向量空间的基本性质与判定定理

合集下载

空间向量知识点总结简单

空间向量知识点总结简单

空间向量知识点总结简单一、空间向量的概念空间向量是指在空间中既有方向,又有大小的有向线段,它通常用两个端点来确定。

空间向量与数集合相似,但它比数多了方向和长度属性,而且可以进行加法运算。

二、空间向量的表示1. 向量的表示:(1)向量的坐标表示:设 A、B 两个点在空间直角坐标系中的坐标分别为 (x1, y1, z1) 和(x2, y2, z2),则向量 AB 可用有向线段 OA = (x2-x1, y2-y1, z2-z1) 表示。

(2)向量的分量表示:向量的三个分量包括它在 x 轴、y 轴和 z 轴上的投影。

2. 向量的线性运算:(1)向量的加法:两个向量的加法就是将其对应分量相加。

(2)向量的数乘:一个向量的数乘就是将其三个分量都乘以同一个实数。

(3)向量的减法:向量 C 是向量 A 减向量 B 的运算,其方向由 A 指向 B。

3. 向量的模:(1)向量的模长:在空间直角坐标系中,向量 (x, y, z) 的模长公式为√(x^2 + y^2 +z^2) 。

(2)单位向量:模长为 1 的向量称为单位向量。

三、向量的线运算1. 点积(数量积):两个向量的点积定义为:A · B = |A| × |B| × cosθ,其中 |A| 和 |B| 分别为 A 和 B 的模长,θ 为 A 和 B 的夹角。

性质:点积满足交换律、分配律、结合律。

应用:点积可以用来判断两个向量的夹角、求向量的投影、求向量的模等。

2. 叉积(向量积):两个向量的叉积定义为:A × B = |A| × |B| × sinθ × n,其中 |A| 和 |B| 分别为 A 和 B 的模长,θ 为 A 和 B 的夹角,n 为法向量。

性质:叉积不满足交换律,但满足分配律。

应用:叉积可以用来求向量的方向、求平行四边形或平行六面体的面积、求直线、平面的方程等。

四、空间向量的几何应用1. 平面向量的应用:(1)平行四边形面积公式:S = |A × B| = |A| × |B| × sinθ。

高二数学空间向量知识点总结归纳

高二数学空间向量知识点总结归纳

高二数学空间向量知识点总结归纳数学中的空间向量是指存在于三维空间中的有方向和大小的物理量。

在高二数学中,我们学习了关于空间向量的各种性质和运算法则,以及与之相关的应用。

本文将对高二数学空间向量的知识点进行总结和归纳。

一、空间向量的定义与表示方法在空间中,向量可以用有序数对或有序三元组表示。

通常,我们用大写字母表示向量,如AB、CD等。

表示向量的有序数组称为坐标,常用小写字母表示,如a、b、c等。

假设向量AB的坐标为(a₁, a₂,a₃),则可表示为AB = a₁i + a₂j + a₃k,其中i、j、k分别表示x、y、z轴的单位向量。

二、向量的基本运算法则1. 向量的加法向量的加法遵循平行四边形法则,即将两个向量的起点相连接,然后以这条连线为对角线构建平行四边形,向量的和为平行四边形的对角线向量。

2. 向量的减法向量的减法可以转化为向量的加法,即A-B = A + (-B),其中-B表示B的反向量。

所以,向量A减去向量B,可以先求出B的反向量,再用向量的加法进行计算。

3. 向量的数量积向量的数量积又称为点积,用符号·表示。

设有两个向量A = a₁i + a₂j + a₃k和B = b₁i + b₂j + b₃k,则向量A和B的数量积为A·B = a₁b₁ + a₂b₂ + a₃b₃。

4. 向量的向量积向量的向量积又称为叉积,用符号×表示。

设有两个向量A = a₁i + a₂j + a₃k和B = b₁i + b₂j + b₃k,则向量A和B的向量积为A×B = (a₂b₃ - a₃b₂)i + (a₃b₁ - a₁b₃)j + (a₁b₂ - a₂b₁)k。

三、空间向量的性质与定理1. 平行向量如果两个向量的方向相同或相反,则它们被称为平行向量。

平行向量的数量积为零。

2. 垂直向量如果两个向量的数量积为零,则它们被称为垂直向量。

垂直向量的叉积也为零。

3. 向量共面如果三个向量可以放在同一个平面上,则它们被称为共面向量。

空间向量的概念空间向量的基本定理及其意义掌握

空间向量的概念空间向量的基本定理及其意义掌握

复 习
·(
a∥b的充要条件是存在实数λ,使a=λb.
数 学

(4)共面向量定理:如果两个向量a,b不共线,则向量
课 标
)

p与向量a,b共面的充要条件是存在实数对(x,y),使p=xa
+yb.
专题五 立体几何
2.两个向量的数量积

向量a,b的数量积:a·b=|a||b|cos〈a,b〉.
走 向

向量的数量积的性质:
复 习
·(

a·b=a1b1+a2b2+a3b3;
学 新

a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R);
标 版
)
a⊥b⇔a·b⇔a1b1+a2b2+a3b3=0.
专题五 立体几何
《 走 向 高 考 》
(3)平面的法向量
二 轮

如果表示向量a的有向线段所在的直线垂直于平面α,
考 》

①若e是单位向量,则a·e=|a|cos〈a,e〉;
轮 专

②a⊥b⇔a·b=0;
复 习
·(

③|a|2=a·a=a2.
学 新



)
专题五 立体几何
向量的数量积满足如下运算律:

①(λa)·b=λ(a·b);
走 向

②a·b=b·a(交换律);
考 》

③a·(b+c)=a·b+a·c(分配律).
习 数

·(
+yO→B+zO→C.
新 课


)
专题五 立体几何
4.空间向量的坐标运算

高中数学空间向量的基本定理知识点解析

高中数学空间向量的基本定理知识点解析

素养评析 证明空间图形中的两直线平行,可以转化为证明两直线的方向 向量共线问题.这里关键是利用向量的线性运算,从而确定C→E=λM→N中的 λ 的值.
3 达标检测
PART THREE
1.给出下列几个命题:
①向量a,b,c共面,则它们所在的直线共面;
②零向量的方向是任意的;
③若a∥b,则存在唯一的实数λ,使a=λb.
4.设 e1,e2 是平面内不共线的向量,已知A→B=2e1+ke2,C→B=e1+3e2,C→D=2e1 -e2,若 A,B,D 三点共线,则 k=_-__8__. 解析 ∵B→D=C→D-C→B=e1-4e2,A→B=2e1+ke2, 又 A,B,D 三点共线,由共线向量定理得A→B=λB→D, ∴12=-k4.∴k=-8.
其中真命题的个数为
A.0
√B.1
C.2
D.3
解析 ①假命题.三个向量共面时,它们所在的直线在平面内,或与平面平行;
②真命题.这是关于零向量的方向的规定;
③假命题.当b=0,则有无数多个λ使之成立.
12345
2.对于空间的任意三个向量a,b,2a-b,它们一定是
√A.共面向量
B.共线向量
C.不共面向量
②对空间任一点 O,有O→P=O→A+tA→B(t∈R).
③对空间任一点 O,有O→P=xO→A+yO→B(x+y=1).
跟踪训练 1 如图所示,在正方体 ABCD-A1B1C1D1 中,E 在 A1D1 上,且A→1E=2E→D1,
F 在对角线 A1C 上,且A→1F=32F→C. 求证:E,F,B三点共线.
即7e1+(k+6)e2=xe1+xke2, 故(7-x)e1+(k+6-xk)e2=0, 又∵e1,e2不共线,

第六章向量空间

第六章向量空间

第六章 向量空间一 综述向量空间是高等代数最基本的概念之一,它用公理化方法首次引进了一个代数系,而这种公理化方法在高等代数以后各章以及在近世代数中将屡次遇到,它是近代数学研究的一个重要方法.本书以后各章如线性变换、欧几里德空间等概念都是直接建立在向量空间定义的基础上的.因此本章内容又是以后各章学习的基础. 二 教学目的使学生在集合、映射概念的基础上,理解并掌握向量空间的定义、性质和构造,并培养学生用公理化方法研究代数系的能力. 三 重点、难点教材重点:向量空间的定义、性质 教学难点:向量空间的定义6.1 定义和例子一 教学思考向量空间的定义是本章的重点和难点,是学生首次接触的一个用公理化方法引进的代数系.这一节的教学目的,不仅使学生正确理解和掌握向量空间的概念,而且应该使学生初步了解以集合论为基础运用公理化方法从具体的代数系抽象出一般的代数系的方法和意义,对此要心中有数,以便在教学中把传授知识与培养能力结合起来. 二 内容和要求1.内容:定义、例子及简单性质2.要求:掌握向量空间的概念及其简单性质,初步了解公理化的思想方法. 三 教学过程1. 引例 三维几何空间的实质及更多的类似结构的代数对象(略). 2. 定义及例子定义 1 令F 是一个数域,F 中的元素用小写拉丁字母 ,,b a 表示;令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα表示.我们把V 中的元素叫做向量,F 中的元素叫做纯量.若下列条件满足,就称V 是F 上的一个向量空间.1)在V 中定义了一个叫加法,对V 中任意两个向量βα,都有V 中唯一确定的向量与它们对应,这个向量叫做α与β的和,记为βα+.2)有一个纯量乘法,对于F 中的每一个数a 和V 中每一个向量α,有V 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,记为αa .3)向量的加法和纯量乘法满足下列算律:F b a V ∈∈∀,;,,γβα有 (1)αββα+=+; (2))()(γβαγβα++=++;(3)在V 中存在一个向量叫零向量,积作ο;它满足对V ∈∀α 有ααο=+; (4)对V ∈∀α,V ∈'∃α使得οαα=+';这样的α'叫做α的负向量;(负向量的定义) (5)βαβαa a a +=+)(; (6)αααb a b a +=+)(; (7))()(ααb a ab =; (8)αα=1. 3. 向量空间的简单性质1)由于向量的加法满足结合律,所以任意n 个向量相加有唯一确定的含义且可写为不加括号的和的形式;再者由于加法满足结合律和交换律,所以在求任意n 个向量的和时可以任意交换被加项的次序.2)命题6.1.1(零向量、负向量的唯一性)在一个向量空间V 中,零向量是唯一的;对V ∈∀α,α的负向量是由α唯一确定的.(同一法,略) 3)命题6.1.2 对V ∈∀α,F a ∈∀有οα=0,οο=a ; αααa a a -=-=-)()(; 0=⇒=a a οα或οα=.4. 介绍一种写法-——(向量矩阵的记法)设V n ∈ααα,,,21 ,把它们排成一行写成一个以向量为元素的n ⨯1矩阵(n ααα,,,21 ),设)()(F M a A m n m n ij ⨯⨯∈=;定义(n ααα,,,21 )),,,(21m A βββ =,其中)1(,1m j a ni i ij j ≤≤=∑=αβ.即按照数域F 上矩阵的乘法定义(n ααα,,,21 )右乘以A (这里约定对V ∈∀α,F a ∈∀有a a αα=).并且设)(F M A m n ⨯∈,)(F M B P m ⨯∈,由向量与纯量乘法所满足的算律有:(n ααα,,,21 )B A AB n )),,,(()(21ααα = ,即结合律成立.6.2 子空间一 教学思考1.向量空间一章主要讨论向量空间的运算、性质和结构,一般是通过向量空间自身(基、维数等)或其子结构(子空间)来讨论的,这正是代数学的基本方法.因而本节的概念(子空间)和结论在理论上与方法上是重要的.2.由于本章与以后内容的(抽象)特点,需重点培养学生逻辑论证能力,除了在教学中经常结合问题讲解分析解决问题的一般思想方法外,还需对以后教学有重要影响的几类具体问题的论证思路作出明确的交代.本章主要是“子空间的判定”.3.内容作如下调整,即先定义子空间,再介绍为何称为子空间,然后介绍子空间的判定和运算. 二 内容要求1.内容:子空间的定义、子空间的交与和.2.要求:理解和掌握向量空间的子空间的概念和判定方法、子空间的交与和的概念.三 教学过程1.子空间的概念及判定 (1)定义定义1 设V 是数域F 上的向量空间,W 是V 的非空子集,若对V ∈∀βα,都有W ∈+βα,则称W 对V 的加法封闭.若对F a V ∈∀∈∀,α都有W a ∈α,则称W 对纯量乘法封闭.定义2 令W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则称W 是V 的一个子空间.TH6.2.1设W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则W 本身也作成F 上一个向量空间.(2)子空间的判定TH6.2.2向量空间V 的一个非空子集W 是V 的一个子空间的充要条件是对W F b a ∈∀∈∀βα,,,都有W b a ∈+βα.2.子空间的交与和定义3 设21,W W 都是V 的子空间,则21W W 称为两个子空间的交. 命题 21W W 也是V 的子空间.定义 4 设21,W W 都是V 的子空间,由所有能表示为),(221121W W ∈∈+αααα的向量组成的集合成为1W 与2W 的和,记为21W W +;即21W W +={}221121,|W W ∈∈+αααα. 命题 21W W +也是V 的子空间.6.3 向量的线性相关性一 教学思考1.向量的线性相关性在研究向量空间的结构时极为重要,并且学生在学习时感到困难的多是由于逻辑思维混乱以及推理不严谨造成的.2.本节重要的在于讲清诸概念,理清它们之间的关系,介绍一般方法和特殊方法,补充一些容易混淆的问题及一些错误做法或判断. 二 内容要求内容:向量的线性相关性定义、性质;替换定理;极大无关组.要求:正确理解和掌握向量组的线性相关性的概念及性质,掌握判断向量组线性关系的一般方法和特殊方法. 三.教学过程1.线性相关与线性无关(1)线性组合、线性表示及其性质定义 1 设r ααα,,,21 是向量空间V 的r 个向量,r a a a ,,,21 是数域F 中任意r 个数,我们把和r r a a a ααα ++2211叫做向量r ααα,,,21 的一个线性组合.定义 2 若V 中向量α可以表示成r ααα,,,21 的线性组合,即∃F a a a r ∈,,,21 使得r r a a a αααα ++=2211,则称α可以由r ααα,,,21 线性表示.(例略)性质 命题6.3.1向量组r ααα,,,21 中每一向量都可以由这一组向量线性表示.命题6.3.2若向量γ可以由r βββ,,,21 线性表示,而每个i β可由s ααα,,,21 线性表示,则γ可以由s ααα,,,21 线性表示.(2)线性相关、线性无关及有关性质定义3 设r ααα,,,21 是向量空间V 的r 个向量,若存在数域F 中r 个不全为0的数ra a a ,,,21 使得οααα=++r r a a a 2211,则称r ααα,,,21 线性相关,否则称r ααα,,,21 线性无关. 例1 若r ααα,,,21 中有一个零向量,则r ααα,,,21 一定线性相关. 例2 判断3F 中向量)9,7,1(),0,1,2(),3,2,1(321-==-=ααα是否线性相关 例3 在][x F 中对任意非负整数n ,证明nx x x ,,,,12线性无关.(解略)性质命题 6.3.3 若向量组{r ααα,,,21 }线性无关,则它的任一部分向量组也线性无关;等价地:若{r ααα,,,21 }有一部分组线性相关,则整个向量组{r ααα,,,21 }也线性相关.(证略)命题 6.3.4 设{r ααα,,,21 }线性无关,而{βααα,,,,21r }线性相关,则β一定可以由r ααα,,,21 线性表示,且表示法唯一.命题6.3.5 向量r ααα,,,21 (2≥r )线性相关的充要条件是其中某个向量是其余向量的线性组合.(证略)2.向量组的等价、替换定理定义 4 设{}r ααα,,,21 和{}s βββ,,,21 是V 中的两个向量组,若每个),2,1(r i i =α都可以由s βββ,,,21 线性表示,而每个),2,1(s j j =β也可以由r ααα,,,21 线性表示,则称这两个向量组等价.定理6.3.6(替换定理)设向量组{}r ααα,,,21 (1)线性无关,且每个),2,1(r i i =α都可以由{}s βββ,,,21 (2)线性表示.则A )s r ≤;B )必要时对(2)中向量重新编号,使得用r ααα,,,21 替换r βββ,,,21 后得向量组{}s r r ββααα,,,,,,121 +(3)与(2)等价.推论6.3.7两个等价的线性无关向量组含有相同个数的向量. 3.极大无关组(讨论一个非零向量组的一种部分组)定义 5 向量组{r i i i ααα,,,21 }是向量组{}n ααα,,,21 的一个部分组(n r ≤),若满足:1)ri i i ααα,,,21线性无关;2)每个),,1(n j j =α都可由ri i i ααα,,,21线性表示.则称rii i ααα,,,21是向量组{}n ααα,,,21 的一个极大线性无关部分组(简称极大无关组). 极大无关组的求法:1)一般方法——设给定{}n ααα,,,21 ,求其一个极大无关组.先从1α考虑,若οα≠1,保留;考虑21,αα看其是否线性无关.无关,保留;相关舍去2α,考虑31,αα看其是否线性无关.依次类推直至n α,便得.(由于考虑次序不同可得不同的极大无关组)例4 求向量组{}32,2,,12+++x x x x 的一个极大无关组.(解略)2)特殊方法——对n F 中向量组{}n ααα,,,21 ,求极大无关组. 首先:可以证明“命题”:“设)(F M m n ⨯的矩阵A 经过行的初等变换得到)(F M m n ⨯的矩阵B ,则A 与B 的列向量有相同的线性关系.”(证略)这样可得:A )求nm F ∈ααα,,,21 的线性关系,可以以m ααα,,,21 列作矩阵A ,通过对A 作行初等变换化为标准形B ,由B 的列向量的线性关系可得A 的列向量的线性关系.进而B )用上述方法可求n F 中向量组{}n ααα,,,21 的极大无关组. 例5 求3R 中向量组)6,1,5(),4,0,3(),3,1,2(),1,2,1(4321====αααα的一个极大无关组. 解:以4321,,,αααα为列作矩阵B A =⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛=210010101001643110125321.设B 的列向量为4321,,,ββββ,这样4321,,,αααα与4321,,,ββββ有相同的线性关系.容易看出321,,βββ线性无关,且=4β3212βββ+-;因此321,,ααα线性无关且=4α3212ααα+-.于是321,,ααα是4321,,,αααα的一个极大无关组.6.4 基与维数一 教学思考1.向量空间的结构中基起着重要作用,那么基概念的引入及作用为重点.2.从内容上本节在于给出了基与维数的概念后,解决基的存在性、个数及求法,要注意方法的总结归纳,特别是生成子空间.3.从定义上维数依赖于基,即要求一个向量空间的维数须求一个基;但反过来从结果上看,若已知维数n 求基的话,即求一组n 个线性无关的向量.4.本节及以后主要讨论有限维向量空间,有所谓的维数公式,其反映有限维向量空间的两个子空间与它们的和与交空间的维数之间的关系.在证明中,从“最小”的子空间的基出发逐步扩充为所出现的子空间的基的方法是重要的.5.基的存在性、个数、求法(生成子空间的基的求法)、余子空间等方法,注意总结归纳. 二 内容要求内容:向量空间的基与维数,有限维向量空间的维数公式,余子空间要求:正确理解和掌握向量空间的基与维数的概念,余子空间的定义,了解基在向量空间的结构中的重要作用,掌握求基、余子空间的一般方法和特殊方法. 三 教学过程1.引言我们知道当{}ο≠V 时,V 有无穷多向量,那么它们之间的结构如何?具体地,我们能否用V 中有限个向量表示所有向量.下面讨论这个问题.2.一类特殊子空间——由一组向量生成的子空间定义1设V r ∈ααα,,,21 ,那么由r ααα,,,21 的线性组合组成的集合{}F a a a a W i r r ∈+++=|2211ααα 称为由这一组向量r ααα,,,21 生成的子空间.记为L (r ααα,,,21 ),其中r ααα,,,21 叫做生成元.例1 n F 中)1,,0,0(,),0,,,0,1(1 ==n εε,则nn F L =),,(1εε . 例2 ][x F 中n n x x ===+121,,,1ααα ,则][),,,1(x F x x L n n= .关于生成子空间有:定理 6.4.1设V n ∈ααα,,,21 ,且不全为零向量,r i i i ααα,,,21 为其一个极大无关组,则L (n ααα,,,21 )=L (r i i i ααα,,,21 ).3.基与维数1)定义2 设V n ∈ααα,,,21 ,若1)n ααα,,,21 线性无关;2)V ∈∀α都可由n ααα,,,21 线性表示.则称n ααα,,,21 为V 的一个基.定义 3 一个向量空间V 的一个基所含向量的个数叫做V 的维数;记为V dim .规定零空间的维数为0.2)定理定理6.4.2(基的作用)设n ααα,,,21 为V 的一个基,则V ∈∀α都可唯一地由n ααα,,,21 线性表示.定理6.4.3n 维向量空间V 任意多于n 个向量的向量组一定线性相关.定理 6.4.4设n V =dim ,V r ∈ααα,,,21 线性无关(易知n r ≤),则总可以添加r n -个向量n r r ααα,,,21 ++,使得n ααα,,,21 作为V 的一个基.特别V 的任意n 个线性无关向量都可以取作基.例3 将)1,2,3,1(),1,0,2,1(21-==αα扩充为4R 的一个基.解:(法一)思想方法:由定理的证明过程,取4R 的一个基(如标准基4321,,,εεεε),然后用21,αα代替其中某两个如21,εε,使得21,αα,43,εε线性无关;而代替哪两个,可用逐步添加法使添在21,αα上后线性无关.(法二)思想方法:可以从21,αα出发,利用21,αα为列再添上两个作成一个4阶方阵A ,使得0≠A ,如⎪⎪⎪⎪⎪⎭⎫⎝⎛-1011012000320011,取)1,0,0,0(),0,1,0,0(23==αα,则4321,,,αααα为4R 的一个基. 定理6.4.5设21,W W 是F 上向量空间V 的两个有限维子空间,则21W W +也是V 的一个有限维子空间,且:)dim (dim dim )dim (212121W W W W W W ⋂-+=+.推论 对n 维向量空间V 的子空间21,W W 有:}{dim dim dim 2121ο=⋂⇔=+W W V W W .4.余子空间(1) 定义:设W 是V 的子空间,若存在V 的子空间W '满足:1)V W W ='+,2)){ο='⋂W W ;则称W '是W 的一个余子空间,且称V 是W 与W '的直和,记为W W V '⊕=. (2)定理定理 6.4.6设W W V '⊕=,则对V ∈∀α有α可以唯一地表示成ββα'+=,其中W W '∈'∈ββ,.定理 6.4.7n 维向量空间V 的任一子空间W 都有余子空间.若W '是W 的一个余子空间,则V W W dim dim dim ='+.(3)上述概念及结论可扩充至有限设t W W W ,,,21 是V 的子空间,若1)t W W V ++= 1;2){}),,2,1(,)(111t i W W W W W t i i i ==+++++⋂+-ο,则称V 是t W W W ,,,21 的直和,记为t W W V ⊕⊕= 1.且有类似于定理6、7的结论.6.5 坐标一 教学思考1.对n 维向量空间V 取定基后,任意向量引入了坐标的概念后,可将抽象的对象用具体的形式(nF中的向量)表示出来,为我们研究抽象的向量空间提供了方便,如由此可建立n V 与nF 的同构,所以本节概念及结论在空间的讨论中有重要的作用.2.注意坐标的概念依赖于基的选择,坐标变换依赖于相应的基变换;注意过渡矩阵的概念与性质以及结论,其是下节建立n V 与nF 的同构的基础.3.具体方法有:1)坐标的求法(定义法、坐标变换法);2)过渡矩阵的求法;3)过渡矩阵的性质及由此反映的矩阵的运算的意义. 二 内容要求1. 内容:坐标、基变换、坐标变换、过渡矩阵;2. 要求:掌握坐标的概念及其意义,基变换与坐标变换公式,过渡矩阵的概念和性质. 三 教学过程(一) 坐标的概念1.定义 设{}n n V αα,,,dim 1 =是V 的一个基,对V ∈∀ξ有n n a a ααξ++= 11,则称n 元有序数组),,(1n a a 为向量ξ关于基{}n αα,,1 的坐标;其中i a 叫做向量ξ关于基{}n αα,,1 的第i 个坐标.2.定理6.5.1设{}n n V αα,,,dim 1 =是V 的一个基,V ∈ηξ,关于此基的坐标分别为),,(1n x x 和),,(1n y y ,则ξηξk ,+关于此基的坐标分别为: ),,(11n n y x y x ++ ,),,(1n ax ax .(二)坐标变换 1.基变换设,dim n V ={}n αα,,1 和{}n ββ,,1 是V 的两个基,则每个j β),,2,1(n j =可由{}n αα,,1 线性表示,设⎪⎪⎩⎪⎪⎨⎧++=++=++=nn n n nn nn a a a a a a ααβααβααβ1112112211111 (1),以j β关于基{}n αα,,1 的坐标为列构成的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a T212222111211称为由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵. (1)式可以写成矩阵等式),,(1n ββ =T n ),,(1αα (2);称(1)或(2)为(由基{}n αα,,1 到基{}n ββ,,1 的)基变换. 设V ∈ξ关于基{}n αα,,1 的坐标为),,(1n x x ,关于基{}n ββ,,1 的坐标为),,(1n y y ,则一方面=ξ⎪⎪⎪⎭⎫ ⎝⎛n n x x 11),,(αα (3);另一方面=ξ⎪⎪⎪⎭⎫⎝⎛n n y y 11),,(ββ (4);(2)代入(4)得=ξ⎪⎪⎪⎭⎫ ⎝⎛n n y y T 11)),,((αα=))(,,(11⎪⎪⎪⎭⎫⎝⎛n n y y T αα (5),比较(3)和(5)由坐标的唯一性得⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1 (6);于是得 定理 6.5.2设,dim n V =T 由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵,则V ∈ξ关于基{}n αα,,1 的坐标与关于基{}n ββ,,1 的坐标为),,(1n y y 由等式(6)⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1联系着.3.过渡矩阵的性质 (1)基变换的传递性设,dim n V ={}n αα,,1 、{}n ββ,,1 、{}n γγ,,1 都是V 的基,且由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,基{}n ββ,,1 到基{}n γγ,,1 的过渡矩阵为B ,即),,(1n ββ =A n ),,(1αα 、),,(1n γγ =),,(1n ββ B ,则),,(1n γγ =A n ),,(1αα B ,即由基{}n αα,,1 到基{}n γγ,,1 的过渡矩阵为AB .(2)定理6.5.3设,dim n V =由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,那么A 是一个可逆矩阵.反过来,任意一个n 阶可逆矩阵A 都可以作为n 维向量空间中由一个基到另一个基的过渡矩阵.且若由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,则由基{}n ββ,,1 到基{}n αα,,1 的过渡矩阵为1-A .6.6 向量空间的同构一 教学思考1.向量空间的本质是一个带有加法和数乘的代数系,我们研究向量空间着眼点主要在于运算,至于元素是什么无关紧要.把具有某种关系的向量空间作为本质上没有区别的加以研究,从而取出其代表加以研究讨论以达到目的,本节正是解决这样一个问题.2.“同构”是这种关系的体现,在此关系下,同构的向量空间可以不加区别,因而维数就成了数域F 上有限维向量空间的唯一本质特征.3.注意“同构”映射的概念,向量空间同构的概念及各自的性质,以及有限维向量空间同构的判定. 二 内容要求1、内容:同构映射、向量空间同构的概念及各自的性质,有限维向量空间同构的判定.2、要求:理解向量空间同构的概念及性质,有限维向量空间同构的判定. 三 教学过程1.同构的概念和性质 (1)概念1)同构映射 设V 和W 是数域F 上两个向量空间,V 到W 的一个映射f 叫做一个同构映射; 若A )f 是V 到W 的一个双射;B )对)()()(,ηξηξηξf f f V +=+⇒∈∀;C )对)()(,,ξξξaf a f V F a =∈∀∈∀.(2)定理6.6.1数域F 上任一n 维向量空间V 都与nF 同构. (3)性质 1)同构映射的性质定理6.6.2设V 和W 是数域F 上两个向量空间, f 是V 到W 的一个同构映射,则: A);)(οο=f B)对ααα-=-∈∀)(,f V ;C))()()(1111n n n n f a f a a a f αααα++=++ ,其中V F a i i ∈∈α,; D))(,,1V n ∈αα 线性相关))((,),(1W f f n ∈⇔αα 线性相关; E) f 的逆映射1-f是W 到V 的一个同构映射.2)同构关系的性质(等价关系)A ) 反身性:V V ≅;B ) B )对称性:若W V ≅,则V W ≅;C) 传递性:若W V ≅,U W ≅,则U V ≅.(由双射性质及定义易证) 2.有限维向量空间同构的充要条件定理6.6.3数域F 上两个有限维维向量空间V 和W 有:W V ≅W V dim dim =⇔.6.7 矩阵的秩,齐次线性方程组的解空间一 教学思考1.矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构.2.注意:齐次线性方程组(含n 个未知量)的解的集合构成nF 的子空间,而非齐次线性方程组的解的集合非也.3.注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系. 二 内容要求1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间.2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法. 三 教学过程1.矩阵的秩的几何意义几个术语:设)(F M A n m ⨯∈,⎪⎪⎪⎭⎫⎝⎛=mn m n a a a a A 1111,A 的每一行看作nF 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的nF 的子空间),,(1m L αα 叫做矩阵A 的行空间.类似地,A 的每一列看作mF 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的mF 的子空间叫做矩阵A 的列空间.引理6.7.1设)(F M A n m ⨯∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间.定理6.7.2矩阵)(F M A n m ⨯∈的行空间的维数等于列空间的维数,等于这个矩阵的秩.定义 矩阵A 的行(列)向量组的极大无关组所含(行(列)空间的维数)向量的个数,叫做矩阵A 的秩.2.线性方程组的解的结构1)再证线性方程组有解的判定定理:“数域F 上线性方程组有解的充要条件是它的系数矩阵与增广矩阵的秩相同.”2)齐次线性方程组的解空间设⎪⎩⎪⎨⎧=++=++00111111n mn m n n x a x a x a x a(3)是数域F 上一个齐次线性方程组,令A 为其系数矩阵,则(3)可写为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (4)或ο=AX ;(3)的每一个解都可以看作n F 的一个向量,叫做(3)的一个解向量.令S 表示(3)的全体解向量构成的集合;首先:因S ∈ο,所以Φ≠S ;其次:F b a S ∈∀∈∀,,,ηξ,有οηξηξ=+=+bA aA b a A )(,即S b a ∈+ηξ.因此S 作成nF 的一个子空间,这个子空间叫做齐次线性方程组(3)的解空间.重新回顾解线性方程组的过程:设(3)的系数矩阵A 的秩为)(n r <,则A 可经过一系列(行)初等变换化为⎪⎪⎭⎫ ⎝⎛----r n r m r r m r n r r C I ,,,οο,与此相应的齐次线性方程组为:(5)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+++=+++++++0000001111111 n rn r rr r n n r r y c y c y y c y c y ,这里n y y ,,1 是n x x ,,1 的重新编号.(5)有r n -个自由未知量n r y y ,,1 +,依次让它们取)1,,0,0(,),0,,1,0(),0,,0,1( ,可得(5)的r n -个解向量:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=++++++100,,010,001122121111 rn n n rr r r rr r r c c c c c c ηηη.下面证其是(5)的解空间的一个基. 首先:n r ηη,,1 +线性无关.事实上设οηη=++++n n r r k k 11,由下面r n -个分量易得01===+n r k k .其次:设),,,(21n k k k 是(5)的任一解,代入(5)得:n rn r rr r nn r r nn r r k c k c k k c k c k k c k c k ---=---=---=++++++112112211111又有恒等式:nn r r k k k k ==++ 11此n 个等式即为n n r r n k k k k ηη++=⎪⎪⎪⎭⎫ ⎝⎛++ 111,即(5)的每个解向量都可以由n r ηη,,1 +线性表示,故{n r ηη,,1 +}为(5)的解空间的一个基.注意到(5)与(4)在未知量重新编号后同解,所以重新编排n r ηη,,1 +的次序可得(4)的解空间的一个基,从而解决了齐次线性方程组的解的构造问题.并且上述讨论也给出了求解空间的具体方法:即通过解方程组的允许变换得到等价组,在等价组中自由未知量是清楚的,给其一组线性无关值,便得等价组的一组解向量,其构成等价组的解空间的一个基,再调整解向量的次序便得.上述讨论得:定理 6.7.3数域F 上一个n 元齐次线性方程组的一切解作成nF 的一个子空间,称之为这个线性方程组的解空间.若所给方程组的系数矩阵的秩为r ,则解空间的维数为r n -.定义 一个齐次线性方程组的解空间的一个基,叫做这个方程组的一个基础解系.3)非齐次线性方程组的解的结构 设))((,11F M A b b x x A n m m n ⨯∈⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ (6)是数域F 上一个n 元线性方程组.问题当(6)有无穷解时,解的结构如何?为此先引入:把(6)的常数项都换成0,便得一个齐次线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (7),齐次线性方程组(7)叫做方程组(6)的导出齐次线性方程组.定理6.7.4若(6)有解,则(6)的任一解都可以表示为(6)的一个固定解与(7)的一个解的和.。

空间向量及其运算和空间位置关系

空间向量及其运算和空间位置关系
1 1 1 解析:① A1O - AB - AD = A1O - ( AB + AD )= A1O - AO = 2 2 2 1 1 OA OC AC + = . ② = = ( + ), A1O A1 A 2 2 AB AD 1 1 1 ∴ OC1 = OC + CC1 = ( AB + AD )+ AA1 = AB + AD + AA1 . 2 2 2 1 1 答案:(1) A1 A (2) AB + AD + AA1 2 2
数学
首页
上一页
下一页
末页
第六节
空间向量及其运算和空间位置关系
结束
[典例] 已知 E,F,G,H 分别是空间四边形 ABCD 的边 AB,BC,CD,DA 的中点,用向量方法,求证:
(1)E,F,G,H 四点共面;
(2)BD∥平面 EFGH.


向量法证明四点共线 的条件是什么? 怎样用向量证明两直 线平行?
2.在下列命题中: ①若向量 a,b 共线,则向量 a,b 所在的直线平行; ②若向量 a,b 所在的直线为异面直线,则向量 a,b 一定不 共面; ③若三个向量 a,b,c 两两共面,则向量 a,b,c 共面; ④已知空间的三个向量 a,b,c,则对于空间的任意一个向量 p 总存在实数 x,y,z 使得 p=xa+yb+zc. 其中正确命题的个数是 ( )
下一页 末页
首页
上一页
第六节
空间向量及其运算和空间位置关系
结束
1.共线向量定理中 a∥b⇔存在 λ∈R,使 a=λb 易忽视 b≠0.
2.共面向量定理中,注意有序实数对(x,y)是唯一存在的.
3.一个平面的法向量有无数个,但要注意它们是共线向量, 不要误为是共面向量.

《空间向量的基本定理》参考教案1

《空间向量的基本定理》参考教案1

3.1.2空间向量的基本定理一、教学目标:1.了解空间向量基本定理及其推论;2.理解空间向量的基底、基向量的概念。

二、教学重点:向量的分解(空间向量基本定理及其推论)三、教学难点:空间作图四、教学过程设计:(一)复习引入1.复习向量与平面平行、共面向量的概念.区别:(1)向量与平面平行时,向量所在的直线可以在平面内,而直线与平面平行时两者是没有公共点的.(2)平行于同一平面的向量叫做共面向量.共面向量不一定是在同一平面内的,但可以平移到同一平面内.2.空间共面向量定理及其推论.(1)共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使得p= x a+y b.(2)共面向量定理的推论:空间一点P在平面MAB内的充要条件是存在有序实数对x,y,使得MBMP+=,或对于空间任意一定点O,有MAxyOP++=.OMyxMBMAOP+-=)1(x-+yOBOAxOMy对平面向量基本定理加以推广,应用上面的三个公式可以解决与四点共面有关的问题,得出空间向量基本定理。

(二)新课讲授问题1.两个平面向量贡献的判定与性质,是对于空间向量仍然成立?共线向量定理两个空间向量a,b(b≠0),a//b的充要条件是存在唯一的实数x,使得a=x b问题2.在平面向量中,向量b与向量a(a≠0)共线的充要条件是存在实数λ,使得b =λa .那么,空间任意一个向量p 与两个不共线的向量a ,b 共面时,它们之间存在什么样的关系呢?通常我们把平行于同一个平面的向量叫共面向量;理解:(1)若a ,b 为不共线且同在平面α内,则p 与a ,b 共面的意义是p 在α内或p ∥α.(2)空间任意两个向量是共面的,但空间任意三个向量就不一定共面了. 平面向量中,向量b 与非零向量a 共线的充要条件是b a λ=,类比到空间向量,即有:共面向量定理 如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数组(x ,y ),使得p =x α+y b .这就是说,向量p 可以由不共线的两个向量a ,b 线性表示.问题3.如果向量AB 、AD 、'AA 分别和向量a 、b 、c 共线,能否用向量a 、b 、c 表示向量'AC ?'AC =x a +y b +z c事实上,对空间任一向量'AC ,我们都可以构造出上述平行六面体,由此我们得到了空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对于空间任一向量p ,存在一个唯一的有序实数组x 、y 、z ,使 p =x a +y b +z c .证明:存在性:唯一性:设另有一组实数x’、y’、z’,使得p =x’a +y’b +z’c ,则有x a +y b +z c =x’a +y’b +z’c ,∴(x -x’ ) a +(y -y’ )b +( z -z’ )c =0.∵a 、b 、c 不共面,∴x -x’=y -y’=z -z’=0, 即x =x’且y =y’且z =z’.故实数x 、y 、z 是唯一的.由上述定理可知,空间任一向量均可以由空间不共面的三个向量生成,我们把{a、b、c}叫做空间的一个基底,a、b、c都叫做基向量.说明:(1)空间任意三个不共面的向量都可以构成空间的一个基底.(2)三个向量不共面就隐含着它们都不是零向量.(零向量与任意非零向量共线,与任意两个非零向量共面)(3)一个基底是不共面的三个向量构成的一个向量组,一个基向量是指基底中的某一个向量.由定理的证明过程可以得到下面的推论:设O、A、B、C是不共面的四个点,则对空间任一点P,都存在一个唯一的有序实数组x、y、z,使OCOP++=.xOBzyOA说明:若x+y+z=1,则根据共面向量定理得:P、A、B、C四点共面.四、课时小结1.空间向量基本定理也成为空间向量分解定理,它与平面向量基本定理类似,区别仅在于基底中多了一个向量,从而分解结果中多了以“项”。

《空间向量基本定理》专题精讲

《空间向量基本定理》专题精讲

《空间向量基本定理》专题精讲空间向量基本定理:(1)定理如果三个向量,,a b c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(,,)x y z ,使得x y z =++p a b c .(2)基底我们把定理中的{,,}a b c 叫做空间的一个基底,,,a b c 都叫做基向量.空间任意三个不共面的向量都可以构成空间的一个基底.(3)单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都为1,那么这个基底叫做单位正交基底,常用{,,}i j k 表示.(4)空间向量的正交分解由空间向量基本定理可知,对空间中的任意向量a ,均可以分解为三个向量,,x y z i j k ,使x y z =++a i j k ,像这样,把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.注意:(1)空间任意三个不共面的向量都可构成空间的一个基底.基底选定后,空间的所有向量均可由基底唯一表示;不同基底下,同一向量的表达式也有可能不同.(2)一个基底是一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.(3)由于零向量与任意一个非零向量共线,与任意两个不共线的非零向量共面,所以若三个向量不共面,就说明它们都不是零向量.典例1 已知{}123,,e e e 是空间的一个基底,且1232,OA =+-e e e 12332,OB =-++e e e 123OC =+-e e e ,且判断{,,}OA OB OC 能否作为空间的一个基底.思路:本题考查空间基底的概念,在理解空间任意三个不共面的向量都可构成空间的一个基底的概念的基础之上,通过分析计算进行判定.解析:设OA xOB yOC =+,则(1231223x +-=-++e e e e e )()31232y ++-e e e e ,即1231232(3)()(2)y x x y x y +-=-+++-e e e e e e ,∴31,2,21,y x x y x y -=⎧⎪+=⎨⎪-=-⎩此方程组无解.即不存在实数,x y ,使得OA xOB yOC =+,所以,,OA OB OC 不共面.所以{,,}OA OB OC 能作为空间的一个基底.典例2 在棱长为2的正方体1111ABCD A B C D -中,,E F 分别是1,DD BD 的中点,点G 在棱CD 上,且13CG CD =. (1)证明:1EF B C ⊥;(2)求EF 与1C G 所成角的余弦值.思路:本题考查空间基底的应用,利用空间的正交基底向量表示其他向量,经过分析计算、推理验证最终得到所要证明的结论.解析:(1)设1,,DA DC DD ===i j k ,则{,,}i j k 构成空间的一个正交基底. 所以1111()2222EF ED DF DA AB =+=-++=+k i j 111,2B C B B BC -=+=--k i k ,所以1EF B C ⋅=2211111()||||022222⎛⎫+-⋅--=-+= ⎪⎝⎭i j k i k i k ,所以1EF B C ⊥. (2)111111,2223EF C G C C CG =+-=+=--i j k k j,22222111111||||||||3222444EF ⎛⎫=+-=++= ⎪⎝⎭i j k i j k , 2222111||3,||||439EF C G ⎛⎫==--=+=+ ⎪⎝⎭k j k j 1440210,993C G ==, ∴111cos ,||EF CG EF C G EF CG ⋅==⋅111143⎛⎫⎛⎫+-⋅-- ⎪ ⎪==i j k k j。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量空间的基本性质与判定定理向量空间是线性代数中的重要概念,它有一些基本的性质和判定定理。

本文将介绍向量空间的定义、基本性质和判定定理,并探讨它们在数学和实际应用中的重要性。

一、向量空间的定义
向量空间是一种包含了向量的集合,满足特定的运算规则和性质。

具体而言,向量空间要满足以下三个条件:
1. 封闭性:对于向量空间V中的任意两个向量u和v,它们的线性组合u+v也属于V。

2. 结合律:对于向量空间V中的任意三个向量u、v和w,
(u+v)+w=u+(v+w)。

3. 数乘结合律:对于向量空间V中的任意标量c和任意向量v,有c(v+u)=cv+cu。

二、向量空间的基本性质
1. 零向量:向量空间V中存在一个特殊的向量0,称为零向量,满足对于任意向量v,v+0=v。

2. 负向量:对于向量空间V中的任意向量v,存在一个唯一的向量-v,满足v+(-v)=0。

3. 唯一性:向量空间V中的零向量和负向量是唯一的,即只有一个零向量和一个负向量。

三、向量空间的判定定理
判定一个集合是否构成向量空间的基本手段是验证其是否满足向量空间的定义和基本性质。

除此之外,还有一些判定定理可以用来简化判定过程。

1. 零向量的存在性:一个集合构成向量空间的必要条件是存在一个零向量。

2. 加法逆元的存在性:一个集合构成向量空间的必要条件是每个向量都存在一个加法逆元。

3. 闭性的必要性:一个集合构成向量空间的必要条件是对于任意两个向量,它们的线性组合也属于该集合。

4. 向量空间的非空性:一个集合构成向量空间的充分必要条件是该集合非空。

5. 零乘法:如果向量空间中允许定义零向量与非零向量相乘且结果为零向量,那么该集合不构成向量空间。

四、向量空间的重要性
向量空间的概念不仅仅在数学中具有重要性,也被广泛应用于物理学、计算机科学和工程学等领域。

在物理学中,向量空间可以用来描述物体的运动和力的作用;在计算机科学中,向量空间可以用来表示文本、图像等信息;在工程学中,向量空间可以用来描述电路和信号处理等问题。

通过研究向量空间的基本性质和判定定理,我们可以更好地理解和应用这一概念。

综上所述,向量空间是线性代数中的重要概念,具有基本的性质和判定定理。

它的定义和性质是学习和应用线性代数的基础,同时也在数学和实际应用中发挥着重要的作用。

因此,深入理解和掌握向量空间的基本性质和判定定理对于提升数学素养和解决实际问题具有重要意义。

相关文档
最新文档