正交试验设计(内容详尽)
7正交试验设计

正交试验设计1正交试验的引入在实际的生产实践当中,由于需要考虑的因素(对结果产生影响的变量)通常比较多,同时,每个因素的水平个数(每个变量的可取值个数)也不止一两个。
如果对每个因素的每个水平交互搭配全部进行试验,例如:对于5因素4水平的实验,全部次数为:541024,需要用相当长的时间进行统计分析计算,同时耗费了大量的人力物力。
而如果采用正交试验设计,试验的次数将大大减少,同时对统计结果的分析也变得简单。
正交试验设计是利用正交表科学的安排与分析多因素试验的方法,是最常用的试验设计之一。
2正交表的分类及优势正交表分为:等水平正交表和混合水平正交表。
等水平代表各因素所取的水平数相同,混合水平表示各因素的水平数不一定相同。
正交表的优点:(1)能够在所有方案中均匀的选出具有代表性的方案;(2)通过对少数试验的分析,可以推得较优的方案,并且较优方案往往不包含在少数进行试验了的方案中。
(3)通过对结果分析,可以得到更多有用的信息。
包括各因素的重要性等。
3正交试验设计的步骤总的来说包括两部分:一是试验设计,二是数据处理。
归纳为:(1)明确试验目的,确定评价指标;(2)挑选因素,确定水平;(3)选正交表,进行表头设计:一般要求为因素数≤正交表列数(4)明确试验方案,进行试验得到结果;(5)对结果进行统计分析:采用直观分析法或方差分析法,得到因素的主词以及优方案等信息;(6)进行验证试验,做进一步的分析。
4有交互作用的正交试验设计在许多试验中,不仅要考虑各个因素对试验指标起作用,还有考虑因素间的交互作用对试验解结果的影响。
在这种正交试验的设计当中,要把交互作用也作为因素考虑进去。
可以查对应的正交表来进行表头设计。
5举例下面通过举例来说明如何设计正交表以及对用不同的方法对试验结果进行分析。
例1(三水平三因素正交表设计以及直观分析法)以下试验考虑的两个指标全部解:可选用正交表49(3)L 来安排试验级差R 0.59 0.55 0.59 1.86因素主次 CAB 优方案131C A B符号说明:i K :表示人一类上水平号为i 是所对应的试验结果之和;级差R :表示在任一列上K 的最大值与最小值之差;级差越大,说明对结果影响越大,那么这个因素越重要。
第8章正交试验设计

3
5.0
150
75
二、无交互作用的正交试验
4、将因素水平上列
F T
A
B
C
D
含油率 yi %
每个因素上1列;
1
1
1
1 1 27.5
列数>=因素个数; 得到9个试验处理
2
1
2
2 2 24.9
3
1
3
3 3 24.9
5、安排试验( Fisher准则)
4
2
1
2 3 25.3
设置区组:试验环境相同。
第8章 正交试验设计
一、正交表
1.作用 正交表:是根据组合数学的原理排列而成,安排正交试验
的因素和水平,决定试验的组合处理的一种特殊表格。
2.形式
F
L:正交表 源于拉丁方(Latin square) t:试验处理数(Thing)即:正交表的行数;
l l:因素的水平数(Level)
Lt F:可安排的因素数(Factor)即:正交表的列数
y7= yA3+ yB1+ yC3+ε7
⑦
y8= yA3+ yB2+ yC1+ε8
⑧
5
2
6
2
7
3
8
3
9
3
y9= yA3+ yB3+ yC2+ε9
⑨
B C D Yi
1
1 1 y1
2
2 2 y2
3
3 3 y3
1
2 3 y4
2
3 1 y5
3
1 2 y6
1
3 2 y7
2
1 3 y8
8.正交试验设计

K Y3 Y5 Y7
C 3
=>因素C在1,2,3水平上试验值的平均数分别为
1 C k K1 , 3
C 1
1 C k K2 , 3
C 2
1 C k K3 3
C 3
化工产品转化率的试验值
试验号
1 2
A
1 1 1 2 2 2 3
B
1 2
C
1 2
转化率
31
3
4
3
1 2
3
2
54 38 53 49
Y1 a1 b1 c1 1 Y2 a1 b2 c2 2 Y3 a1 b3 c3 3 Y4 a2 b1 c2 4 Y5 a2 b2 c3 5 Y a b c 2 3 1 6 6 Y7 a3 b1 c3 7 Y8 a3 b2 c1 8 Y9 a1 b3 c2 9
C 1 2 C 2 2 C 3 2
可以证明:QT QA QB QC QE
QA ——因素A引起的离差平方和 QB ——因素B引起的离差平方和 QC ——因素C引起的离差平方和 QE ——误差平方和
定理 (1)
2 (2)当 H01 , H02 , H03 成立时,
QE
~ 2 2
试验值
Y1 Y2 Y3 Y4
4
5 6 7 8 9
A2 B2C3 A2 B3C1 A3 B1C3
Y5 Y6
Y7
A3 B2C1 A3 B3C2
Y8 Y9
假定因素A,B,C没有交互作用。 设因素A在水平 A1 , A2 , A3 上的效应分别为 a1 , a2 , a3 因素B在水平 B1 , B2 , B3 上的效应分别为 b1 , b2 , b3 因素C在水平 C1 , C2 , C3 上的效应分别为 c1 , c2 , c3
正交试验设计精品文档66页

(1) 900 (1) 10 (1) 70
160
(1) 900 (2) 11 (2) 80
215
(1) 900 (3) 12 (3) 90
180
(2)1100 (1) 10 (2) 80
168
(2)1100 (2) 11 (3) 90
236
(2)1100 (3) 12 (1) 70
190
(3)1300 (1) 10 (3) 90
二、无交互作用的正交设计与数据分析
试验设计一般有四个步骤: 1. 试验设计 2. 进行试验获得试验结果 3. 数据分析 4. 验证试验
例1 磁鼓电机是彩色录像机磁鼓组件的关 键部件之一,按质量要求其输出力矩应大于 210g.cm。某生产厂过去这项指标的合格率较 低,从而希望通过试验找出好的条件,以提高 磁鼓电机的输出力矩。
157
(3)1300 (2) 11 (1) 70
பைடு நூலகம்
205
(3)1300 (3) 12 (2) 80
140
9个试验点的分布
3 5
C3
2
C2
4
1
C1 A1
A2
7 9
6
8
B3
B2
A3 B1
(二)做试验,并记录试验结果
在进行试验时,要注意几点: 1. 除了所考察的因子外的其它条件,尽可
能保持相同 2. 试验次序最好要随机化 3. 必要时可以设置区组因子
譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。
B1
B2
B3
A1 50 56 62
A2 56 70 60
A3 54 60 58
正交实验的设计方案

正交实验的设计方案第1篇正交实验的设计方案一、方案背景正交实验设计(Orthogonal Experimental Design)是一种高效的实验设计方法,通过合理的安排实验条件,以最少的实验次数获取最多的信息,从而为优化产品设计、生产过程以及解决实际问题提供科学依据。
本方案针对某项目需求,结合我国相关法律法规,制定合法合规的正交实验设计方案。
二、实验目标1. 确定影响目标指标的主要因素;2. 优化实验条件,提高目标指标;3. 为实际应用提供科学依据。
三、实验因素及水平根据项目需求,选取以下因素及水平进行正交实验:因素A(温度):水平1、水平2、水平3;因素B(压力):水平1、水平2、水平3;因素C(时间):水平1、水平2、水平3;因素D(原料比例):水平1、水平2、水平3。
四、正交表的选择根据实验因素及水平,选择合适的正交表进行实验设计。
本方案采用L9(3^4)正交表,即4因素3水平正交表。
五、实验设计1. 按照L9(3^4)正交表,安排实验顺序及条件;2. 对每个实验条件进行实验操作,记录实验数据;3. 分析实验数据,得出各因素对目标指标的影响程度;4. 根据实验结果,优化实验条件,提高目标指标。
六、实验数据分析1. 计算各因素各水平下的实验指标平均值;2. 计算各因素各水平下的实验指标极差;3. 判断各因素对目标指标的影响程度,找出主要因素;4. 根据实验结果,提出优化方案。
七、实验结果的可靠性分析1. 检验实验数据的正交性,确保实验结果的可靠性;2. 对实验数据进行方差分析,验证实验结果的显著性;3. 结合实验结果及实际情况,评估实验方案的适用性。
八、实验方案的优化与应用1. 根据实验结果,优化实验条件,提高目标指标;2. 将优化后的实验方案应用于实际生产或研究,验证其效果;3. 不断调整和优化实验方案,以满足实际需求。
九、实验方案的合法合规性1. 本方案遵循我国相关法律法规,确保实验过程合法合规;2. 实验过程中,严格遵守实验操作规程,确保实验安全;3. 实验数据真实可靠,遵循科学实验的道德规范。
正交试验设计

4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计
正交试验设计方法(详细步骤)

A2
(y5+ y7)/2 =(0.472+0.554)/2=0.513 (y6+ y8)/2 =(0.480+0.552)/2=0.516
阐明:
表头设计中旳“混杂”现象(一列安排多种原因或交互作 用)
高级交互作用 ,如A×B× C,一般不考虑 r水平两原因间旳交互作用要占r-1列 ,当r>2时,不宜
(1)选正交表
要求: 原因数≤正交表列数 原因水平数与正交表相应旳水平数一致 选较小旳表
选L9(34)
(2)表头设计
将试验原因安排到所选正交表相应旳列中 因不考虑原因间旳交互作用,一种原因占有一列(能够随
机排列) 空白列(空列):最佳留有至少一种空白列
(3)明确试验方案
(4)按要求旳方案做试验,得出试验成果
(1)等水平正交表: 各原因水平数相等旳正交表 ①记号 :Ln( r m ) L——正交表代号 n——正交表横行数(试验次数) r——原因水平数 m——正交表纵列数(最多能安排旳因数个数)
②等水平正交表特点
表中任一列,不同旳数字出现旳次数相同 表中任意两列,多种同行数字对(或称水平搭配)出现旳
1 n
(
n i 1
yi )2
QP
n
设: Q yi2 i 1
n
T yi i 1
P
1 n
n
(
i 1
yi )2
T2 n
②各原因引起旳离差平方和
第j列所引起旳离差平方和 :
SS j
rr (
n i1
Ki2
)
T2 n
rr (
正交试验设计完整版本

2020/3/26
数理统计在化学中的应用
李 振 华 制
10 造
2. 拉丁方试验设计
均衡分布思想,虽然远在古代就有,但只是在近代才与生 产科研实际相结合,产生了拉丁方、正交表,显示出它的 巨大威力。
2020/3/26
数理统计在化学中的应用
李 振 华 制
3造
2020/3/26
数理统计在化学中的应用
李 振 华 制
4造
2020/3/26
数理统计在化学中的应用
李 振 华 制
5造
$8.3 试验设计
试验设计的目的就是为了试验优化. 试验优化由于具有设计灵活、计算简便、试验次数
少、优化成果多、可靠性高以及适用面广等特点, 因而发展迅速,应用广泛,已成为多快好省地获取 试验信息的现代通用技术,成为科学实验、质量管 理的一个科学工具。
反应时间
产量
1小时 平均值
反应温度
50 oC
69.5
70 oC
71.5
2020/3/26
数理统计在化学中的应用
2小时 平均值
72.0
64.5
李 振 华 制
29 造
最佳条件:
显色剂浓度:2% 显色温度:50 oC 显色时间:2小时 操作方法:不搅拌
2020/3/26
数理统计在化学中的应用
李 振 华 制
18世纪的欧洲,普鲁士弗里德里希·威廉二世(1712一1786 )要举行一次与往常不同的6列方队阅兵式。他要求每个方 队的行和列都要由6种部队的6种军官组成,不得有重复和 空缺。这样.在每个6列方队中,部队军官在行和列全部排 列均衡。群臣们冥思苦想,竟无一人能排出这种方队。后 来,向当时著名的数学家欧拉(1707—1783)请教,由此 引起了数学家们的极大兴趣,致使各种拉丁方问世。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆ 1959年,G.E.博克斯和J.S.亨特尔提出了调优操作 (EVOP),也称为调优试验设计法;
◆ 70年代中期,田口玄一提出了“产品三次设计”。
正交试验设计
● 现代试验设计阶段(1970s~)
◆ 自70年代开始,S/N试验设计及产品三次设计开始了实质 性的应用; ◆ 80年代,我国学者方开泰(南开大学)40~
◆ 80年代开始,田口提出走质量工 程学的道路,编著了《质量工程学》 丛书,将质量管理、质量控制与试验 设计结合起来,使试验设计发展到了 一个新的水平。
试验设计与分析的发展大致可划分为三个历史阶段。
正交试验设计
● 早期、传统试验设计阶段(约1920s~1950s)
费歇尔在农场进行田间试验的过程中,对高产小麦品种 遗传进行研究。为减少偶然因素对试验的影响,他对各种试 验因素的每一水平组合进行了试验,并通过方差分析评价指 标的优劣(用于排除偶然因素的影响),使小麦大幅度增产。
■ 试验 所谓试验,一般指用于发现新的现象、新的事物、新
的规律,以肯定或否定先前的调查研究结论、发现新规律 而进行的有计划活动。
试验的实质:是一种用以测定过程或系统某些特定性 能的有目的的测试。
正交试验设计
■ 试验设计(DOE,Design of Experiment)
试验设计是数理统计学领域的一个分支。它是以概 率论、数理统计、线性代数等为理论基础,科学地设计 试验方案,正确合理地分析试验结果,以较少的试验工 作量和较低的成本获取足够、可靠的有用信息。
水平
因素
1
2
3
A 回火温度(℃)
440
470
500
B 保温时间(min)
3
4
5
C 工件重量(kg)
7.5
9.0
10.5
正交试验设计
■ 几个术语 ⑴ 特性值
事物与现象的各种性质、状态称为事物的特性,表征 特性的数值称为特性值。
前例中,弹簧弹性可用弹性模量E来表征,E的数值就 是弹簧弹性的一种特性值。
正交试验设计
试验设计发展的三个里程碑: ◆ 费歇尔创立了早期、传统的试验设计理论、方法; ◆ 正交表的开发及正交实验设计的应用; ◆ 信噪比试验设计和产品三次设计的应用。
我国试验设计的发展情况: ◆ 50年代开始研究; ◆ 60年代提出观点; ◆ 70年代开始实质应用; ◆ 80年代提出均匀试验设计理论。
试验过程中所选取的特性值应具有单调性、可测性, 应该能够正确反映试验的目的。
特性值可以从不同角度进行分类。
正交试验设计
● 按特性值的性质分
★ 计量特性值:连续变化的特性值(如重量、成本、寿命等)。 ★ 计数特性值:离散变化的特性值(如废品件数、疵点数等)。 ★ 0、1数据:只有两种取值的特性值(如合格与否、电路的通与断 等)。
第七章 正交试验设计
Orthogonal Design
正交试验设计
本章学习内容
7.1 试验设计概述 7.2 试验设计的统计学基础 7.3 正交与正交表 7.4 正交试验设计的极差分析 7.5 正交试验设计的方差分析 7.6 正交试验设计的效应估计
正交试验设计
7.1 试验设计概述
7.1.1 试验与试验设计
输入
过程或系统
输出
z1 z2
zq
不可控因素
输入可理解为试验开始时过程或系统的初始状态、特征。
在一些可控因素和一些不可控因素的影响下,产生一定的输
出(响应),该输出(响应)就是试验结果。
正交试验设计
例:在弹簧生产中,为提高弹性、防止弹簧断裂,要进行 回火工艺试验。试验中选取回火温度(A)、保温时间 (B)、工件重量(C)三个试验因素,每个因素取1、2、 3三个水平进行试验,希望通过试验确定出最佳的生产条件 (工艺条件)。
该所的产品——线形弹簧继电器,有几十 个特性值和两千多个试验因素,经7年研制成 功,其性能比美国的同一产品更优。虽然其成 本仅几美元,研究费用却用了几百万美元,创 造的经济效益高达几十亿美元!同时挤垮了美 国的企业。
正交试验设计
◆ 50年代初,创立了“回归试验设计法”; ◆ 1957年,田口玄一又提出了“信噪比(S/N)试验设 计”;
◆ 确定出各因素对试验指标的影响规律,得知哪些因素的 影响是主要的、哪些因素的影响是次要的、哪些因素之间 存在相互影响; ◆ 选出各因素的一个水平组合来确定最佳生产条件。
正交试验设计的基础是正交表。
7.1.3 基本概念
■ 过程或系统
人、机器、实验条件等资源的组合。
正交试验设计
可控因素
x1 x2
xp
正交试验设计
● 中期发展阶段(约1950s~1970s,以正交试验设计、回归 试验设计为代表)
◆ 40年代末、50年代初,以田口玄一(Genichi Taguchi) 为代表的日本电讯研究所(EOL)的研究人员在研究电话 通讯设备质量时从英、美引进了试验设计技术,提出了 “正交试验设计法”;
1924~
试验设计的主要研究内容: ◆ 哪个因素对特性值影响较大?如何影响? ◆ 如何设置各因素的水平,使特性值接近预期的期望值? ◆ 如何设置各因素的水平,使特性值的方差(波动)最小? ◆ 如何设置可控因素的水平,使非可控因素的影响最小? ……
正交试验设计
7.1.2 试验设计的发展历史
试验设计的基本思想和方法是英国统计学家、工程师费 歇尔(R.A.Fisher,1890~1962)于20世纪20年代创立的,他 是试验设计的奠基人并对其后的发展做出了卓越的贡献。
正交试验设计
正交试验设计(Orthogonal Design)是于二十世纪50年 代初期,由日本质量管理专家田口玄一(Tachugi)博士提 出的在多因素试验设计方法的基础上,进一步研究开发出来 的一种试验设计技术。
正交试验设计法使用一种规范化的表格(正交表)进行 试验设计,可以用较少的试验次数,取得较为准确、可靠的 优选结论。正交试验设计主要可以完成:
◆ 1925年,费歇尔在《研究工作中的统计方法》一书中首 次提出了“实验设计”的概念;
◆ 1935年,费歇尔出版了著名的《试验设计法》一书; ◆ 40年代前后,英、美、苏等国家将试验设计逐渐应用于 工业生产领域及军工生产领域; ◆ 劳尼于40年代提出的多因素试验的部分实施方法后来成 为现代试验设计理论的基础。