提高控制系统的鲁棒性与适应性
深度学习在自动化控制中的应用研究

深度学习在自动化控制中的应用研究
深度学习是一种借鉴人工神经网络结构和功能特点而创建的机器学习方法,以
多层次的神经网络模拟人脑的学习过程,能够实现对多维数据的表示和分析。
在自动化控制领域,深度学习被广泛应用于各种系统的建模、辨识、优化和控制等方面,发挥着重要的作用。
首先,深度学习在自动化控制中的应用主要体现在系统建模和识别方面。
传统
的自动控制方法需要人工对系统进行建模和设计控制器,而深度学习可以利用大量数据自动学习系统的动态模型,从而实现对系统的准确建模。
通过深度学习算法,可以对系统的复杂动态特性进行准确的识别和描述,极大地提高了控制系统的鲁棒性和适应性。
其次,深度学习在自动控制中的另一个重要应用领域是优化控制。
传统的优化
方法通常需要对系统进行复杂的数学分析和模型推导,而深度学习可以通过大量的数据和神经网络结构来实现对控制系统的优化。
深度学习可以通过不断调整神经网络的权重和参数,实现对系统的最优化控制,提高系统的性能和效率。
此外,深度学习还可以应用于控制系统的故障诊断和预测。
通过对系统运行数
据进行实时监测和分析,可以利用深度学习算法对系统的运行状态进行实时诊断,发现潜在的故障和问题,并及时采取措施进行修复。
同时,深度学习还可以通过对系统数据的长期分析和建模,实现对系统未来运行状态的预测,帮助控制系统做出更加合理的控制决策。
综上所述,深度学习在自动化控制中的应用研究既拓宽了控制领域的研究方向,又提高了控制系统的性能和效率。
未来,随着深度学习技术的不断发展和完善,相信其在自动化控制领域的应用将会更加广泛和深入,为实现智能化、自动化的控制系统带来更多可能性和机遇。
控制系统鲁棒性设计

控制系统鲁棒性设计控制系统鲁棒性设计是指在考虑到系统动态特性和不确定因素的情况下,设计出具有良好鲁棒性的控制系统。
鲁棒性设计的目标是使系统能够在不确定因素的干扰下仍然能够保持稳定性和性能。
本文将从鲁棒性设计的概念、重要性以及实现鲁棒性设计的方法三个方面对控制系统鲁棒性设计进行探讨。
一、鲁棒性设计的概念鲁棒性是指系统对于参数变化、外部干扰以及模型不准确性等因素的容忍度。
在控制系统中,不同的干扰和参数变化可能会导致系统动态特性和稳定性发生变化,鲁棒性设计的目标就是保证系统的性能不受这些因素的影响而变差。
二、鲁棒性设计的重要性鲁棒性设计在控制系统中具有重要的意义。
首先,现实世界中的系统往往存在着各种不确定因素,如参数变化、外部干扰等,如果控制系统在面对这些不确定因素时不能保持稳定性和性能,则无法满足实际应用的需求。
其次,控制系统的设计往往是建立在一定的模型假设下进行的,而这些模型存在不准确性,因此需要通过鲁棒性设计来保证系统的稳定性和性能。
最后,鲁棒性设计可以提高系统对于异常情况的响应能力,确保系统在面对未知情况时仍能正常工作。
三、实现鲁棒性设计的方法实现鲁棒性设计的方法主要包括模型不确定性分析、鲁棒控制器设计以及鲁棒性性能评估等。
1. 模型不确定性分析在鲁棒性设计中,模型的不确定性是一个重要的考虑因素。
通过对系统模型的不确定性进行分析,可以了解到系统模型的不确定部分,从而进一步确定鲁棒控制设计中需要关注的方面。
2. 鲁棒控制器设计鲁棒控制器设计是实现鲁棒性设计的关键步骤。
鲁棒控制器的设计需要考虑到系统的不确定性和干扰,通过引入校正项或者使用鲁棒控制策略,可以使得控制系统对于不确定因素的变化具有一定的容忍度,从而保证系统的稳定性和性能。
3. 鲁棒性性能评估鲁棒性性能评估是评价控制系统鲁棒性设计效果的重要手段。
通过对控制系统的鲁棒稳定性和鲁棒性能进行评估,可以判断控制系统对于不确定因素的容忍度以及系统性能的表现。
飞行器自动控制系统的使用中常见问题解析

飞行器自动控制系统的使用中常见问题解析飞行器自动控制系统是现代航空科技的重要组成部分,在航空领域发挥着重要作用。
然而,由于其复杂性和高度的技术含量,使用中常会遇到各种问题。
本文将从几个常见问题出发,对飞行器自动控制系统的使用进行解析。
一、控制精度问题飞行器自动控制系统的核心目标是以最高的精度进行飞行控制,确保飞行器能够稳定、安全地飞行。
然而,由于环境变化、系统故障等因素的影响,控制精度常常会出现波动。
在解决这一问题时,首先需要检查设备和传感器的状态,确保其正常工作。
其次,通过对控制算法和参数进行调整,提高控制系统的鲁棒性和适应性。
最后,合理利用飞行器的反馈信息,及时调整控制指令,维持良好的控制精度。
二、系统故障问题飞行器自动控制系统由多个部件组成,其中任何一个部件出现故障都会对整个系统的性能产生影响。
常见的系统故障包括传感器失灵、执行器故障等。
面对这些问题,及时检测故障原因,进行修复或更换是必要的。
此外,在设计和制造时,采用冗余设计和故障监测技术也是降低系统故障影响的有效手段。
三、飞行过程中的异常情况飞行是一个复杂的过程,往往伴随着各种异常情况。
例如,遇到恶劣的气象条件、遭遇不明飞行物体等。
在这些情况下,自动控制系统需要能够迅速响应并采取相应的控制策略。
为此,系统需要内置紧急应对措施,并在遇到问题时及时通知飞行员,确保安全的飞行。
四、能耗和效率问题飞行器自动控制系统的使用也面临能耗和效率问题。
飞行器是一种对能源极为敏感的设备,为了提高其续航能力和飞行效率,控制系统需要在保证性能和安全的情况下,尽可能减少能源消耗。
通过优化控制算法、改进机身设计等方式,可以提高飞行器的能效比,实现更长距离和更高效率的飞行。
结语飞行器自动控制系统在现代航空科技中起到了至关重要的作用。
然而,由于其复杂性和高度的技术含量,使用中常会遇到各种问题。
本文对其中一些常见问题进行了解析,在实践中可以采取相应的解决措施。
希望这对广大飞行器自动控制系统的使用者能够有所帮助,推动航空科技的发展和应用。
控制系统的鲁棒优化控制方法

控制系统的鲁棒优化控制方法在现代工业领域中,控制系统起着至关重要的作用,用于实现对工艺过程的自动化控制和优化。
然而,由于工艺过程本身的复杂性和不确定性,传统的控制方法常常无法满足系统的要求。
因此,鲁棒优化控制方法应运而生,旨在提高系统的控制性能和稳定性。
本文将介绍控制系统的鲁棒优化控制方法及其应用。
一、鲁棒优化控制的基本概念鲁棒优化控制是一种针对不确定系统的自适应控制方法,其目标是在面对参数变化、环境扰动和不确定模型时,仍能实现系统的稳定性和优化性能。
鲁棒优化控制方法通过在控制器中引入鲁棒性设计和优化算法,以提高系统对不确定性的适应能力,并优化系统的控制性能。
二、鲁棒优化控制方法的原理及应用1. 鲁棒性设计鲁棒性设计是控制器设计中的关键环节,通过引入鲁棒性方法来抵抗系统模型不确定性。
鲁棒性设计常采用H∞控制理论、μ合成等方法,以提高系统的稳定性和鲁棒性能。
通过这些方法,控制器能够对参数扰动和未建模动态进行补偿,从而使系统具有良好的鲁棒性。
2. 优化算法优化算法在鲁棒优化控制中起到了重要的作用。
常用的优化算法包括PID控制器参数整定、遗传算法、模糊控制等。
通过这些算法的应用,可以使系统的控制性能得到改善,并且能够灵活应对不同的工况变化。
3. 应用领域鲁棒优化控制方法在许多领域都有广泛的应用,例如电力系统、化工过程、机械控制等。
以电力系统为例,由于电力系统的复杂性和不确定性,传统的控制方法往往无法满足实际需求。
而鲁棒优化控制方法通过引入鲁棒性设计和优化算法,能够实现对电力系统的稳定控制和优化运行。
三、鲁棒优化控制方法的优势与挑战1. 优势鲁棒优化控制方法能够有效应对系统的不确定性和复杂性,具有良好的鲁棒性和适应性。
通过引入鲁棒性设计和优化算法,能够提高系统的控制性能和稳定性。
2. 挑战鲁棒优化控制方法的应用还面临着一些挑战。
首先,鲁棒优化控制方法需要对系统进行建模和参数估计,这对于复杂系统来说是一项困难的任务。
控制系统中的鲁棒控制与自适应控制

控制系统中的鲁棒控制与自适应控制鲁棒控制与自适应控制是控制系统中两种重要的控制策略。
本文将对这两种控制方法进行详细介绍,并探讨它们在控制系统中的应用。
一、鲁棒控制鲁棒控制是一种控制方法,旨在使系统对于参数变化、外部干扰和建模误差具有较好的鲁棒性。
它通过设计控制器,使得系统能够在不确定性条件下保持稳定性和性能。
鲁棒控制通常用于应对实际系统中存在的模型不准确、参数变化和干扰等不确定因素。
鲁棒控制的一个重要工具是H∞控制理论。
H∞控制通过优化系统的H∞范数,将鲁棒性能与控制性能相结合。
它可以通过鲁棒性设计方法来有效地解决不确定性和干扰问题,提高系统的稳定性和鲁棒性。
鲁棒控制广泛应用于工业控制、飞行器控制和机器人控制等领域。
例如,在工业控制中,鲁棒控制可以帮助系统应对参数变化、负载扰动和模型不确定性。
在飞行器控制中,鲁棒控制可以提高系统对于风速变化和姿态扰动的鲁棒性。
在机器人控制中,鲁棒控制可以应对不确定的环境和任务需求变化。
二、自适应控制自适应控制是一种控制方法,通过实时地调整控制算法和参数来适应系统的变化。
自适应控制具有较强的适应性和鲁棒性,在面对系统参数变化和模型不准确时表现出良好的控制性能。
自适应控制基于模型参考自适应原理,通过参考模型来实现期望输出与实际输出的一致性。
它根据误差和系统状态,自适应地调整控制器参数,以达到期望的控制效果。
同时,自适应控制器还可以实时地对系统参数进行估计和补偿,提高系统的鲁棒性和性能。
自适应控制在很多领域都有广泛的应用。
例如,在机电系统中,自适应控制可用于解决系统刚性和非线性问题。
在信号处理中,自适应滤波器可用于实时地调整滤波器参数,提高滤波性能。
在网络控制系统中,自适应控制可用于应对网络延迟和通信丢包等问题。
三、鲁棒控制与自适应控制的比较与应用鲁棒控制与自适应控制是两种不同的控制方法,各自具有不同的优势和适用范围。
鲁棒控制适用于系统模型不准确、参数变化和干扰等不确定性较大的情况。
控制系统中的鲁棒自适应控制算法

控制系统中的鲁棒自适应控制算法鲁棒自适应控制算法是一种在控制系统中应用的高级控制方法,用于提高系统性能和稳定性的技术。
该算法结合了鲁棒性控制和自适应控制的特点,能够针对各种系统的不确定性和变化进行动态调整,从而保证系统的稳定性和性能。
一、鲁棒自适应控制的基本原理鲁棒自适应控制算法的基本原理是将控制系统分为两个部分:鲁棒控制器和自适应控制器。
鲁棒控制器是基于鲁棒性控制的原理设计的,能够抵抗外界的干扰和不确定性,保证系统的稳定性和鲁棒性。
自适应控制器是基于自适应控制的原理设计的,能够根据系统的动态特性进行参数的自适应调整,以保证系统的性能和响应速度。
二、鲁棒自适应控制的应用领域鲁棒自适应控制算法广泛应用于工业控制系统、航空航天系统、机器人控制系统等领域。
在这些系统中,系统参数经常发生变化,外界环境的干扰也较大,要能够在这种复杂条件下保持系统的稳定性和性能,就需要采用鲁棒自适应控制算法。
三、鲁棒自适应控制算法的主要特点鲁棒自适应控制算法具有以下几个主要特点:1. 鲁棒性:鲁棒自适应控制算法能够抵抗外界环境干扰和系统参数的变化,保持系统的稳定性和鲁棒性。
2. 自适应性:鲁棒自适应控制算法能够根据系统的动态特性进行参数的自适应调整,以保证系统的性能和响应速度。
3. 良好的鲁棒性能:鲁棒自适应控制算法具有良好的鲁棒性能,能够在各种复杂条件下保持系统的稳定性和性能。
4. 算法复杂度低:鲁棒自适应控制算法具有较低的算法复杂度,能够快速响应系统的变化,并进行相应的调整。
四、鲁棒自适应控制算法的实现方法鲁棒自适应控制算法的实现方法主要包括以下几个步骤:1. 系统建模:首先需要对控制系统进行建模,得到系统的数学模型和动态特性方程。
2. 参数估计:根据系统的实际运行数据,对系统的参数进行估计和调整,以保证控制系统的准确性和可靠性。
3. 控制器设计:根据系统的动态特性和参数估计结果,设计鲁棒控制器和自适应控制器。
4. 系统仿真:通过仿真软件对系统进行仿真,测试鲁棒自适应控制算法的效果和性能。
机械系统的鲁棒控制与自适应控制

机械系统的鲁棒控制与自适应控制在现代工业生产中,机械系统的控制是至关重要的。
一个有效的控制系统可以使机械设备运行稳定,提高生产效率,降低能源消耗。
而鲁棒控制和自适应控制作为两种主要的控制策略,正得到越来越多的关注。
本文将介绍机械系统的鲁棒控制与自适应控制的基本原理,并探讨它们在工业控制领域的应用。
鲁棒控制是一种可以保证系统在参数不确定或外部扰动存在的情况下仍能实现稳定控制的控制方法。
在机械系统中,由于运行环境的变化以及部件的磨损等因素,系统的参数通常会发生变化。
而鲁棒控制能够通过设计鲁棒控制器来抵抗这些参数变化所带来的影响,从而保持系统的性能稳定。
鲁棒控制的核心是将不确定性纳入到控制系统的设计中,并采用适当的方法来补偿这些不确定性。
自适应控制是一种可以根据系统自身的状态实时调整控制策略的控制方法。
在机械系统中,系统的动态特性随着运行条件的变化而发生变化。
传统的固定控制器无法考虑到这些变化,导致系统的性能可能下降。
而自适应控制则通过实时观测系统的状态,并根据观测结果调整控制器的参数,从而使系统在不同条件下保持良好的控制性能。
自适应控制的关键是设计合适的自适应算法和参数更新规律,以实现对系统动态特性的有效调整。
机械系统的鲁棒控制和自适应控制在工业控制领域有着广泛的应用。
鲁棒控制在控制系统稳定性和鲁棒性方面具有突出的优势。
在飞机、船舶、汽车等大型交通工具的控制系统中,鲁棒控制能够有效应对复杂的环境和外部干扰,保证系统的运行安全和性能稳定。
而自适应控制在控制系统适应性和性能优化方面具有显著的优势。
在工业机器人、自动化生产线等系统中,自适应控制能够根据工作负载的变化实时调整控制策略,提高系统的生产效率和运行稳定性。
然而,鲁棒控制和自适应控制也存在一些挑战和局限性。
鲁棒控制需要对系统的不确定性进行准确建模,并设计合适的补偿策略,这需要对系统的动态特性和外部干扰等因素进行深入研究。
而自适应控制需要综合考虑控制器参数的更新速度和系统状态的变化速度,以避免参数更新过快或过慢导致控制系统的性能下降。
自动化控制系统中的鲁棒控制方法研究

自动化控制系统中的鲁棒控制方法研究自动化控制系统在现代工业过程中扮演着至关重要的角色,它能够实现对生产过程的自动监测和控制,提高生产效率和质量。
然而,由于环境条件的不确定性和外界干扰的存在,控制系统面临着很多挑战。
为了提高系统的鲁棒性和控制性能,研究者们提出了许多鲁棒控制方法。
一、鲁棒控制的概念和作用鲁棒控制是指控制系统对不确定性、干扰和参数变化具有较强的适应能力,保持稳定性和性能的能力。
它可以有效地解决系统模型不准确、外部干扰和测量噪声等问题,提高系统的稳定性和鲁棒性,确保系统在不确定环境下的可靠性和正常运行。
二、常见的鲁棒控制方法1. H∞控制法H∞控制法是一种广泛应用的鲁棒控制方法,它通过将系统的不确定性和干扰建模为统计误差,设计控制器使系统对这些误差具有抵抗能力。
通过最小化系统的鲁棒稳定裕度函数,可以设计出稳定性能优越的控制器。
2. μ合成方法μ合成方法是一种基于奇异值分析的鲁棒控制方法,它通过构建系统的鲁棒性性能函数,设计具有适应性的控制器。
这种方法可以从系统的角度全面分析不确定性和干扰对系统性能的影响,并通过优化设计控制器来提高系统的鲁棒性。
3. 鲁棒自适应控制法鲁棒自适应控制法是将鲁棒控制和自适应控制相结合的一种方法,它可以实时地根据系统的工作状态和性能要求来调整控制器的参数,使系统具有较强的适应能力和鲁棒性。
这种方法可以有效地解决系统参数变化和环境波动等问题。
4. 鲁棒最优控制法鲁棒最优控制法是将鲁棒控制和最优控制相结合的一种方法,它既考虑了系统的鲁棒性,又考虑了系统的控制性能。
通过优化设计控制器和状态反馈增益矩阵,可以使系统在不确定环境下达到最优性能。
三、鲁棒控制方法的应用案例1. 机械臂控制系统机械臂控制系统是自动化控制系统的一个典型应用案例,它需要精确的轨迹跟踪和力控制能力。
通过将H∞控制和自适应控制相结合,可以实现机械臂在不确定环境下的精确控制。
2. 飞行器控制系统飞行器控制系统是一个高度复杂和动态的控制系统,它需要具有鲁棒性和适应性来应对不同的飞行环境和飞行任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高控制系统的鲁棒性与适应性
1、含义
鲁棒性:控制器参数变化而保持控制性能的性质。
适应性:控制器能适应不同控制对象的性质。
控制系统在其特性或参数发生摄动时仍可使品质指标保持不变的性能。
鲁棒性是英文robustness一词的音译,也可意译为稳健性。
鲁棒性原是统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。
在实际问题中,系统特性或参数的摄动常常是不可避免的。
产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。
因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必需考虑的一个基本问题。
对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。
鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系,内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。
2、控制系统设计要求(指标)
(1)、结构渐近稳定性
以渐近稳定为性能指标的一类鲁棒性。
如果控制系统在其特性或参数的标称值处是渐近稳定的,并且对标称值的一个邻域内的每一种情况它也是渐近稳定的,则称此系统是结构渐近稳定的。
结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外,还必须满足另外一些附加的条件。
这些条件称为结构渐近稳定性条件,可用代数的或几何的语言来表述,但都具有比较复杂的形式。
结构渐近稳定性的一个常用的度量是稳定裕量,包括增益裕量和相角裕量,它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。
一个控制系统的稳定裕量越大,其特性或参数的允许摄动范围一般也越大,因此它的鲁棒性也越好。
(2)、结构无静差性
以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性。
如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节,即系统输出对参考输入的稳态跟踪误差等于零),并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的,那么称此控制系统是结构无静差的。
使系统实现结构无静差的控制器通常称为鲁棒调节器。
在采用其他形式的数学描述时,鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。
鲁棒调节器在结构上有两部分组成,一部分称为镇定补偿器,另一部分称为伺服补偿器。
镇定补偿器的功能是使控制系统实现结构渐近稳定。
伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型,因此可实现对参考输入和扰动的无静差控制。
对于呈阶跃变化的参考输入和扰动信号,它
们共同的动力学模型是一个积分器;对于呈斜坡直线变化的参考输入信号和呈阶跃变化的扰动信号,其共同的动力学模型是两个积分器的串接。
3、提高控制系统鲁棒性与自适应性的方法
我们总是假设已经知道了受控对象的模型,但由于实际中存在种种不确定因素,如:
(1)、参数变化;
(2)、未建模动态特性;
(3)、平衡点的变化;
(4)、传感器噪声;
(5)、不可预测的干扰输入;
等等,所以我们所建立的对象模型只能是实际物理系统的不精确的表示。
鲁棒系统设计的目标就是要在模型不精确和存在其他变化因素的条件下,使系统仍能保持预期的性能。
如果模型的变化和模型的不精确不影响系统的稳定性和其它动态性能,这样的系统我们称它为鲁棒控制系统。
所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。
目前,为防止自适应系统失稳现象的发生,主要采取以下一些提高自适应控制系统鲁棒性的方法:
(1)、带有状态观测器的系统的鲁棒性一般而言,在控制系统中引入状态观测器会使它的鲁棒性变坏,因此应尽可能避免。
对于必须采用状态观测器的控制系统,当受控系统为最小相位系统时,可通过合理地设计观测器而使控制系统保持较好的鲁棒性。
其原则是把观测器的一部分极点设计成恰好与所观测系统的零点相对消,而观测器的其他极点在满足抗干扰性要求的前提下应使其尽可能地远离虚轴。
(2)、在自适应律中引人一定的死区,使得仅当辨识误差超过一定的阈值时,自适应控制才发生作用。
死区的选择与干扰有密切的关系。
(3)、产生一持续激励信号,保证参数估计的收敛及自适应系统的稳定性。
(4)、使用一修正的自适应律,仅当被估计控制器参数的范围超过一定值时,自适应律再投入调节。
(5)、为了阻尼高频寄生于扰引起的不稳定性,可使用在自适应律中加入一定的衰减项,采用平均技术等方法。
(6)、Goodwin及其合作者认为,研究的基点应该是使鲁棒控制器自适应化,可能正是出于这个考虑,Goodwin又把自适应控制分为鲁棒估计器和鲁棒控制器两个方面。
Song等也提出了自校正鲁棒控制器。
.
(7)、Elliot提出间隔N(N>1)个采样周期调整一次控制器参数,而参数估计仍每一次进行一次。
他证明了此系统的性能可以得到改善。
当系统存在未建模动态特性时,经试验证明,可以通过适当加大采样周期的方法来解决。
从物理意义上,加大了采样周期,相当于放大了抽样系统数据的间
隔,也即减弱了自适应回路的非线性影响,因此也就降低了未建膜动态特性可能引起的不利影响。
另一方面,一般未建模动态都具有高频特性,考虑这种情况,如果适当选择较大的采样周期,可以减弱或消除对高频特性的提取,相当于加滤波器,将高频信号过滤掉,这样自然使未建模高频特性部分的影响减小。
(8)、现阶段,神经网络在控制系统中运用也是更加的成熟,用于非线性系统辨识有其广阔的前景。
神经网络的鲁棒性依赖于神经网络参数位置和它附近系统误差曲面的具体形态。
神经网络参数设计在极值点附近而其附近的形态误差曲面又比较平缓时,网络的鲁棒性就好,否则鲁棒性就差。