数学建模logistic人口增长模型

合集下载

数学建模在人口增长中的应用

数学建模在人口增长中的应用

数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。

面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。

数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。

1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。

其中,最常用的人口增长模型之一是指数增长模型。

指数增长模型假设人口增长的速度与当前人口数量成正比。

简单来说,人口数量每过一段时间就会翻倍。

这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。

2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。

通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。

除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。

这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。

3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。

通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。

例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。

此外,数学建模还可以用于评估不同人口政策的长期影响。

通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。

4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。

通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。

这些模型可以为城市规划、资源配置和社会发展提供重要参考。

在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。

例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。

基于人口增长模型的数学建模(DOC)

基于人口增长模型的数学建模(DOC)

数学建模论文题目:人口增长模型的确定专业、姓名:专业、姓名:专业、姓名:人口增长模型摘要随着人口的增加,人们越来越认识到资源的有限性,人口与资源之间的矛盾日渐突出,人口问题已成为世界上最被关注的问题之一。

问题给出了1790—1980年间美国的人口数据,通过分析近两百年的美国人口统计数据表,得知每10年的人口数的变化。

预测美国未来的人口。

对于问题我们选择建立Logistic模型(模型2)现实中,影响人口的因素很多,人口也不能无限的增长下去,Logistic 模型引进常数N 表示自然资源和环境所能承受的最大人口数,因而得到了一个贝努利方程的初值问题公式,从实际效果来看,这个公式较好的符合实际情况的发展,随着时间的递增,人口不是无限增长的,而是趋近于一个数,这个即为最大承受数。

我们还同时对数据作了深入的探讨,作数据分析预测,通过观测比较选择一个比较好的拟合模型(模型3)进行预测。

预测接下来的每隔十年五次人口数量,分别为251.4949, 273.5988 , 293.4904 , 310.9222 325.8466。

关键词:人口预测Logistic模型指数模型一、问题重述1790-1980年间美国每隔10年的人口记录如下表所示。

试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。

如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。

二、问题分析人口预测是一个相当复杂的问题,影响人口增长除了人口数与可利用资源外,还与医药卫生条件的改善,人们生育观念的变化等因素有关…….可以采取几套不同的假设,做出不同的预测方案,进行比较。

人口预测可按预测期长短分为短期预测 (5年以下)、中期预测(5~20年)和长期预测(20~50年)。

在参数的确定和结果讨论方面,必须对中短期和长期预测这两种情况分开讨论。

中短期预测中所用的各项参数以实际调查所得数据为基础,根据以往变动趋势可较准确加以估计,推算结果容易接近实际,现实意义较大。

(完整版)数学建模logistic人口增长模型

(完整版)数学建模logistic人口增长模型

Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。

分析那个时间段数据预测的效果好?并结合中国实情分析原因。

表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。

基于logistic模型对中国未来人口的预测分析

基于logistic模型对中国未来人口的预测分析

基于logistic模型对中国未来人口的预测分析中国人口是世界上最多的国家之一,人口数量的变化对中国社会经济的发展具有重大影响。

本文将基于logistic模型对中国未来人口的预测分析进行探讨。

我们需要了解logistic模型的基本原理。

logistic模型是一种常用的人口增长模型,它基于人口增长的两个关键因素:增长速率和容量。

增长速率表示人口每年的增长率,容量表示人口可以达到的最大数量。

logistic模型的基本形式如下:N(t) = K / [1 + (K/N0 - 1) * exp(-r * t)]N(t)表示时间t时刻的人口数量,K表示最大人口容量,N0表示初始人口数量,r表示人口增长速率。

在对中国未来人口进行预测分析时,我们需要确定模型的参数。

初始人口数量可以根据历史数据进行估计。

人口增长速率可以根据过去几十年的人口增长率进行计算。

最大人口容量需要根据中国国情和可持续发展的要求进行估算。

中国的人口增长速率在过去几十年一直处于较高水平,但随着经济社会发展和计划生育政策的实施,人口增长速率逐渐趋缓。

在未来,可以预计中国的人口增长速率将继续下降。

根据logistic模型对中国未来人口的预测分析,可以得出以下结论:随着时间的推移,中国人口数量将继续增长,但增长速率将逐渐减缓。

最终,人口数量将趋于一个稳定的最大容量,同时与资源和环境保持平衡。

需要注意的是,logistic模型是基于过去数据进行的预测分析,未来人口发展受到许多因素的影响,例如经济、政策、社会文化等,这些因素可能会引起人口变动的不确定性。

基于logistic模型的预测分析可以为中国未来人口发展提供一定的指导和参考,但在制定政策和决策时,还需要综合考虑多种因素,并及时更新模型参数,以保证预测结果的准确性和可靠性。

人口增长模型14

人口增长模型14

人口增长模型简介人口增长模型是指根据人口变化规律和影响因素建立的数学模型,通过模拟和预测不同条件下的人口数量变化。

人口增长是一个复杂的系统,受到多方面因素的影响,包括出生率、死亡率、移民率等。

建立一个合理的人口增长模型对于政府制定人口政策、规划城市发展具有重要意义。

历史人口增长模型的研究可以追溯至18世纪。

英国数学家马尔萨斯在其著作《人口论》中首次提出了人口增长问题。

马尔萨斯认为人口会呈指数增长,而生产食物的增长是线性的,因此会导致人口增长超过食物供给能力,最终出现人口过剩。

这种观点引发了很多后续研究者对人口增长规律的探讨。

人口增长模型的类型基于不同的假设和数学方法,人口增长模型可以分为多种类型,其中比较常见的包括:马尔萨斯模型马尔萨斯模型是最早的人口增长模型之一。

它假设人口呈指数增长,而食物生产是线性增长。

这导致了人口的快速增长会超出食物供给能力,最终导致人口崩溃。

Logistic模型Logistic模型在马尔萨斯模型的基础上加入了环境资源有限的观点,即当资源接近极限时,人口增长率会减缓,最终趋于稳定。

这种模型更贴近实际情况,能更好地解释人口的增长规律。

Lotka-Volterra模型Lotka-Volterra模型是一种描述群体动态的模型,常用于描述捕食者-猎物关系。

将其应用在人口增长模型中,可以考虑到更多的因素对人口数量的影响,如资源竞争、捕食等。

应用人口增长模型在人口学、经济学、城市规划等领域有着广泛的应用。

通过建立合理的模型,可以预测人口数量、优化资源配置、制定人口政策等。

特别是在城市规划领域,人口增长模型可以帮助规划者更好地调整城市结构,提高城市的可持续发展性。

结语人口增长模型是对人口变化规律的抽象和数学化,它有助于我们更好地理解人口增长的规律性,为未来的决策提供科学依据。

通过不断优化和改进人口增长模型,我们可以更好地应对人口问题带来的挑战,实现人口与资源的平衡发展。

以上是对人口增长模型的简要介绍,希望能为您带来一些启发。

Logistic模型人口增长到一定数量后-Read

Logistic模型人口增长到一定数量后-Read

tr
N (t) rm p(s, t)ds 0
0
f (t)
t
生育率的分解
k(r, t) ~ (女性)性别比函数
b(r, t ) ~ (女性)生育数
[r1 , r2 ] ~ 育龄区间
f (t ) r2b(r, t )k(r, t ) p(r, t )dr r1
h(r,t) h(r)
1
,
s1 s2
12
,
,
s1
s2 sn1
n1 1

T
• 若L矩阵存在bi, bi+1>0, 则 k 1, k 2,3, , n

lim
k
x(k )
1k

cx*
,
c是由bi,
si,
x(0)决定的常数
解 释
x(k) Lk x(0) L对角化 L P[diag(1 , n )]P 1
2、阻滞增长模型(Logistic模型)
此模型最初由19世纪比利时社会学家P.F.Verhulst提出的 人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大
模型假设
1、地球上的资源有限,不妨设为1;
2、一个人的正常生存需要占用资源(这里事 实上也内在的假定了地球的极限承载人口 数有限);
~ 各年龄组种群 数量不变
=1时 Lx* x* x* 1, s1, s1s2, s1s2 sn1 T
b1

s1

L



0
b2 0
s2

bn1 0
0
sn1

中国人口增长预测-数学建模

中国人口增长预测-数学建模

中国人口增长的预测和人口的结构分析摘要本文是在已知国家政策和人口数据的前提下对未来人口的发展进行预测和评估,选择了两种模型分别对人口发展的短期和长期进行预测。

模型一中我们在人口阻滞增长模型logistic模型的基础上进行改进,弥补了logistic原始模型仅仅能表示环境对人口发展趋势影响的缺陷,加入了社会因素的影响作为改进,保证了logistic改进模型的有效性和短期预测的正确性。

多次运用拟合的方法(非线性单元拟合,线性多元拟合)对数据进行整合,得到的改进模型对短期预测具有极高的准确性,证明了我们的修正方式与模型改进具有一定的正确性。

模型二中我们分别考虑了城、乡、镇人口的发展情况,利用不同年龄段存活率和死亡率的不同,采用迭代的方式也就是Leslie矩阵的方式对人口发展进行预测,迭代的方式不同于拟合,具有逐步递进的准确性,在参数正确的前提下,能够保证每一年得到的人口都有正确性,同时我们分男女两方面来考虑模型,不仅仅用静态的男女比例来估算人口总数,具有更高的准确性。

然而Leslie模型涉及的参数较多,如果采用动态模型的方式,计算量过大,我们首先用均值的方式对模型进行简化,同样得到迭代矩阵后的人口数值,发展趋势与预测相同,能够很好的预测中国人口的长期发展,同时,由于Leslie矩阵涉及多个参数,所以我们用最终的结果来表征老龄化程度,城乡比,抚养比等多个评价社会发展的参数,得到了较好的估计值,使模型在估算人口的基础上得到了推广和应用。

通过logistic改进模型和Leslie模型我们分别对中国人口发展进行短期和中长期预测,均能得到很好的效果,说明了我们的模型在适用范围内的准确性和实用性。

关键词:人口发展预测;logistic模型改进;参数拟合;Leslie迭代模型;一、问题重述中国是世界上人口最多的发展中国家, 人口问题始终是制约我国发展的关键因素之一,人口众多、资源相对不足、环境承载能力较弱是中国现阶段的基本国情,短时间内难以改变。

数学建模-人口增长模型

数学建模-人口增长模型

数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。

人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。

本文将从多个方面来探究人口增长模型。

一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。

由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。

第二阶段:传统社会阶段,人口增长迅速。

由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。

第三阶段:现代社会阶段,人口增长开始放缓。

由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。

另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。

人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。

它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。

目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。

2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。

3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。

4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。

该模型可广泛应用于国家人口预测、社会福利计划等领域。

人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。

1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Logistic 人口发展模型
一、题目描述
建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。

分析那个时间段数据预测
的效果好并结合中国实情分析原因。

表1 各年份全国总人口数(单位:千万)
二、建立模型
阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为
x 的函数)(x r 。

则它应是减函数。

于是有:
)0(,)(x x x x r dt
dx
== (1)
对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )
0,0()(>>-=s r sx
r x r (2) 设自然资源和环境条件所能容纳的最大人口数量
m
x ,当
m
x x =时人口不再增长,即增长率
)(=m x r ,代入(2)式得
m x r
s =
,于是(2)式为
)1()(m
x x r x r -
= (3)
将(3)代入方程(1)得:
⎪⎩
⎪⎨⎧=-=0
)0()
1(x x x x rx dt
dx
m (4)
解得:
rt m
m
e x x x t x --+=
)1(
1)(0
(5)
三、模型求解
用Matlab 求解,程序如下: t=1954:1:2005;
x=[,,,,66,,,,,,,,,,,,83,,,,,,,95,,,,,,,,,,,,,,,,,,,,,,,,,,,,];
x1=[,,,,66,,,,,,,,,,,,83,,,,,,,95,,,,,,,,,,,,,,,,,,,,,,,,,,,];
x2=[,,,66,,,,,,,,,,,,83,,,,,,,95,,,,,,,,,,,,,,,,,,,,,,,,,,,,];
dx=(x2-x1)./x2; a=polyfit(x2,dx,1);
r=a(2),xm=-r/a(1)%求出xm 和r x0=;
f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');
title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)
解得:x(m)= (千万),r= (年),x(0)=
得到1954-2005实际人口与理论值的结果:
根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。

过去曾有专家预测(按照总和生育率),我国的人口峰值在2045年将达到16亿人。

根据本课题专家研究,随着我国经济社会发展和计划生育工作加强,20世纪90年代中后期,总和生育率已降到左右,并稳定至今。

实现全面建设小康社会人均GDP达到3000美元的目标,要求把总和生育率继续稳定在左右。

按此预测,总人口将于2010年、2020年分别达到亿人和亿人,2033年前后达到峰值15亿人左右(见图1)。

劳动年龄人口规模庞大。

我国15-64岁的劳动年龄人口2000年为亿人,2016年将达到高峰亿人,比发达国家劳动年龄人口的总和还要多。

在相当长的时期内,中国不会缺少劳动力,但考虑到素质、技能等因素,劳动力结构性短缺还将长期存在。

同时,人口与资源、环境的矛盾越来越突出。

而据模型求解:
2010年人口:x(2010)= (千万)专家预测亿误差为%
2020年人口:x(2020)= (千万)专家预测亿误差为%
2033年人口:x(2033)= (千万)专家预测15亿误差为%
2045年人口:x(2045)= (千万)专家预测16亿误差为%
五、预测
1. 1954-2005总人口数据建立模型:
r= xm=
2010年人口:x(2010)= (千万)专家预测亿误差为% 2020年人口:x(2020)= (千万)专家预测亿误差为% 2033年人口:x(2033)= (千万)专家预测15亿误差为% 2045年人口:x(2045)= (千万)专家预测16亿误差为% 2. 1963-2005总人口数据建立模型:
r= xm=
2010年人口:x(2010)= (千万)专家预测亿误差为% 2020年人口:x(2020)= (千万)专家预测亿误差为%
2033年人口:x(2033)= (千万)专家预测15亿误差为%
2045年人口:x(2045)= (千万)专家预测16亿误差为%
总人口数据建立模型:
r= xm=
2010年人口:x(2010)= (千万)专家预测亿误差为%
2020年人口:x(2020)= (千万)专家预测亿误差为%
2033年人口:x(2033)= (千万)专家预测15亿误差为%
2045年人口:x(2045)= (千万)专家预测16亿误差为%
总体来看,1980-2005这一组数据拟合出的人口模型比较好,即与已有数据吻合,又与专家预测误差较小。

从历史原因来分析:1954年之后的1959-1961年间,有三年自然灾害故而使得实际人口数据与估计有所偏颇。

1960年之后为过渡时期。

1983年之后开始实施“计划生育政策”,一直至今,所以1980-2005年间的数据与预测分析最好。

相关文档
最新文档