.若=2,则x的值为 5 .【解答】解:由=2,得到x﹣1=4,解得:x=5.故答案为:5.15.的算术平方根是3,则a=80 .【解答】解:∵的算术平方根是3,∴=9,a+1=81a=80,故答案为80.16.若与互为相反数,则x=8 ,y= 2 .【解答】解:∵与互为相反数,∴+=0,所以,x﹣8=0,y﹣2=0,解得x=8,y=2.故答案为:8,2.三、解答题(共6小题)17.求下列各式的值:(1);(2);(3);(4);(5)【解答】解:(1)=7;(2)=;(3)=0.3;(4)=1.2;(5)=0.1.18.求下列各数的算术平方根:121,,1.96,(-10)6.【解答】解:=11、=、=1.4、()6-=1000.1019.已知2a﹣1的算术平方根是3,18﹣b的算术平方根是4,求a+2b的算术平方根.【解答】解:由题意可知:2a﹣1=9,18﹣b=16.解得:a=5,b=2.∴a+2b=5+2×2=9.∴a+2b的算术平方根是3.20.小华的书房面积为10.8 m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?【解答】解:设每块地砖的边长是x m,则有120x2=10.8,即x2=0.09.∵x>0,∴x=0.3.答:每块地砖的边长为0.3 m.21.探究发散:(1)填空:①= 3 ;②=0.5 ;③= 6 ;④=0 ;⑤=;⑥=.(2)根据计算结果回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.【解答】解:(1)①==3;=0.5;==6;④=0;⑤=;⑥=故答案为:3;0.5;6;0;;;(2)不一定等于a,当a<0时,=﹣a;当a≥0时,=a;故不一定等于a;从中可以得到规律:正数和零的平方的算术平方根为其本身,负数的平方的算术平方根为其相反数.22.根据如表回答下列问题:x16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 x2262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289 (1)275.56的平方根是±16.6 ;(2)= 1.68 ;(3)在哪两个相邻数之间?为什么?【解答】解:(1)±=±16.6,(2)=1.68,(3)由表得在16.4与16.5之间;故答案为±16.6,1.68.。

七年级下册平方根练习题及答案64369

七年级下册平方根练习题及答案64369

七年级下册平方根(一)填空1.16的平方根是________.3.49的平方根是____.5.4的平方根是_______7.81的平方根是________. 8.25的算术平方根是_________.9.49的算术平方根是_________.]11.62的平方根是______.12.的算术平方根是________.13.4的算术平方根是________; 9的平方根是________.14.64的算术平方根是________.15.36的平方根是________;的算术平方根是_______.18.4的平方根是____, 4的算术平方根是___. 19.256的平方根是____.______.37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.…各数中,属于有理数的有________;属于无理数的有________.40.把下列各数中的无理数填在表示无理数集合的大括号里:无理数集合:{ }41.绝对值最小的实数是________.44.无限不循环小数叫做________数.45.在实数范围内分解因式:2x3+x2-6x-3=________.(二)选择46.36的平方根是 [ ]48.在实数范围内,数0,7,-81,(-5)2中,有平方根的有 [ ]A.1个; B.2个; C.3个; D.4个.A.-36; B.36; C.±6; D.±36.50.下列语句中,正确的是 [ ]51.0是 [ ]A.最小的有理数; B.绝对值最小的实数;C.最小的自然数; D.最小的整数.52.以下四种命题,正确的命题是[ ]A.0是自然数; B.0是正数; C.0是无理数; D.0是整数.53.和数轴上的点一一对应的数为 [ ]A.整数; B.有理数; C.无理数; D.实数.54.和数轴上的点一一对应的数是 [ ]A.有理数; B.无理数; C.实数; D.不存在这样的数.55.全体小数所在的集合是 [ ]A.分数集合; B.有理数集合; C.无理数集合; D.实数集合.56.下列三个命题:(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数;(3)一个有理数与一个无理数的和一定是无理数.其中真命题是[ ]A.(1),(2)和(3); B.(1)和(3);C.只有(1);D.只有(3).数是[ ] A.4; B.3; C.6; D.5.A.2360; B.236 C.; D..59.数轴上全部的点表示的数是[ ]A.自然数 B.整数; C.实数; D.无理数; E.有理数.60.和数轴上的点成一一对应关系的数是 [ ]A.无理数; B.有理数; C.实数; D.自然数.61.数轴上全部的点表示的数是 [ ]A.有理数;B.无理数; C.实数.63.和数轴上的点是一一对应的数是 [ ]A.自然数; B.整数; C.有理数; D.实数.A.1个; B.2个; C.3个; D.5个.65.不论x,y为什么实数,x2+y2+40-2x+12y的值总是[ ]A.正数; B.负数; C.0; D.非负数.数为 [ ] A.2; B.3; C.4; D.5.A.1; B.是一个无理数; C.3; D.无法确定.A.n为正整数,a为实数; B.n为正整数,a为非负数;C.n为奇数,a为实数; D.n为偶数,a为非负数.69.下列命题中,真命题是[ ] A.绝对值最小的实数不存在; B.无理数在数轴上的对应点不存在;C.与本身的平方根相等的实数不存在; D.最大的负数不存在.[ ] A.; B.; C.; D..A.; B.; C.; D.1525.A.4858; B.; C.; D..A.; B.; C.; D.48580.74.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是 [ ]A.a与b互为相反数;B.a+b<0; C.-a<0;D.b-a<0.练习题(二)一、填空、1.144的平方根是________.5.-216000的立方根是________.6.-64000的立方根是_________.8.0的平方根有_______个,其根值是_______.9.正数a的平方根有_______个,即为_______.10.负数有没有平方根_______.理由_______.11.25=( )2.12.3=( )2.(二)计算16.求的平方根.20.求的平方根.22.求的立方根. 23.求的立方根.1.求下列各数的平方根,算术平方根: (1)121 (2) (3)(4)4(5)|a|22.求下列各式中的x: (1)49x2=169 (2) 9(3x-2)2=(-7)2 (3)=11 (4) 27(x-3)3=-643.判断正误: (1) 的平方根是±3。

(完整版)八年级数学平方根练习题包含答案

(完整版)八年级数学平方根练习题包含答案

第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、259的算术平方根是 ;81的算术平方根___ __2、一个数的算术平方根是9,则这个数的平方根是3、若2x -有意义,则x 的取值范围是 ,若a ≥0,则a 04、下列叙述错误的是( )A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18 D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b 满足3|4|0a b -+-=,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围解:因为3|4|0a b -+-=而3a -≥0 |4|b -≥0,所以3a -=0 |4|b -=0所以a=3 b=4 又因为b-a<c<a+b 所以 1<c<7●拓展提高一、选择1、若22m +=,则2(2)m +的平方根为( )A 、16B 、16±C 、4±D 、2±2、16的算术平方根是( )A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是4、若2x -+2(4)y +=0,则xy =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是 ;若a<57<b ,(a 、b 为连续整数),则a= , b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简 222()a b a b --- =4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.参考答案:随堂检测:1、35,3 2、9±3、x ≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:2a =2(2)-= 4 ,b=2 所以2a +2b= 4+4=86、解:因为a ,所以a=13,又因为b-1是400的算术平方根,所以b-1=20 b=21 =●体验中考:1、B2、9;7,83、-2b40.4==,所以每块瓷砖的边长为0.4米.。

初中数学 平方根 同步习题及答案1

《平方根》同步测试(第1课时)一、选择题1.9的算术平方根是( ).A. 3 B.±3 C.81 D.±81考查目的:本题考查算术平方根的概念.答案:A.解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A.2.已知,则=( ).A.0. 5 B.±0.5 C.0.0625 D.±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.± 2 B. 2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:(1的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个B.1个C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.。

最新2019-2020年度苏科版八年级数学上册《平方根》同步练习及答案解析-精品试题

4.1 平方根一.选择题1.(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.2.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣3.若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤24.±3是9的()A.平方根B.相反数C.绝对值D.算术平方根5.如果一个正数的平方根为2a+1和3a﹣11,则a=()A.±1 B.1 C.2 D.96.下列等式正确的是()A.B.C.D.7.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.8.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2二.填空题9.9的平方根是.10.对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)= .11.若x,y为实数,且|x﹣2|+(y+1)2=0,则的值是.12.将一个长为2,宽为4的长方形通过分割拼成一个等面积的正方形,则该正方形的边长为.13.若(m+2)2+=0,则m﹣n= .14.若x、y为实数,且|x+2|+=0,则(x+y)2016= .15.已知一个正数的两个平方根分别为3a﹣4和12﹣5a,则a= .16.如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积是.17.若x,y为实数,且|x+2|+=0,则()2016= .三.解答题18.已知:与互为相反数,求(x+y)2016的平方根.19.已知a,b满足+|b﹣2|=0,解关于x的方程(a+2)x+4b=2﹣a.20.已知、、(1)类比上述式子,写出第4个式子.(2)猜想第n个式子,并用字母表示出来.(3)证明(2)问中式子的正确性.参考答案一.选择题1.(2016•怀化)(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.【解答】解:∵(﹣2)2=4,∴4的平方根是:±2.故选:C.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.2.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.(2016•山西模拟)若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤2【分析】根据二次根式的性质可得=|a|,再根据绝对值的性质进行计算即可.【解答】解:∵=|a﹣2|=2﹣a,∴a﹣2≤0,故选:D.【点评】此题主要考查了二次根式的性质,关键是掌握绝对值的性质.4.(2016•高新区一模)±3是9的()A.平方根B.相反数C.绝对值D.算术平方根【分析】根据平方根的定义,即可解答.【解答】解:∵(±3)2=9,∴±3是9的平方根,故选;A.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.5.(2016•古冶区二模)如果一个正数的平方根为2a+1和3a﹣11,则a=()A.±1 B.1 C.2 D.9【分析】根据一个正数的平方根有2个,且互为相反数列出方程,求出方程的解即可得到a 的值.【解答】解:根据题意得:2a+1+3a﹣11=0,移项合并得:5a=10,解得:a=2,故选C【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.6.(2016•南开区校级模拟)下列等式正确的是()A.B.C.D.【分析】A、根据算术平方根的定义即可判定;B、根据负数没有平方根即可判定;C、根据立方根的定义即可判定;D、根据算术平方根的管道定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故答案选D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.7.(2016•张家口一模)一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.a+2 B.a2+2 C.D.【分析】根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被开方数,根据开方运算,可得答案.【解答】解:由题意,得正偶数是a2,下一个偶数是(a2+2),与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.【点评】本题考查了算术平方根,利用了乘方运算,开方运算.8.(2016•河北模拟)已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.二.填空题(共13小题)9.(2016•徐州)9的平方根是±3 .【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.10.对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)= .【分析】求出6*3=1,再求出7*1即可.【解答】解:∵6*3==1,∴7*1==,即7*(6*3)=,故答案为:.【点评】本题考查了对算术平方根的应用,主要考查学生的计算能力和理解能力.11.若x,y为实数,且|x﹣2|+(y+1)2=0,则的值是.【分析】先根据非负数的性质求出x,y的值,再根据算术平方根即可解答.【解答】解:∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴,故答案为:.【点评】本题考查了算术平方根,解决本题的关键是先根据非负数的性质求出x,y的值.12.将一个长为2,宽为4的长方形通过分割拼成一个等面积的正方形,则该正方形的边长为2.【分析】先计算出长方形的面积,再根据算术平方根即可解答.【解答】解:长方形的面积为:2×4=8,则正方形的面积也为8,所以正方形的边长为:,故答案为:2.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根.13.若(m+2)2+=0,则m﹣n= ﹣3 .【分析】根据非负数的性质,可列方程求出m、n的值,再代值计算即可.【解答】解:根据题意得:m+2=0,n﹣1=0,∴m=﹣2,n=1,∴m﹣n=﹣2﹣1=﹣3.故答案为:﹣3.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.若x、y为实数,且|x+2|+=0,则(x+y)2016= 1 .【分析】根据绝对值与算术平方根的和为零,可得绝对值与算术平方根同时为零,可得x、y的值,再根据负数的奇数次幂是负数,可得答案.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,∴(x+y)2016=1.故答案为:1.【点评】本题考查了非负数的性质,利用绝对值与算术平方根的和为零得出绝对值与算术平方根同时为零是解题关键,注意负数的奇数次幂是负数.15.已知一个正数的两个平方根分别为3a﹣4和12﹣5a,则a= 4 .【分析】先依据平方根的性质列出关于a的方程,从而可求得a的值.【解答】解:∵一个正数的两个平方根分别为3a﹣4和12﹣5a,∴3a﹣4+12﹣5a=0.解得:a=4.故答案为:4.【点评】本题主要考查的是平方根的性质,掌握正数的两个平方根互为相反数是解题的关键.16.如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积是2﹣2..【分析】根据正方形的面积公式求得两个正方形的边长分别是,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.【解答】解:∵矩形内有两个相邻的正方形面积分别为4和2,∴两个正方形的边长分别是,2,∴阴影部分的面积=(2+)×2﹣2﹣4=2﹣2.故答案为2﹣2.【点评】此题要能够由正方形的面积表示出正方形的边长,再进一步表示矩形的长.17.若x,y为实数,且|x+2|+=0,则()2016= 1 .【分析】根先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣2=0,∴x=﹣2,y=2,∴()2016=1,故答案为:1.【点评】本题考查的是非负数的性质,熟知当几个数或式的偶次方或绝对值相加和为0时,则其中的每一项都必须等于0是解答此题的关键.三.解答题(共2小题)18.已知:与互为相反数,求(x+y)2016的平方根.【分析】根据相反数的性质列出算式,根据非负数的性质列出二元一次方程组,解方程组求出x、y的值,根据平方根的概念解答即可.【解答】解:由已知可得:+=0,则,解得,,∴(x+y)2016=1,∴(x+y)2016的平方根是±1.【点评】本题考查的是非负数的性质、二元一次方程组的解法,掌握非负数之和等于0时,各项都等于0是解题的关键.19.已知a,b满足+|b﹣2|=0,解关于x的方程(a+2)x+4b=2﹣a.【分析】根据非负数的性质得出ab的值,代入方程(a+2)x+4b=2﹣a求解即可.【解答】解:由题意得2a﹣4=0,b﹣2=0,解得a=2,b=2.所以4x+8=0,解得x=﹣2.【点评】本题考查了非负数的性质以及解一元一次方程,求得a与b的值是解题的关键.20.已知、、(1)类比上述式子,写出第4个式子.(2)猜想第n个式子,并用字母表示出来。

《平方根》第一课时练习题(含答案)

6.1 平方根(1)1.下列各数没有算术平方根的是( )A.0B.-1C.10D.1022.(2014·安徽)设n为正整数,且n n+1,则n的值为( )A.5B.6C.7D.83.(2013·枣庄)+1的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.求下列各数的算术平方根.(1)0.062 5; (2)(-3)2; (3)225121; (4)108.5.计算下列各式:;;.6.比较下列各组数的大小:;(3)5 (4)12与1.5.7.已知,求b a的值.8.)29.国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.参考答案1.B2.D3.B4.(1)0.25;(2)3;(3)15 11;(4)104.5.(1)原式=43;(2)原式=0.9-0.2=0.7;(3)原式6.>(3)5;(4)12>1.5.7.解:由题意,得a-2=0,b+3=0,∴a=2,b=-3.∴b a=(-3)2=9.8.解:-25.9.这个足球场能用作国际比赛.理由如下:设足球场的宽为x m,则足球场的长为1.5x m,由题意,得1.5x2=7 560.∴x2=5 040.∵x>0,∴又∵702=4 900,712=5 041,∴7071.∴70<x<71.∴105<1.5x<106.5.∴符合要求.∴这个足球场能用作国际比赛.。

最新人教版七年级数学下册《6.1第3课时平方根》同步练习(含答案)

第3课时 平方根关键问答①正数的平方根之间有什么关系?②请用符号表示正数a 的平方根及算术平方根.1.①25的平方根是( )A .5B .-5C .±5D .±52.②“3625的平方根是±65”用数学式表示为( ) A.3625=±65B .±3625=±65 C.3625=65D .-3625=-65命题点 1 平方根的意义 [热度:90%]3.若x -3是4的平方根,则x 的值为( )A .2B .±2C .1或5D .16 4.若x +2=2,则2x +5的平方根是( )A .2B .±2C .3D .±35.③(-6)2的平方根是________.易错警示③先计算(-6)2的值,再求这个数的平方根.6.81的平方根是________.命题点 2 平方根的性质 [热度:92%]7.④如果一个正数的两个平方根为x +1和x -3,那么x 的值是( )A .4B .2C .1D .±2解题突破④一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.8.⑤若m ,n 是一个正数的两个平方根,则3m +3n -5=__________.方法点拨⑤一个正数的两个平方根互为相反数.9.已知2a +3的平方根是±3,5a +2b -1的平方根是±4.求3a +2b 的平方根.10.⑥王老师给同学们布置了这样一道习题:一个数的算术平方根为2m -6,它的平方根为±(m -2).求这个数.小张的解法如下:依题意可知2m -6是m -2或者-(m -2)两数中的一个.(1)当2m -6=m -2时,解得m =4.(2)2m -6=2×4-6=2.(3)这个数为4.当2m -6=-(m -2)时,解得m =83.(4) 2m -6=2×83-6=-23.(5) 这个数为49. 综上可得,这个数为4或49.(6) 王老师看了小张的解法后,说他的解法是错误的.你知道小张错在哪里吗?请改正.易错警示⑥算术平方根具有非负性,因此m 的取值需保证算术平方根大于或等于0.命题点 3 开平方 [热度:94%]11.下列结论中,正确的个数是( ) ①0.4=0.2;②179=±43;③-20192的平方根是-2019; ④(-5)2的算术平方根是-5;⑤±76是11336的平方根. A .1 B .2 C .3 D .412.⑦若x 能使(x -1)2=4成立,则x 的值是( )A .3B .-1C .3或-1D .±2易错警示⑦容易丢掉4的其中一个平方根-2,从而误选A.13.图6-1-4是一台数值转换机的运算程序,若输出的结果为-32,则输入的x 的值为________.图6-1-414.⑧已知4,9和a 三个数,使这三个数中的一个数是另外两个数乘积的一个平方根,写出所有符合条件的a 的值.解题突破⑧本题需分情况进行讨论,使其中任意一个数是另外两个数乘积的平方根.15.求下列各式的值: (1)225; (2)-0.0004; (3)±1214;(4)-(-0.1)2; (5)0.81-0.04; (6)412-402.16.求下列式子中x 的值:⑨(1)49(5-3x )2=121; (2)2(x -1)2-8=0.解题突破⑨若把5-3x 看作一个整体,你能利用平方根的定义求出5-3x 的值吗?进而能求出x 的值吗?命题点 4 新定义问题 [热度:96%]17.⑩用“★”规定新运算:对于任意数a ,b ,都有a ★b =a 2-b ,如果x ★13=2,那么x 等于( )A .15B.15C .-15D .±15方法点拨⑩根据新定义,转化成平方根的意义来求解.18.定义一种叫做“@ ”的运算,对于任意两个数m ,n ,有m @n =m 2-n 2.请你解方程:x @(-1)=4@2.19.⑪一天,蚊子落在狮子的身上对它说:“狮子,别看你高大威猛,而实际上我们俩的体重相同!”狮子不屑一顾地对蚊子说:“别瞎说了,那怎么可能!”蚊子不慌不忙地说:“不信,我给你证明一下.”说着,蚊子便在地上写出了证明过程:证明:设蚊子重m 克,狮子重n 克.又设m +n =2a ,则有m -a =a -n .两边平方,即(m -a )2=(a -n )2.∵(a -n )2=(n -a )2,∴(m -a )2=(n -a )2, 两边开平方,即(m -a )2=(n -a )2,∴m -a =n -a ,∴m =n ,即蚊子与狮子一样重.蚊子的证法对吗?为什么?模型建立 ⑪a 2=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).典题讲评与答案详析1.D 2.B3.C [解析] 因为4的平方根是±2,所以x -3=2或x -3=-2,解得x =5或x =1.4.D [解析] 因为x +2=2,所以x =2,所以2x +5=9,所以2x +5的平方根是±3.5.±6 6.±37.C [解析] 由一个正数的平方根是互为相反数的两个数,得x +1+x -3=0,解得 x =1.8.-59.解:由2a +3的平方根是±3,得2a +3=9,所以a =3.由5a +2b -1的平方根是±4,得5a +2b -1=16,所以b =1,所以3a +2b =11,所以3a +2b 的平方根是±11.10.解:小张错在没有确定m 的取值范围.∵2m -6是某数的算术平方根,∴2m -6≥0,即m ≥3.当m =83时,2m -6<0,∴应舍去.故这个数为4. 11.A [解析] 因为0.22=0.04,所以①错;因为179表示179,即169的算术平方根,结果为43,所以②错;因为负数没有平方根,所以③错;因为(-5)2的算术平方根是5,所以④错;因为11336=4936,它的平方根是±76,所以⑤正确.所以正确的有1个. 12.C [解析] 由(x -1)2=4,得x -1=2或x -1=-2,解得x =3或x =-1.13.±4 [解析] 由题意,得-2x 2=-32,所以x =±4.14.解:若a 是36的平方根,则a =±6;若9是4a 的平方根,则a =814;若4是9a 的平方根,则a =169. 综上,a 的值可以是±6,814,169. 15.(1)15 (2)-0.02 (3)±72(4)-0.1 (5)0.7 (6)9 16.解:(1)整理得(5-3x )2=12149,则5-3x =±12149,所以5-3x =117或5-3x =-117, 解得x =87或x =4621. (2)整理得(x -1)2=4,开方得x -1=2或x -1=-2,解得x =3或x =-1.17.D [解析] 因为x ★13=2,所以x 2=15,所以x =±15.故选D.18.解:x @(-1)=4@ 2可以转化成x 2-12=42-22,即x 2=13,所以x =±13.19.解:不对.理由如下:由题设,应有关系式:m <a <n ,则m -a <0,n -a >0, ∴(m -a )2=a -m ,(n -a )2=n -a ,∴蚊子的证法不对.【关键问答】①它们是互为相反数的两个数.②正数a 的平方根是±a ,正数a 的算术平方根是 a.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1平方根同步练习(1)
知识点:
1.算术平方根:一般地,如果一个正数的平方等于a,那么这个正数叫做a的算术平方根。

A叫做被开方数。

1.平方根:如果一个数的平方等于a,那么这个数叫做a的平方根
2.平方根的性质:正数有两个平方根,互为相反数
0的平方根是0
负数没有平方根
同步练习:
一、基础训练
1.9的算术平方根是()
A.-3 B.3 C.±3 D.81
2.下列计算不正确的是()
A 2 B=
C=0.4 D-6
3.下列说法中不正确的是()
A.9的算术平方根是3 B±2
C.27的立方根是±3 D.立方根等于-1的实数是-1
4的平方根是()
A.±8 B.±4 C.±2 D.
5.-1
8
的平方的立方根是()
A.4 B.1
8
C.-
1
4
D.
1
4
6_______;9的立方根是_______.
7(保留4个有效数字)8.求下列各数的平方根.
(1)100;(2)0;(3)9
25
;(4)1;(5)1
15
49
;(6)0.09.
9.计算:
(1)234)
二、能力训练
10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()
A.x+1 B.x2+1 C+1 D
11.若2m-4与3m-1是同一个数的平方根,则m的值是()
A.-3 B.1 C.-3或1 D.-1
12.已知x,y(y-3)2=0,则xy的值是()
A.4 B.-4 C.9
4
D.-
9
4
13.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.
14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小
铁球的半径是多少厘米?(球的体积公式为V=4
3
πR3)
三、综合训练
15.利用平方根、立方根来解下列方程.
(1)(2x -1)2-169=0; (2)4(3x +1)2-1=0;
(3)
274x 3-2=0; (4)12(x +3)3=4.
答案:
1.B
2.A =2.
3.C
4.C =4,故4的平方根为±2.
5.D 点拨:(-
18)2=164,故164的立方根为14.
6.±23 7.6.403,12.61 8.(1)±10 (2)0 (3)±3
5
(4)±1 (5)±87
(6)±0.3 9.(1)-3 (2)-2 (3)14 (4)±0.5 10.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,
则x2+1.
12.B点拨:3x+4=0且y-3=0.
13.10,12,14 点拨:23<这个数<42,即8<这个数<16.14.解:设小铁球的半径是rcm,
则有4
3
πr3×8=
4
3
π×123,r=6,
∴小铁球的半径是6cm.
点拨:根据溶化前后的体积相等.15.解:(1)(2x-1)2=169,2x-1=±13,2x=1±13,∴x=7或x=-6.
(2)4(3x+1)2=1,(3x+1)2=1
4

3x+1=±1
2
,3x=-1±
1
2

x=-1
2
或x=-
1
6

(3)27
4
x3=2,x3=2×
4
27
,x3=
8
27
,x=
2
3
.(4)(x+3)3=8,x+3=2,x=-1.。

相关文档
最新文档