常用的基本求导公式
24个基本求导公式

24个基本求导公式1.常数dy/dx = 0当函数为常数时,其斜率为0。
2.变量dy/dx = 1对于x而言,其斜率始终为13.幂函数dy/dx = nx^(n-1)对于幂函数y=x^n而言,其导数是n乘以x的(n-1)次方。
4.指数函数dy/dx = a^x * ln(a)对于指数函数y = a^x而言,其导数等于底数a的x次方乘以常数ln(a)。
5.对数函数dy/dx = 1 / (x * ln(a))对于对数函数y = log_a(x)而言,其导数是1除以x乘以底数a的对数。
6.正弦函数dy/dx = cos(x)对于正弦函数y = sin(x)而言,其导数等于余弦函数cos(x)。
7.余弦函数dy/dx = -sin(x)对于余弦函数y = cos(x)而言,其导数等于负的正弦函数-sin(x)。
8.正切函数dy/dx = sec^2(x)对于正切函数y = tan(x)而言,其导数等于正切函数的平方sec^2(x)。
9.余切函数dy/dx = -csc^2(x)对于余切函数y = cot(x)而言,其导数等于负的余切函数的平方-csc^2(x)。
10.双曲正弦函数dy/dx = cosh(x)对于双曲正弦函数y = sinh(x)而言,其导数等于双曲余弦函数cosh(x)。
11.双曲余弦函数dy/dx = sinh(x)对于双曲余弦函数y = cosh(x)而言,其导数等于双曲正弦函数sinh(x)。
12.双曲正切函数dy/dx = sech^2(x)对于双曲正切函数y = tanh(x)而言,其导数等于双曲正切函数的平方sech^2(x)。
13.双曲余切函数dy/dx = -csch^2(x)对于双曲余切函数y = coth(x)而言,其导数等于负的双曲余切函数的平方-csch^2(x)。
14.反正弦函数dy/dx = 1 / √(1-x^2)对于反正弦函数y = arcsin(x)而言,其导数等于1除以根号(1-x^2)。
16个基本导数公式推导过程

16个基本导数公式推导过程推导过程如下:1.常数函数:f(x)=c求导结果:f'(x)=0。
证明过程:由导数定义可得,当函数为常数时,无论x取任何值,函数的增量都为0,即f(x + Δx) - f(x) = 0。
所以,f'(x) =lim(Δx→0) [f(x + Δx) - f(x)] / Δx = 0。
2.幂函数:f(x)=x^n,其中n为正整数。
求导结果:f'(x) = nx^(n-1)。
证明过程:利用定义求导。
计算f(x + Δx) = (x + Δx)^n与f(x) = x^n的差值,然后除以Δx,当Δx趋于0时求极限。
利用二项式展开,可以得出f'(x) = nx^(n-1)。
3.指数函数:f(x)=e^x。
求导结果:f'(x)=e^x。
证明过程:由指数函数的性质可知,e^0 = 1,且(d(e^x)/dx) = e^x。
因此,可以据此推导出f'(x) = e^x。
4. 对数函数:f(x) = ln(x)。
求导结果:f'(x)=1/x。
证明过程:由导数定义可得f'(x) = lim(Δx→0) [ln(x + Δx) - ln(x)] / Δx。
利用对数的性质,将差值化简为ln((x + Δx)/x),再除以Δx并取极限,最终得出f'(x) = 1/x。
5. 正弦函数:f(x) = sin(x)。
求导结果:f'(x) = cos(x)。
证明过程:利用极限定义求导。
计算f(x + Δx) - f(x) = sin(x + Δx) - sin(x),然后除以Δx并取极限。
应用三角函数的合角公式并利用三角恒等式可得f'(x) = cos(x)。
6. 余弦函数:f(x) = cos(x)。
求导结果:f'(x) = -sin(x)。
证明过程:同样应用极限定义。
计算f(x + Δx) - f(x) = cos(x + Δx) - cos(x),然后除以Δx并取极限。
常用的基本求导公式

常用的基本求导公式1. 乘法法则(Product Rule):如果y = u(x)v(x),其中u(x)和v(x)是关于x的函数,则y' = u'v + uv'。
2. 商法则(Quotient Rule):如果y = u(x)/v(x),其中u(x)和v(x)是关于x的函数,则y' = (u'v - uv')/v²。
3. 链式法则(Chain Rule):如果y=f(g(x)),其中g(x)是关于x的函数,f(u)是关于u的函数,则y'=f'(g(x))*g'(x)。
4.幂函数法则:如果y=xⁿ,其中n为常数,则y'=n*xⁿ⁻¹。
5.指数函数法则:如果y = aˣ,其中a为常数,x为变量,则y' = ln(a) * aˣ。
6.对数函数法则:如果y = logₐ(x),其中a为常数,x为变量,则y' = (1/ln(a)) * (1/x)。
7.反三角函数法则:(1) 如果y = sin⁻¹(x),则y' = 1/√(1-x²)。
(2) 如果y = cos⁻¹(x),则y' = -1/√(1-x²)。
(3) 如果y = tan⁻¹(x),则y' = 1/(1+x²)。
8.双曲函数法则:(1) 如果y = sinh(x),则y' = cosh(x)。
(2) 如果y = cosh(x),则y' = sinh(x)。
(3) 如果y = tanh(x),则y' = sech²(x)。
9.导数的性质:(1) 常数的导数为0,即d/dx(c) = 0。
(2) 变量的导数为1,即d/dx(x) = 1(3) 导数的线性性质,即d/dx(c₁f(x) + c₂g(x)) = c₁f'(x) +c₂g'(x),其中c₁和c₂为常数,f(x)和g(x)是关于x的函数。
常用导数基本公式

常用导数基本公式导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
在求导过程中,有一些常用的基本公式可以帮助我们简化计算。
本文将介绍一些常用的导数基本公式,并解释它们的应用。
1. 常数函数的导数对于常数函数f(x) = c,其中c 是一个常数,其导数为零,即f'(x) = 0。
这是因为常数函数在任何点处的斜率都为零,不随x 的变化而变化。
2. 幂函数的导数对于幂函数f(x) = x^n,其中n 是一个常数,其导数为f'(x) = nx^(n-1)。
这个公式可以通过求导的定义和幂函数的性质推导得到。
例如,对于 f(x) = x^3,其导数为 f'(x) = 3x^2。
3. 指数函数的导数对于指数函数 f(x) = a^x,其中 a 是一个正常数且a ≠ 1,其导数为 f'(x) = a^x * ln(a)。
这个公式可以通过对指数函数的求导过程推导得到。
4. 对数函数的导数对于自然对数函数 f(x) = ln(x),其导数为 f'(x) = 1/x。
这个公式可以通过对自然对数函数的求导过程推导得到。
5. 三角函数的导数对于正弦函数f(x) = sin(x),其导数为f'(x) = cos(x)。
对于余弦函数 f(x) = cos(x),其导数为 f'(x) = -sin(x)。
这个公式可以通过对三角函数的求导过程推导得到。
6. 反三角函数的导数对于反正弦函数f(x) = arcsin(x),其导数为f'(x) = 1/√(1-x^2)。
对于反余弦函数 f(x) = arccos(x),其导数为 f'(x) = -1/√(1-x^2)。
这个公式可以通过对反三角函数的求导过程推导得到。
7. 求和与差的导数对于函数f(x) = u(x) ± v(x),其中 u(x) 和 v(x) 是可导函数,其导数为f'(x) = u'(x) ± v'(x)。
一般常用求导公式

一般常用求导公式求导在高中数学中已经学过,随着大学数学的深入学习,求导也逐渐成为了高等数学的一大难点之一。
因此,在这里,本文将介绍一些一般常用的求导公式,以便大家在学习中更加轻松地掌握求导的技巧。
基础求导公式1.f(x) = C,其中C是常数,那么f’(x) = 0。
2.f(x) = x^n,其中n为任意实数,那么f’(x) = nx^(n-1)。
3.f(x) = e^x,那么f’(x) = e^x。
4.f(x) = a^x,其中a是常数且a>0且a!=1,那么f’(x) = a^x * ln(a)。
5.f(x) = ln(x),那么f’(x) = 1/x。
基本求导公式1.f(x) = sin(x),那么f’(x) = cos(x)。
2.f(x) = cos(x),那么f’(x) = -sin(x)。
3.f(x) = tan(x),那么f’(x) = sec^2(x)。
4.f(x) = cot(x),那么f’(x) = -csc^2(x)。
5.f(x) = sec(x),那么f’(x) = sec(x) * tan(x)。
6.f(x) = csc(x),那么f’(x) = -csc(x) * cot(x)。
常见组合函数求导公式1.f(x) = u^n,其中u为关于x的函数,n为任意实数,那么f’(x) = n *u^(n-1) * u’。
2.f(x) = e^u,其中u为关于x的函数,那么f’(x) = u’ * e^u。
3.f(x) = ln(u),其中u为关于x的函数,那么f’(x) = u’ / u。
4.f(x) = a^u,其中a是常数且a>0且a!=1,u为关于x的函数,那么f’(x) = a^u * ln(a) * u’。
5.f(x) = sin(u),其中u为关于x的函数,那么f’(x) = cos(u) * u’。
6.f(x) = cos(u),其中u为关于x的函数,那么f’(x) = -sin(u) * u’。
导数公式大全

导数公式大全导数公式是微积分中非常重要的一部分,它可以用来计算函数在其中一点处的斜率。
以下是一些常见的导数公式:1.基本导数公式:- 总幂法则:如果 $f(x) = x^n$,其中 $n$ 是任意实数,则 $f'(x) = nx^{n-1}$- 幂函数常数因子法则:如果 $f(x) = cx^n$,其中 $c$ 是常数,$n$ 是任意实数,则 $f'(x) = cnx^{n-1}$-和差法则:如果$f(x)=u(x)+v(x)$,其中$u(x)$和$v(x)$可导,则$f'(x)=u'(x)+v'(x)$- 积法则:如果 $f(x) = u(x) \cdot v(x)$,其中 $u(x)$ 和$v(x)$ 可导,则 $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$ - 商法则:如果 $f(x) = \frac{u(x)}{v(x)}$,其中 $u(x)$ 和$v(x)$ 可导,且 $v(x) \neq 0$,则 $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$2.指数函数与对数函数的导数:- 指数函数:如果 $f(x) = a^x$,其中 $a$ 是常数且 $a > 0$,则$f'(x) = a^x \ln(a)$-自然指数函数:如果$f(x)=e^x$,则$f'(x)=e^x$- 对数函数:如果 $f(x) = \log_a(x)$,其中 $a$ 是常数且 $a >0$,则 $f'(x) = \frac{1}{x \ln(a)}$- 自然对数函数:如果 $f(x) = \ln(x)$,则 $f'(x) =\frac{1}{x}$3.三角函数的导数:- 正弦函数:如果 $f(x) = \sin(x)$,则 $f'(x) = \cos(x)$- 余弦函数:如果 $f(x) = \cos(x)$,则 $f'(x) = -\sin(x)$- 正切函数:如果 $f(x) = \tan(x)$,则 $f'(x) = \sec^2(x)$- 反正弦函数:如果 $f(x) = \arcsin(x)$,则 $f'(x) =\frac{1}{\sqrt{1-x^2}}$- 反余弦函数:如果 $f(x) = \arccos(x)$,则 $f'(x) = -\frac{1}{\sqrt{1-x^2}}$- 反正切函数:如果 $f(x) = \arctan(x)$,则 $f'(x) =\frac{1}{1+x^2}$4.常用函数的导数:-常数函数:如果$f(x)=c$,其中$c$是常数,则$f'(x)=0$- 反函数:如果 $f(x)$ 的反函数为 $f^{-1}(x)$,则 $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$-绝对值函数:如果$f(x)=,x,$,则$f'(x)$可以分为两段来计算,当$x>0$时,$f'(x)=1$;当$x<0$时,$f'(x)=-1$这里列出的只是一些常见的导数公式,实际上导数还可以通过链式法则、隐函数求导法则以及高阶导数等方法计算。
求导基本公式16个

求导基本公式16个求导是微积分中的重要概念,用来求函数的变化率和斜率。
在求导过程中,有一些基本公式是非常重要的,它们可以帮助我们简化计算。
下面是16个常用的求导基本公式:1. 常数规则:对于常数c,导数为0。
即:d/dx(c) = 0。
2. 变量规则:对于自变量x,导数为1。
即:d/dx(x) = 1。
3. 幂规则:对于幂函数y = x^n(n为常数),导数为ny^(n-1)。
即:d/dx(x^n) = nx^(n-1)。
4. 指数函数规则:对于以e为底的指数函数y = e^x,导数为e^x。
即:d/dx(e^x) = e^x。
5. 对数函数规则:对于以a为底的对数函数y = log_a(x),导数为1/(x·ln(a))。
即:d/dx(log_a(x)) = 1/(x·ln(a))。
6. 乘法法则:对于函数y = u(x)v(x),导数为u'(x)v(x) +u(x)v'(x)。
即:d/dx(uv) = u'v + uv'。
7. 除法法则:对于函数y = u(x)/v(x),导数为(u'(x)v(x) -u(x)v'(x))/(v(x))^2。
即:d/dx(u/v) = (u'v - uv')/(v^2)。
8. 链式法则:对于复合函数y = f(g(x)),导数为f'(g(x))·g'(x)。
即:d/dx(f(g(x))) = f'(g(x))·g'(x)。
9. 正弦函数法则:对于正弦函数y = sin(x),导数为cos(x)。
即:d/dx(sin(x)) = cos(x)。
10. 余弦函数法则:对于余弦函数y = cos(x),导数为-sin(x)。
即:d/dx(cos(x)) = -sin(x)。
11. 正切函数法则:对于正切函数y = tan(x),导数为sec^2(x)。
常用导数求导公式

常用导数求导公式导数是微积分中的一个重要概念,它用于描述函数在其中一点的变化率。
求导是求解导数的过程,常用导数求导公式是求导常用的一些规则和技巧的总结。
下面是一些常用导数求导公式的介绍:一、基本初等函数的导数公式:1.常数函数的导数为0:f(x)=c,其中c为常数,f'(x)=0。
2. 幂函数的导数:f(x) = x^n,其中n为任意实数,f'(x) =nx^(n-1)。
3.指数函数的导数:f(x)=e^x,其中e为自然对数的底数,f'(x)=e^x。
4. 对数函数的导数:f(x) = ln(x),其中ln表示以e为底的对数,f'(x) = 1/x。
5.三角函数的导数:- 正弦函数的导数:f(x) = sin(x),f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),f'(x) = sec^2(x)。
- 反正弦函数的导数:f(x) = asin(x),f'(x) = 1/√(1-x^2)。
- 反余弦函数的导数:f(x) = acos(x),f'(x) = -1/√(1-x^2)。
- 反正切函数的导数:f(x) = atan(x),f'(x) = 1/(1+x^2)。
二、基本初等函数的组合求导公式:1.和、差、积的求导:若f(x)和g(x)是可导函数,则有以下运算法则:-(f(x)±g(x))'=f'(x)±g'(x)。
-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
2.商的求导:若f(x)和g(x)是可导函数,且g(x)≠0,则有以下运算法则:-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/[g(x)]^2三、复合函数求导:若y=f(g(x))是由两个函数f(x)和g(x)复合而成的函数,则求导的链式法则如下:y'=f'(g(x))*g'(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n nnx x ;一般地,1)(-='αααx x 。
特别地:1)(='x ,x x 2)(2=',21)1(xx -=',xx 21)(='。
⑶ xxe e =')(;一般地,)1,0( ln )(≠>='a a a aa xx。
⑷ xx 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a。
2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±;(Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。
3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα; (2) C x dx x +=⎰||ln 1; C e dx e x x +=⎰; )1,0( ln ≠>+=⎰a a C aa dx a x x; (3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分()()|()()bb a af x dx F x F b F a ==-⎰⑴⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k)()()]()([2121⑵ 分部积分法设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则⎰⎰-=bab abax du x v x v x u x dv x u )()()()()()(6、线性代数 特殊矩阵的概念(1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=dh cf dg ce bh af bg ae h gf ed c b a AB 7、MATLAB 软件计算题例6 试写出用MATLAB 软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。
解:>>clear;>>syms x y;>>y=log(sqrt(x+x^2)+exp(x));>>dy=diff(y,2)例:试写出用MATLAB 软件求函数)e ln(x x y +=的一阶导数y '的命令语句。
>>clear;>>syms x y;>>y=log(sqrt(x)+exp(x)); >>dy=diff(y)例11 试写出用MATLAB 软件计算定积分⎰21d e 13x xx 的命令语句。
解:>>clear;>>syms x y;>>y=(1/x)*exp(x^3); >>int(y,1,2) 例 试写出用MATLAB 软件计算定积分⎰x xx d e 13的命令语句。
解:>>clear;>>syms x y;>>y=(1/x)*exp(x^3); >>int(y)MATLAB 软件的函数命令典型例题例1 设某物资要从产地A 1,A 2,A 3调往销地B 1,B 2,B 3,B 4,运输平衡表(单位:吨)和运价表(单位:百元/吨)如下表所示:(1)用最小元素法编制的初始调运方案,(2)检验上述初始调运方案是否最优,若非最优,求最优调运方案,并计算最低运输总费用。
解:用最小元素法编制的初始调运方案如下表所示:运输平衡表与运价表找空格对应的闭回路,计算检验数:11λ=1,12λ=1,22λ=0,24λ=-2已出现负检验数,方案需要调整,调整量为1 调整后的第二个调运方案如下表:求第二个调运方案的检验数:11λ=-1已出现负检验数,方案需要再调整,调整量为2 调整后的第三个调运方案如下表:运输平衡表与运价表求第三个调运方案的检验数:12λ=2,14λ=1,22λ=2,23λ=1,31λ=9,33λ=12所有检验数非负,故第三个调运方案最优,最低运输总费用为:2×3+5×3+1×1+3×8+6×4+3×5=85(百元)例2 某物流公司下属企业经过对近期销售资料分析及市场预测得知,该企业生产的甲、乙、丙三种产品,均为市场紧俏产品,销售量一直持续上升经久不衰。
今已知上述三种产品的单位产品原材料消耗定额分别为4公斤、4公斤和5公斤;三种产品的单位产品所需工时分别为6台时、3台时和6台时。
另外,三种产品的利润分别为400元/件、250元/件和300元/件。
由于生产该三种产品的原材料和工时的供应有一定限制,原材料每天只能供应180公斤,工时每天只有150台时。
1.试建立在上述条件下,如何安排生产计划,使企业生产这三种产品能获得利润最大的线性规划模型。
2. 写出用MATLAB 软件计算该线性规划问题的命令语句。
解:1、设生产甲、乙、丙三种产品分别为x 1件、x 2件和x 3件,显然x 1,x 2,x 3≥0线性规划模型为⎪⎩⎪⎨⎧≥≤++≤++++=0150636180544300250400max 321321321321x x x x x x x x x x x x S ,,2.解上述线性规划问题的语句为: >>clear;>>C=-[400 250 300]; >>A=[4 4 5;6 3 6]; >>B=[180;150]; >>LB=[0;0;0];>>[X,fval,exitflag]=linprog(C,A,B,[],[],LB)例3已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=2101111412210101C B A ,,,求:T C AB + 解:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=+3612201116012101111412210101C AB 例4 设y =(1+x 2)lnx ,求:y '解:xx x x x x x x y 2221ln 2))(ln 1(ln )1(++='++'+='例5 设xy x+=1e ,求:y '解:22)1(e )1()1(e )1()e (x x x x x y xx x +=+'+-+'=' 例7 某厂生产某种产品的固定成本为2万元,每多生产1百台产品,总成本增加1万元,销售该产品q 百台的收入为R (q )=4q -0.5q 2(万元)。
当产量为多少时,利润最大?最大利润为多少?解:产量为q 百台的总成本函数为:C (q )=q +2利润函数L (q )=R (q )-C (q )=-0.5q 2+3q -2 令ML (q )=-q +3=0 得唯一驻点 q =3(百台) 故当产量q =3百台时,利润最大,最大利润为 L (3)=-0.5×32+3×3-2=2.5(万元) 例8 某物流企业生产某种商品,其年销售量为1000000件,每批生产需准备费1000元,而每件商品每年库存费为0.05元,如果该商品年销售率是均匀的,试求经济批量。
解:库存总成本函数qq q C 100000000040)(+=令010********401)(2=-='q q C 得定义域内的唯一驻点q =200000件。
即经济批量为200000件。
例9 计算定积分:⎰+10d )e 3(x x x解:25e 3)e 321(d )e 3(|10210-=+=+⎰x x x x x 例10 计算定积分:⎰+312d )2(x xx解:3ln 2326|)|ln 231(d )2(|313312+=+=+⎰x x x x x教学补充说明1. 对编程问题,要记住函数e x,lnx ,x 在MATLAB 软件中相应的命令函数exp(x),log(x),sqrt(x);2 对积分问题,主要掌握积分性质及下列三个积分公式:c x a x x a a++=+⎰111d (a ≠-1) c x xx +=⎰e d ec x x x +=⎰||lnd 17. 记住两个函数值:e 0=1,ln1=0。
模拟试题一、单项选择题:(每小题4分,共20分)1. 若某物资的总供应量( C )总需求量,可增设一个虚销地,其需求量取总供应量与总需求量的差额,并取各产地到该销地的单位运价为0,则可将该不平衡运输问题化为平衡运输问题。
(A) 等于 (B) 小于 (C) 大于 (D) 不超过2.某物流公司有三种化学原料A 1,A 2,A 3。