现代心理与教育统计学课后题完整版78975

合集下载

张厚璨《现代心理与教育统计学》书后习题详...

张厚璨《现代心理与教育统计学》书后习题详...

5 91 85
6 48 68
7 55 47
8 82 76
9 32 25
10 75 56
解: (1)用积差相关方法解答如下: A X 86 58 B Y 83 52
7
2 2
被试 1 2
X
Y
XY
7138 3016
7396 3364
6889 2704
心理学统考专业资料店:/ 3 4 5 6 7 8 9 10 79 64 91 48 55 82 32 670 670 89 78 85 68 47 76 25 56 659 6241 4096 8281 2304 3025 6724 1024 5625 48080
QQ:382895420
fXc 67 248 342 416 752 1000 1258 672 432 242 153 84 ∑fXc=5666
X=
fXc = 5666 =36.09
N
157
1 * 157 64 Md=34.5+ 2 *5=36.46 37
答:平均数为 36.09,中数为 36.46。
QQ:382895420 51 48 43
解: i 40 51 48 43 182 T
i i

i i 2 i 2 i
i

40 90.5 51 91.0 48 92.0 43 89.5 90.8 182
S d
ST
解 : 因为5厘米组与10厘米组的标准差单位相同(都是厘米), 但平均数差异很大,5厘米组 标准差直接比较5厘米组和10厘米组的离散程度大小是无意义的,应采用差异系数比较 其离散程度的大小。具体计算如下: s 0.7 CV1 100% 100% 11.1% 6.3 s 1.2 CV2 100% 100% 8.39% 14.3 答:通过比较差异系数可知, 5厘米组的离散程度比10厘米组的离散程度大。

心理与教育统计学课后题答案

心理与教育统计学课后题答案

张厚粲现代心理与教育统计学第一章答案1名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。

(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体.(3)样本答:样本是从总体中抽取的一部分个体.(4)个体答:构成总体的每个基本单元。

(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。

(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示. (7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。

其描述性定义。

随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。

(8)统计量答:样本的特征值叫做统计量,又称作特征值。

(9)参数答:又称总体参数,是描述一个总体情况的统计指标。

(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。

2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

(2)学习心理与教育统计学有重要的意义。

①统计学为科学研究提供了一种科学方法。

科学是一种知识体系。

它的研究对象存在于现实世界各个领域的客观事实之中.它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。

要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。

统计学正是提供了这样一种科学方法。

统计方法是从事科学研究的一种必不可少的工具。

张厚粲现代心理与教育统计学答案完整版

张厚粲现代心理与教育统计学答案完整版

心理学解答心理学考研第一章1.名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。

(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。

(3)样本答:样本是从总体中抽取的一部分个体。

(4)个体答:构成总体的每个基本单元。

(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。

(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。

(7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。

其描述性定义。

随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。

(8)统计量答:样本的特征值叫做统计量,又称作特征值。

(9)参数答:又称总体参数,是描述一个总体情况的统计指标。

(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。

2.何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。

具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

(2)学习心理与教育统计学有重要的意义。

①统计学为科学研究提供了一种科学方法。

科学是一种知识体系。

它的研究对象存在于现实世界各个领域的客观事实之中。

它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。

要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。

统计学正是提供了这样一种科学方法。

统计方法是从事科学研究的一种必不可少的工具。

现代心理与教育统计学(张厚粲)课后习题答案

现代心理与教育统计学(张厚粲)课后习题答案

现代⼼理与教育统计学(张厚粲)课后习题答案现代⼼理与教育统计学(张厚粲)课后习题答案第⼀章绪论(略)第⼆章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业⼈数约有3180⼈8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异⽐10cm组的离散程度⼤8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第⼀四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该⽤肯德尔W系数。

6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适⽤条件是有30对以上数据,因此这份资料适⽤等级相关更合适。

7、这两列变量的等级相关系数为0.97。

8、上表中成绩与性别有很强的相关,相关系数为0.83。

9、r b=0.069⼩于0.2.成绩A与成绩B的相关很⼩,成绩A与成绩B的变化⼏乎没有关系。

10、测验成绩与教师评定之间有⼀致性,相关系数为0.87。

11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。

12、肯德尔⼀致性叙述为0.31。

第六章概率分布4、抽得男⽣的概率是0.355、出现相同点数的概率是0.1676、抽⼀⿊球与⼀⽩球的概率是0.24;两次皆是⽩球与⿊球的概率分别是0.36和0.167、抽⼀张K的概率是4/54=0.074;抽⼀张梅花的概率是13/54=0.241;抽⼀张红桃的概率是13/54=0.241;抽⼀张⿊桃的概率是13/54=0.241;抽不是J、Q、K的⿊桃的概率是10/54=0.1858、两个正⾯,两个反⾯的概率p=6/16=0.375;四个正⾯的概率p=1/16=0.0625;三个反⾯的概率p=4/16=0.25;四个正⾯或三个反⾯的概率p=0.3125;连续掷两次⽆⼀正⾯的概率p=0.18759、⼆项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级⼈数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5⾄10到题的概率是0.002,⽆法确定答对题数的平均数18、说对了5个才能说看清了⽽不是猜对的19、答对5题的概率是0.015;⾄少答对8题的概率为0.1220、⾄少10⼈被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,⼤于Z的概率是0.0013525、⼤于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,⼩于该χ2值以下概率是0.8628、χ2值是12.32,⼤于这个χ2值的概率是0.2129、χ2值是15.92,⼤于这个χ2值的概率是0.0730、两⽅差之⽐⽐⼩于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。

张厚粲《现代心理与教育统计学》第3版笔记和课后习题含考研真题详解(概率分布)【圣才出品】

张厚粲《现代心理与教育统计学》第3版笔记和课后习题含考研真题详解(概率分布)【圣才出品】
3 / 64
圣才电子书 十万种考研考证电子书、题库视频学习平台

1.离散分布与连续分布 这是依随机变量是否具有连续性来划分的概率分布类型。当随机变量只取孤立的数值 时,这种随机变量称做离散随机变量,即计数数据。离散随机变量的概率分布又称作离散分 布,可用分布函数加以数量化描述。在心理与教育统计中最常用的离散分布为二项分布,除 此 之 外 还 有 泊 松 分 布 ( Poisson distribution ) 和 超 几 何 分 布 ( hypergeometric distribution)等。 连续分布是指连续随机变量的概率分布,即测量数据的概率分布,它用连续随机变量的 分布函数描述它的分布规律。统计中最常用的连续随机变量的分布为正态分布,其他连续分 布如负指数分布、威布尔分布等。 2.经验分布与理论分布 这是依分布函数的来源而划分的分布类型。经验性分布(empirical distribution)是 指根据观察或实验所获得的数据而编制的次数分布或相对频率分布。经验分布往往是总体的 一个样本,它可对所研究的对象给以初步描述,并作为推论总体的依据。理论性分布 (theoretical distribution)有两个含义,一是随机变量概率分布的函数——数学模型, 二是指按某种数学模型计算出的总体的次数分布。 随机变量概率分布的性质,由它的特征数来表达。这些特征数主要有期望值,即理论平 均数;方差,即理论的标准差的平方。因此,在统计推论部分通常只用平均数和标准差,而 不采用其他集中量数与差异量数。 3.基本随机变量分布与抽样分布 这是依概率分布所描述的数据特征而划分的概率分布类型。心理与教现代心理与教育统 对 学 育 统 计 中 常 用 的 基 本 随 机 变 量 分 布 有 二 项 分 布 与 正 态 分 布 。 抽 样 分 布 ( sampling distribution)是样本统计量的理论分布。样本统计量有:平均数、两平均数之差、方差、

1 现代心理与教育统计学 课后答案(张厚粲 徐建平著 著) 北京师范大学出版社

1 现代心理与教育统计学 课后答案(张厚粲 徐建平著 著) 北京师范大学出版社

第一章1名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。

(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。

(3)样本答:样本是从总体中抽取的一部分个体。

(4)个体答:构成总体的每个基本单元。

(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。

(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。

(7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。

其描述性定义。

随机事件A在所有试验中发生的可能性大小的量值,称为事件A 的概率,记为P(A)。

(8)统计量答:样本的特征值叫做统计量,又称作特征值。

(9)参数答:又称总体参数,是描述一个总体情况的统计指标。

(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。

2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。

具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

(2)学习心理与教育统计学有重要的意义。

①统计学为科学研究提供了一种科学方法。

科学是一种知识体系。

它的研究对象存在于现实世界各个领域的客观事实之中。

它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。

要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。

统计学正是提供了这样一种科学方法。

统计方法是从事科学研究的一种必不可少的工具。

②心理与教育统计学是心理与教育科研定量分析的重要工具。

心理与教育统计学课后题答案心理统计学试题及答案

心理与教育统计学课后题答案心理统计学试题及答案

心理与教育统计学课后题答案心理统计学试题及答案张厚粲现代心理与教育统计学第一章答案张厚粲现代心理与教育统计学第一章答案第一章1 名词概念(1)随机变量)答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。

(2)总体)答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。

(3)样本)答:样本是从总体中抽取的一部分个体。

(4)个体)答:构成总体的每个基本单元。

(5)次数)是指某一事件在某一类别中出现的数目,又称作频数,用 f 表示。

(6)频率)答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。

(7)概率)答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。

其描述性定义。

随机事件 A 在所有试验中发生的可能性大小的量值,称为事件 A 的概率,记为P(A)。

(8)统计量)答:样本的特征值叫做统计量,又称作特征值。

(9)参数)答:又称总体参数,是描述一个总体情况的统计指标。

(10)观测值)答:随机变量的取值,一个随机变量可以有多个观测值。

2 何谓心理与教育统计学?学习它有何意义?何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。

具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

(2)学习心理与教育统计学有重要的意义。

①统计学为科学研究提供了一种科学方法。

科学是一种知识体系。

它的研究对象存在于现实世界各个领域的客观事实之中。

它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。

心理与教育统计学课后题答案

心理与教育统计学课后题答案

张厚粲现代心理与教育统计学第一章答案1名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。

(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。

(3)样本答:样本是从总体中抽取的一部分个体。

(4)个体答:构成总体的每个基本单元。

(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。

(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。

(7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。

其描述性定义。

随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。

(8)统计量答:样本的特征值叫做统计量,又称作特征值。

(9)参数答:又称总体参数,是描述一个总体情况的统计指标。

(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。

2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。

具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

(2)学习心理与教育统计学有重要的意义。

①统计学为科学研究提供了一种科学方法。

科学是一种知识体系。

它的研究对象存在于现实世界各个领域的客观事实之中。

它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。

要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。

统计学正是提供了这样一种科学方法。

统计方法是从事科学研究的一种必不可少的工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.名词解释随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本个体:构成总体的每个基本单元称为个体次数:指某一事件在某一类别中出现的数目,又成为频数,用f表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。

频率通畅用比例或百分数表示概率:又称机率。

或然率,用符号P表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率统计量:样本的特征值叫做统计量,又叫做特征值参数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观测值:在心理学研究中,一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据2.何谓心理与教育统计学?学习它有何意义心理与教育统计学是专门研究如何运用统计学原理和方法,搜集。

整理。

分析心理与教育科学研究中获得的随机数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。

3.选用统计方法有哪几个步骤?首先要分析一下试验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件4.什么叫随机变量?心理与教育科学实验所获得的数据是否属于随机变量随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量5.怎样理解总体、样本与个体?总体N:据有某种特征的一类事物的全体,又称为母体、样本空间,常用N表示,其构成的基本单元为个体。

特点:①大小随研究问题而变(有、无限)②总体性质由组成的个体性质而定样本n:从总体中抽取的一部分交个体,称为总体的一个样本。

样本数目用n表示,又叫样本容量。

特点:①样本容量越大,对总体的代表性越强②样本不同,统计方法不同总体与样本可以相互转化。

个体:构成总体的每个基本单元称为个体。

有时个体又叫做一个随机事件或样本点6.何谓次数、频率及概率次数f:随机事件在某一类别中出现的数目,又称为频数,用f表示频率:即相对次数,即某个事件次数被总事件除,用比例、百分数表示概率P:又称机率或然率,用P表示,指某事件在无限管侧重所能预料的相对出现次数。

估计值(后验):几次观测中出现m次,P(A)=m/n真实值(先验):特殊情况下,直接计算的比值(结果有限,出现可能性相等)7.统计量与参数之间有何区别和关系?参数:总体的特性称参数,又称总体参数,是描述一个总体情况的统计指标统计量:样本的特征值叫做统计量,又称特征值二者关系:参数是一个常数,统计量随样本而变化参数常用希腊字母表示,统计量用英文字母表示当试验次数=总体大小时,二者为同一指标当总体无限时,二者不同,但统计量可在某种程度上作为参数的估计值8.试举例说明各种数据类型之间的区别?9.下述一些数据,哪些是测量数据?哪些是计数数据?其数值意味着什么?17.0千克89.85厘米199.2秒93.5分是测量数据17人25本是计数数据10.说明下面符号代表的意义μ反映总体集中情况的统计指标,即总体平均数或期望值X反映样本平均数ρ表示某一事物两个特性总体之间关系的统计指标,相关系数r 样本相关系数σ反映总体分散情况的统计指标标准差s样本标准差β表示两个特性中体之间数量关系的回归系数Nn第二章统计图表1.统计分组应注意哪些问题?①分类要正确,以被研究对象的本质为基础②分类标志要明确,要包括所有数据③如删除过失所造成的变异数据,要遵循3σ原则2.直条图适合哪种资料?条形图也叫做直条图,主要用于表示离散型数据资料,即计数资料。

3.圆形图适合哪种资料又称饼图,主要用于描述间断性资料,目的是为显示各部分在整体中所占的比重大小,以及各部分之间的比较,显示的资料多以相对数(如百分数)为主4.将下列的反应时测定资料编制成次数分布表、累积次数分布表、直方图、次数多边形。

177.5 167.4 116.7 130.9 199.1 198.3 225.0 212.0 180.0 171.0 144.0 138.0 191.0 171.5 147.0 172.0 195.5 190.0 206.7 153.2 217.0 179.2 242.2 212.8 171.0 241.0 176.5 165.4 201.0 145.5 163.0 178.0 162.0 188.1 176.5 172.2 215.0 177.9 180.5193.0 190.5 167.3 170.5 189.5 180.1 217.0 186.3 180.0 182.5 171.0 147.0 160.5 153.2 157.5 143.5 148.5 146.4 150.5 177.1 200.1 137.5 143.7 179.5 185.5 181.6最大值242.2 最小值116.7 全距为125.5N=65 代入公式K=1.87(N-1)2/5=9.8 所以K取10定组距13 最低组的下限取115表2-1 次数分布表分组区间组中值(Xc)次数(f)频率(P)百分次数(%)232~ 238 2 0.03 3219~ 225 1 0.02 2206~ 212 6 0.09 9193~ 199 6 0.09 9180~ 186 14 0.22 22167~ 173 16 0.25 25154~ 160 5 0.08 8141~ 147 11 0.17 17128~ 134 3 0.05 5115~ 121 1 0.02 2合计65 1.00 100表2-2 累加次数分布表分组区间次数(f)向上累加次数向下累加次数实际累加次数(cf)相对累加次数实际累加次数(cf)相对累加次数232~ 2 65 1.00 2 0.03 219~ 1 63 0.97 3 0.05 206~ 6 62 0.95 9 0.14 193~ 6 56 0.86 15 0.23180~ 14 50 0.77 29 0.45 167~ 16 36 0.55 45 0.69 154~ 5 20 0.31 50 0.77 141~ 11 15 0.23 61 0.94 128~ 3 4 0.06 64 0.98 115~ 1 1 0.02 65 1.007.下面是一项美国高中生打工方式的调查结果。

根据这些数据用手工方式和计算方式个制作一个条形图。

并通过自己的体会说明两种制图方式的差别和优缺点打工方式高二(%)高三(%)看护孩子26.0 5.0 商店销售7.5 22.0 餐饮服务11.5 17.5 其他零工8.0 1.5左侧Y轴名称为:打工人数百分比下侧X轴名称为:打工方式第三章集中量数1.应用算术平均数表示集中趋势要注意什么问题?应用算术平均数必须遵循以下几个原则:①同质性原则。

数据是用同一个观测手段采用相同的观测标准,能反映某一问题的同一方面特质的数据。

②平均数与个体数据相结合的原则③平均数与标准差、方差相结合原则2.中数、众数、几何平均数、调和平均数个适用于心理与教育研究中的哪些资料?中数适用于:①当一组观测结果中出现两个极端数目时②次数分布表两端数据或个别数据不清楚时③要快速估计一组数据代表值时众数适用于:①要快速且粗略的求一组数据代表值时②数据不同质时,表示典型情况③次数分布中有两极端的数目时④粗略估计次数分布的形态时,用M-Mo作为表示次数分布是否偏态的指标(正态:M=Md=Mo;正偏:M>Md>Mo; 负偏:M<Md<Mo)⑤当次数分布中出现双众数时几何平均数适用于①少数数据偏大或偏小,数据的分布成偏态②等距、等比量表实验③平均增长率,按一定比例变化时调和平均数适用于①工作量固定,记录各被试完成相同工作所用时间②学习时间一定,记录一定时间内各被试完成的工作量3.对于下列数据,使用何种集中量数表示集中趋势其代表性更好?并计算它们的值。

⑴4 5 6 6 7 29 中数=6⑵3 4 5 5 7 5 众数=5⑶2 3 5 6 7 8 9 平均数=5.714.求下列次数分布的平均数、中数。

解:组中值由“精确上下限”算得;设估计平均值在35~组,即AM=37;中数所在组为35~,f MD=34,其精确下限Lb=34.5,该组以下各组次数累加为Fb=21+16+11+9+7=64fd 27X AM+37536.14N157i -=⨯=+⨯=∑MD N 157Fb 6422Md=Lb+i=34.5+536.6f 34--⨯⨯=5. 求下列四个年级的总平均成绩。

年级一 二 三 四 x90.5 91 92 94 n236318215200解:i iT in X 90.5236913189221594200X 91.72n236318215200⨯+⨯+⨯+⨯===+++∑∑6. 三个不同被试对某词的联想速度如下表,求平均联想速度被试 联想词数 时间(分)词数/分(Xi )A 13 2 13/2B 13 3 13/3 C1325 -解:C 被试联想时间25分钟为异常数据,删除H i11M 5.211123()N X 21313===+∑调和平均数7. 下面是某校几年来毕业生的人数,问平均增加率是多少?并估计10年后的毕业人数有多少。

年份 1978 1979 1980 1981 1982 1983 1984 1985 毕业人数 542 601 750 760 810 93010501120解:用几何平均数变式计算:Mg= 1.10925== 所以平均增加率为11% 10年后毕业人数为1120×1.1092510=3159人8. 计算第二章习题4中次数分布表资料的平均数、中数及原始数据的平局数。

解:组中值由“精确上下限”算得;设估计平均值在167~组,即设AM=173;中数所在组为167~,f MD =16,其精确下限Lb=166.5,该组以下各组次数累加为Fb=1+3+11+5=20分组区间 组中值(Xc )次数(f )d=(Xi-AM)/ifd 232~ 238 2 5 10 219~ 225 1 4 4 206~ 212 6 3 18 193~ 199 6 2 12 180~ 186 14 1 14 167~ 173 16 0 0 154~ 160 5 -1 -5 141~ 147 11 -2 -22 128~ 134 3 -3 -9 115~ 121 1 -4 -4 合计∑N=65∑fd=18平均值fd 18X AM+i=173+13176.6N65=⨯⨯=∑中数Md N 65Fb 2022Md=Lb+i=166.5+167.3f 16--⨯= 原始数据的平均数=176.8第四章 差异量数1. 度量离中趋势的差异量数有哪些?为什么要度量离中趋势?度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差等等。

相关文档
最新文档