极坐标和参数方程-一轮复习

极坐标和参数方程-一轮复习
极坐标和参数方程-一轮复习

教学内容

【知识结构】

知识点一:极坐标

1.极坐标系

平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。

2.极坐标系内一点的极坐标

平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对

就叫做点的极坐标。

3. 极坐标与直角坐标的互化

当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:

直角坐标化极坐标:;

极坐标化直角坐标:.

此即在两个坐标系下,同一个点的两种坐标间的互化关系.

知识点三:参数方程

1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:

,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).

相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。

知识点四:常见曲线的参数方程

1.直线的参数方程

(1)经过定点,倾斜角为的直线的参数方程为:

(为参数);

其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。(当在上方时,,在下方时,)。

(2)过定点,且其斜率为的直线的参数方程为:

(为参数,为为常数,);

其中的几何意义为:若是直线上一点,则。

2.圆的参数方程

(1)已知圆心为,半径为的圆的参数方程为:

(是参数,);

特别地当圆心在原点时,其参数方程为(是参数)。

(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。

(3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。

3. 椭圆的参数方程

(1)椭圆()的参数方程(为参数)。

(2)参数的几何意义是椭圆上某一点的离心角。

如图中,点对应的角为(过作轴,

交大圆即以为直径的圆于),切不可认为是。

(3)从数的角度理解,椭圆的参数方程实际上是关于椭圆的一组三角代换。

椭圆上任意一点可设成,

为解决有关椭圆问题提供了一条新的途径。

4. 双曲线的参数方程

双曲线(,)的参数方程为(为参数)。

5. 抛物线的参数方程

抛物线()的参数方程为(是参数)。

参数的几何意义为:抛物线上一点与其顶点连线的斜率的倒数,即。

【例题精讲】

类型一:极坐标方程与直角坐标方程

例1.在极坐标系中,点关于极点的对称点的坐标是_____ ,关于极轴的对称点的坐标是

_____,关于直线的对称点的坐标是_______,

思路点拨:画出极坐标系,结合图形容易确定。

解析:它们依次是或;;().

示意图如下:

总结升华:应用数形结合,抓住对称点与已知点之间的极径与极角的联系,同时应注意点的极坐标的

多值性。

举一反三:

【变式】已知点,则点

(1)关于对称点的坐标是_______,

(2)关于直线的对称点的坐标为________。

【答案】

(1) 由图知:,,所以

(2) 直线即,所以或()

例2. 化下列极坐标方程为直角坐标方程,并说明它是什么曲线。

(1) ;(2) ;

(3) ;(4) .

思路点拨:依据关系式,对已有方程进行变形、配凑。

解析:

(1)方程变形为,

∴或,即或,

故原方程表示圆心在原点半径分别为1和4的两个圆。

(2) 变形得,即,

故原方程表示直线。

(3) 变形为, 即,

整理得,

故原方程表示中心在,焦点在x轴上的双曲线。

(4)变形为,

∴,即,

故原方程表示顶点在原点,开口向上的抛物线。

总结升华:极坐标方程化为直角坐标方程,关键是依据关系式,把极坐标方程中的用x、y表示。

举一反三:

【变式1】把下列极坐标方程化为直角坐标方程,并说明它们是什么曲线.

(1);(2), 其中;

(3)(4)

【答案】:

(1)∵,∴即,

故原方程表示是圆.

(2)∵, ∴,

∴,∴或,

∴或

故原方程表示圆和直线.

(3)由,得即,整理得

故原方程表示抛物线.

(4)由得,

∴,即

故原方程表示圆.

【变式2】圆的直角坐标方程化为极坐标方程为_______________.

【答案】将代入方程得.

例3. 求适合下列条件的直线的极坐标方程:

(1)过极点,倾斜角是;(2)过点,并且和极轴垂直。

思路点拨:数形结合,利用图形可知过极点倾斜角为的直线为.过点垂直于极轴的直线为;或者先写出直角坐标方程,然后再转化成极坐标方程。

解析:

(1)由图知,所求的极坐标方程为;

(2)(方法一)由图知,所求直线的方程为,即.

(方法二)由图知,所求直线的方程为,即.

总结升华:抓住图形的几何性质,寻找动点的极径与极角所满足的条件,从而可以得到极坐标方程.也可以先求出直角坐标方程运用所得的方程形式,可以更简捷地求解.

举一反三:

【变式1】已知直线的极坐标方程为,则极点到该直线的距离是______。

【答案】:。

(方法一)把直线的极坐标方程化为直角坐标方程:,

则原点(极点)到该直线的距离是;

(方法二)直线是将直线绕极点顺时针旋转而得到,易知,

极点到直线的距离为。

【变式2】解下列各题

(1)在极坐标系中,以为圆心,半径为1的圆的方程为____,平行于极轴的切线方程为____;(2)极坐标系中,两圆和的圆心距为______ ;

(3)极坐标系中圆的圆心为________。

【答案】

(1)(方法一)

设在圆上,则,,,,由余弦定理得

即,为圆的极坐标方程。

其平行于极轴的切线方程为和。

(方法二)

圆心的直角坐标为,

则符合条件的圆方程为,

∴圆的极坐标方程:

整理得,即.

又圆的平行于(轴)极轴的切线方程为:或,

即和

(2)(方法一)的圆心为,的圆心为,∴两圆圆心距为.

(方法二)圆即的圆心为,

圆即的圆心为,

∴两圆圆心距为.

(3)(方法一)令得,∴圆心为。

(方法二)圆即的圆心为,即.

类型二:参数方程与普通方程互化

例4.把参数方程化为普通方程

(1) (,为参数);(2)(,为参数);

(3)(,为参数);(4)(为参数).

思路点拨:

(1)将第二个式子变形后,把第一个式子代入消参;

(2)利用三角恒等式进行消参;

(3)观察式子的结构,注意到两式中分子分母的结构特点,因而可以采取加减消参的办法;或把用表示,反解出后再代入另一表达式即可消参;

(4)此题是(3)题的变式,仅仅是把换成而已,因而消参方法依旧,但需要注意、的范围。

解析:

(1)∵,把代入得;

又∵,, ∴,,

∴所求方程为:(,)

(2)∵,把代入得.

又∵,

∴,. ∴所求方程为(,).

(3)(法一):,

又,,

∴所求方程为(,).

(法二):由得,代入,

∴(余略).

(4)由得, ∴,由得,

当时,;当时,,从而.

法一:,

即(),故所求方程为()法二: 由得,代入得,即

∴再将代入得,化简得.

总结升华:

1. 消参的方法主要有代入消参,加减消参,比值消参,平方消参,利用恒等式消参等。

2.消参过程中应注意等价性,即应考虑变量的取值范围,一般来说应分别给出、的范围.在这过程

中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法.

举一反三:

【变式1】化参数方程为普通方程。

(1)(t为参数) ;(2)(t为参数).

【答案】:

(1)由得,代入化简得.

∵, ∴,.

故所求方程为(,)

(2)两个式子相除得,代入得,即.

∵,故所求方程为().

【变式2】(1)圆的半径为_________ ;

(2)参数方程(表示的曲线为()。

A、双曲线一支,且过点

B、抛物线的一部分,且过点

C、双曲线一支,且过点

D、抛物线的一部分,且过点

【答案】:

(1)

其中,,∴半径为5。

(2),且,因而选B。

【变式3】(1)直线: (t为参数)的倾斜角为()。

A、B、C、D、

(2)为锐角,直线的倾斜角()。

A、B、C、D、

【答案】:

(1),相除得,∴倾斜角为,选C。

(2),相除得,

∵,∴倾角为,选C。

例5.已知曲线的参数方程(、为常数)。

(1)当为常数(),为参数()时,说明曲线的类型;

(2)当为常数且,为参数时,说明曲线的类型。

思路点拨:通过消参,化为普通方程,再做判断。

解析:(1)方程可变形为(为参数,为常数)

取两式的平方和,得

曲线是以为圆心,为半径的圆。

(2)方程变形为(为参数,为常数),

两式相除,可得,即,

曲线是过点且斜率的直线。

总结升华:从本例可以看出:某曲线的参数方程形式完全相同,但选定不同的字母为参数,则表示的意义也不相同,表示不同曲线。因此在表示曲线的参数方程时,一般应标明选定的字母参数。

举一反三:

类型三:其他应用

例6.椭圆内接矩形面积的最大值为_____________.

思路点拨:由椭圆的对称性知内接矩形的各边平行于两轴,只需求出其中一个点的坐标就可以用来表示面积,再求出最大值。

解析:设椭圆上第一象限的点,则

当且仅当时,取最大值,此时点.

总结升华:利用参数方程结合三角函数知识可以较简洁地解决问题。

举一反三:

【变式1】求椭圆上的点到直线:的最小距离及相应的点的坐标。

【答案】:设到的距离为,则

(当且仅当即时取等号)。

∴点到直线的最小距离为,此时点,即。

【变式2】圆上到直线的距离为的点共有_______个.

【答案】:已知圆方程为,

设其参数方程为() 则圆上的点

到直线

的距离为

,即

∴或

又 ,∴,从而满足要求的点一共有三个. 【变式3】实数、

满足

,求(1),(2)

的取值范围.

【答案】: (1)由已知

设圆的参数方程为(为参数)

∵,∴

(2)

,∴.

【巩固练习】

1. 已知点M 的极坐标为-?? ?

?

?53

,π,下列所给出的四个坐标中不能表示点M 的坐标为 A. 53

,-?? ??

?π B. 543

,π?? ?

?

? C. 523

,-?? ?

?

?π D. --?? ?

?

?553

,π 2. 点()22,-的极坐标为( )

3. 圆心为C 36

,π?? ?

?

?,半径为3的圆的极坐标方程为( ) 4. 极坐标方程为cos 30ρθθ-=表示的圆的半径为( )

5. 若A 33,π??

??

?,B -??

?

?

?36,π,则|AB|=___________,S A O B ?=

___________。(其中O 是极点) 6. 极点到直线(

)cos sin ρθθ+=_____________。 7. 极坐标方程2sin 2cos 0ρθθ-?=表示的曲线是____________。

8. 若圆C 的方程是2sin a ρθ=,则它关于极轴对称的圆心方程为____________,它关于直线θπ

=

34

对称的圆的方程为____________。 9. 方程sec 0cos x a ab y b θ

θθ=?≠?

=?

(为参数,)表示的曲线是____________。

10. 直线x x t y y t =+=-?

??00

3(t 为参数)上任一点P 到()Px y 000

,的距离为__________。 11. 直

线2211216x t t x y A B y ?=+??

+=??=-??为参数)与圆交于、两点,则AB 的中点坐标为

__________。

12. 22

121212516

x y F F P x PF F G +=?若、是椭圆的焦点,为椭圆上不在轴上的点,则的重心

的轨迹方程为____________。

13. 求椭圆22

11094

x y P +=上一点与定点(,)之间距离的最小值。

14. 若方程22cos 3sin 6cos 0m m ρθρθθ+-=的曲线是椭圆,求实数的取值范围。 15. 2cos sin x C y θ

θ=??

=?

已知曲线:,若A 、B 是C 上关于坐标轴不对称的任意两点,AB 的垂直平

分线交x 轴于P (a ,0),求a 的取值范围。

【试题答案】

1. A. 能表示点M 的坐标有(三)个,分别是B 、C 、D 。

2.

由2x y ==,

,得(2ρ==位于第四象限且

24

y tg x π

θθ=

=-=-或θπ=74

,故点2-

(,的极坐标为64

,-?? ???π或写成674

,π?

? ??

?。 3. 如下图,设圆上任一点为P (ρθ,),则((((2366

OP POA OA π

ρθ=∠=-=?=,,

((((cos Rt OAP OP OA POA ?=?∠中, 6cos 6

πρθ??

∴=- ??

?

P

4. 方法一:方程变形为cos 2cos

6πρθθθ?

?==+ ??

?

,该方程表示的圆的半径与圆2cos ρθ

=的半径相等,故所求的圆的半径为r=1

方法二:把方程化为2cos sin 0ρρθθ-+= 化为直角坐标方程为220x y x +-+=

即2

2

112x y ??

?-++= ?

????

可见所求圆的半径r=1

5. 在极坐标系中画出点A 、

B ,易得150AOB ∠=?

((

((((((((((((((2

22

2cos 32

119

sin 33sin150224

OAB

AOB AB OA OB OA OB AOB

AB S OA OB AOB ??=+-?∠∴=====

??∠=????=中,由余弦定理,得:

6. 极点为(0,0),直线的直角坐标方程为0x y +-= ∴极点到直线的距离d =

=326

2

7. 方程两边同乘以ρ,则()2

2sin 2cos 02y x ρθρθ-==,即,它表示抛物线。

8. 关于极轴对称的圆方程为2sin a ρθ=-,关于直线θπ

=

34

对称的圆的方程为2cos a ρθ=-。 9. 方程表示的曲线为双曲线(可把参数方程化为普通方程xy=ab ) 10. 所求距离为2|t|(把直线的参数方程化为标准形式) 11. 中点坐标为()33,-

(把1

12

x t y =+=-,代入222168120x y t t +=-+=,得:,设A 、B 对应的参数分别为t t 12,,则AB 中点对应的参数为()01211

8422

t t t =+=?=,将t 04=代入直线参数方程,

可求得中点的坐标。)

12. 设()()()()125cos 4sin 3

030G x y P F F θθ-,,,,而,,, 由重心坐标公式,得:()5cos 335cos 334sin 004sin 33x y θθθθθ+-+?

==???++?==??

(为参数) 消参,得点G 的轨迹方程为22

9912516

x y +=

13. 解:(先设出点P 的坐标,建立有关距离的函数关系)

()()

3cos 2sin 10P P d θθθ=设,,则到定点(,)的距离为

3

cos )5

d θθ=(当时,

14. 解:将方程两边同乘以ρ,化为:

()()22

cos 3sin 6cos 0m ρθρθρθ+-=

即整理,得:若方程表示椭圆,则须满足:

m x y x x m m y m m 222

2

2360

393

1+-=-?

? ??

?+=

()()229

03

00303393m m m m m

m m ?>???>?>≠?∈+∞???≠??

U 且,

15. 解:()()设,,,A B 22cos sin cos sin ααββ

()ΘΘA B k k k z AB x P

PA PB

、关于坐标轴不对称

,且,的垂直平分线·····

与轴交于点∴≠±≠±-∈∴=απβαπβ221

()()()()2222

2cos sin 2cos sin a a ααββ∴-+=-+

()

3cos cos 4

3

cos cos 12

a a αβαβ+=

==解之,得:当时,取最大值;

3

cos cos 12

3322a a αβ==--??

∴- ?

??

当时,取最小值。

的取值范围为,

参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: ) 0(ta ≠= x x y θ? ?? 图1

极坐标和参数方程知识点典型例题及其详解(供参考)

极坐标和参数方程知识点+典型例题及其详解 知识点回顾 (一)曲线的参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ???==) ()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+= (t 为参数) 其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○ 1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ?--4)(2. ○ 2.线段AB 的中点所对应的参数值等于2 B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆: θθ sin cos 00r y y r x x +=+= (θ为参数) 3.中心在原点,焦点在x 轴(或y 轴)上的椭圆: θθsin cos b y a x == (θ为参数) (或 θ θsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(. sin ,cos 00???+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:

2018年高考备考极坐标与参数方程专题

专题1 极坐标与参数方程 【基本方法】 1.两大坐标系:直角坐标系(普通方程、参数方程);极坐标系(极坐标方程); 2.基本转化公式: cos sin x y ρθ ρθ = ? ? = ? , 222 (0) tan x y x y x ρ θ ?=+ ? ≠ ? = ?? ; 3.参数方程: () () x f t y g t = ? ? = ? ,消去参数t得关于,x y的普通方程,引入参数t得参数方程; 4.直线的参数方程0 0cos sin x x t y y t αα =+ ? ? =+ ? (t为参数),注意参数t的几何意义;5.用转化法解决第(1)问,用图形法解决第(2)问. 【三年真题】 1.(2017全国I)在直角坐标系xOy中,曲线C的参数方程为 3cos, sin, x y θ θ = ? ? = ? (θ为参数),直线l的 参数方程为 4, 1, x a t t y t =+ ? ? =- ? (为参数). (1)若1 a=-,求C与l的交点坐标; (2)若C上的点到l a. 2.(2016全国I)在直角坐标系xOy中,曲线C1的参数方程为 cos 1sin x a t y a t = ? ? =+ ? (t为参数, a>).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ. (I)说明C1是哪种曲线,并将C1的方程化为极坐标方程; (II)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.

3.(2015全国I)在直角坐标系xOy 中,直线1C : x =-2,圆2C :()()22 121x y -+-=,以 坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (I)求1C ,2C 的极坐标方程; (II)若直线3C 的极坐标方程为()4 θρπ =∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积. 【自主研究】 4.(2016届佛山二模)已知曲线C 的极坐标方程为4sin()3 ρθπ =-,以极点为原点, 极轴为x 轴正半轴,建立直角坐标系xOy . (I)求曲线C 的直角坐标方程; (II)若点P 在曲线C 上,点Q 的直角坐标是(cos ,sin )?? (其中)?∈R ,求PQ 的最大值. 5.(2016届河南八市质检)在直角坐标系xOy 中,曲线C 的参数方程为333x y θ θ ???=??=cos sin (θ为参 数),以原点O 为起点,x 轴的正半轴为极轴,建立极坐标系,已知点P 的极坐标为(2,-3 π ), 直线l 的极坐标方程为ρcos(3 π +θ)=6. (Ⅰ)求点P 到直线l 的距离; (Ⅱ)设点Q 在曲线C 上,求点Q 到直线l 的距离的最大值. 6.(2016年全国卷II )在直角坐标系xOy 中,圆C 的方程为2 2 (6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t α α=??=? (t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的 斜率.

极坐标和参数方程知识点总结大全

极坐标与参数方程 一、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的 函数,即 ?? ?==) () (t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 练习 1.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ) A . 23 B .23- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1(,2 B .31(,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在 圆上作匀速圆周运动,设,则。 这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是 转过的角度(称为旋转角)。 圆心为,半径为的圆的普通方程是, 它的参数方程为:。 4.椭圆的参数方程 以坐标原点为中心,焦点在轴上的椭圆的标准方程为 其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为 其中参数仍为离心角,通常规定参数的范围为∈[0,2)。 注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。但 当时,相应地也有,在其他象限内类似。 5.双曲线的参数方程

极坐标与参数方程基本题型-2018年高考一轮复习资料极坐标与直角坐标普通方程与参数方程 的互相转化

极坐标与直角坐标、参数方程与普通方程的转化 一、直角坐标的伸缩 设点P(x ,y)是平面直角坐标系中的任意一点,在变换 φ:???>='>=')()( 0,0,μμλλy y x x 的作用下,点P(x ,y)对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩 变换,简称伸缩变换.平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换????? x ′=λ·x ,λ>0y ′=μ·y ,μ>0 下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆 可以变成椭圆,椭圆也可以变成圆(重点考察). 【强化理解】 1.曲线C 经过伸缩变换 后,对应曲线的方程为:x 2+y 2=1,则曲线C 的方程为( ) A . B . C . D .4x 2+9y 2=1 【解答】解:曲线C 经过伸缩变换①后,对应曲线的方程为:x ′2+y ′2=1②, 把①代入②得到: 故选:A 2、在同一直角坐标系中,求满足下列图形变换的伸缩变换:由曲线4x 2+9y 2=36变成曲线x ′2+y ′ 2=1. 【解答】解:设变换为φ:?????x ′=λx (λ>0),y ′=μy (μ>0), 可将其代入x ′2+y ′2=1,得λ2x 2+μ2y 2=1. 将4x 2+9y 2=36变形为x 29+y 2 4=1, 比较系数得λ=1 3,μ=1 2 . 所以?????x ′=13 x , y ′=1 2 y .将椭圆4x 2 +9y 2 =36上的所有点的横坐标变为原来的13,纵坐标变为原来的1 2, 可得到圆x ′2+y ′2=1.

亦可利用配凑法将4x 2 +9y 2 =36化为? ?????x 32+? ?? ?? ?y 22 =1,与x ′2 +y ′2 =1对应项比较即可得?????x ′=x 3,y ′=y 2 . 3、(2015春?浮山县校级期中)曲线x 2+y 2=1经过伸缩变换后,变成的曲线方程是( ) A .25x 2+9y 2=1 B .9x 2+25y 2=1 C .25x+9y=1 D .+=1 【解答】解:由伸缩变换,化为,代入曲线x 2+y 2=1可得25(x ′)2+9(y ′)2=1, 故选:A . 二、极坐标 1.公式: (1)极坐标与直角坐标的互化公式如下表: 点M 直角坐标(),x y 极坐标(),ρθ 互化公式 cos sin x y ρθ ρθ =?? =? ()222tan 0x y y x x ρθ?=+? ?=≠?? 已知极坐标化成直角坐标 已知直角坐标化成极坐标 2.极坐标与直角坐标的转化 (1)点:有关点的极坐标与直角转化的思路 A :直角坐标(),x y 化为极坐标(),ρθ的步骤 ①运用()222 tan 0x y y x x ρθ?=+? ?=≠?? ②在[)0,2π内由()tan 0y x x θ= ≠求θ时,由直角坐标的符号特征判断点所在的象限. B::极坐标(),ρθ化为直角坐标(),x y 的步骤,运用cos sin x y ρθ ρθ =??=?

最新极坐标参数方程题型归纳--7种

极坐标与参数方程(高考真题)题型归纳 一、极坐标方程与直角坐标方程的互化 1.(2015·广东理,14)已知直线l 的极坐标方程为2ρsin ????θ-π4=2,点A 的极坐标为A ????22,7π 4,则点A 到直线l 的距离为________. [立意与点拨] 本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离. 二、参数方程与直角坐标方程的互化 【解析】椭圆方程为:14622=+y x ,因为1cos sin 2 2=+x x ,令???==α αcos 2sin 6y x ,则有 X+2y=αsin 6+αcos 4=()?α++sin 166,最大值22,最小值22- 三、根据条件求直线和圆的极坐标方程 四、求曲线的交点及交点距离 4.(2015·湖北高考)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为? ??x =t -1t , y =t + 1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________. 【解析】 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C 的参 数方程? ??x =t -1t ,y =t + 1t 两式经过平方相减,化为普通方程为y 2-x 2=4,联立? ??? ?3x -y =0,y 2-x 2=4 解得???x =-22,y =-322或? ??x =2 2, y =32 2 . 所以点A ????-22,-322,B ???? 22,322. 所以|AB |= ????-22-222+??? ?-322-3222=2 5.

极坐标与参数方程专题答案

2015年极坐标与参数方程专题答案 1 【解析】根据直线的位置特点,设出所求直线上点的坐标为(ρ,θ),结合三角形的知识建立ρ和θ之间的等式,即可求出该直线的极坐标方程. 设直线上任意一点的坐标是(ρ,θ), 由正弦定理 即 2 【解析】根据变换法则建立曲线C1的参数方程,求出普通方程,根据极坐标方程,曲线C2 的方程也是圆,求出普通方程即可求出公共弦长. (α为参数 )上的每一点纵坐标不变,横坐标变为原来的一半得到 1 最后横坐标不变,纵坐标变为原来的 2 所以C1为(x-1)2+y2=4. 又C2为ρ=4sinθ,化为直角坐标方程为x2+y2=4y, 所以C1和C2公共弦所在直线为2x-4y+3=0,所以(1,0)到2x -4y+3=0 3.2 【解析】1.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是:(1)极点与原点重合;(2)极轴与x轴正方向重合;(3)取相同的单位长度.2.参数方程化为普通方程常见方法有三种:(1)代入法:利用解方程的技巧求出参数t,然后代入消去参数.(2)三角法:利用三角恒等式消去参数.(3)整体消元法:根据参数方程本身的结构特征,从整体上消去.化参数方程为普通方程F(x,y)=0时,在消参过程中注意变量x、y取值范围的一致性. 由C1 (x-4)2+(y-3)2=1;由C2:ρ=2得x2+y2=4,两圆圆心距

为5,两圆半径分别为1和2,故|AB|≥2,最小值为2. 4 由已知,以过原点的直线倾 斜角θ为参数,则 以 。所以所求圆的参数方程 为 本题考查与圆的参数方程有关的问题,涉及圆的标准方程和参数方程等知识,属于容易题。5 该题主要考查参数方程,极坐标系、极坐标方程以及它们的关系. 6 4 π θ?? += ? ? ? 对 7.2 【解析】本题考查抛物线的参数方程及抛物线的性质,考查运算求解能力及转化思想,中档 题. 化为普通方程为y2=2px(p>0),并且 又∵|EF|=|MF|=|ME|,即有3 p=±2(负值舍去),即p=2. 8 【解析】考查极坐标方程,关键是写出直线的极坐标方程,再按要求化简.

全参数方程与极坐标(精华版)

参数方程与极坐标 参数方程知识回顾: 一、 定义:在取定的坐标系中,如果曲线上任意一点的坐标 x 、y 都是某个参数t 的函数, x f (t ) 即 y f (t ) ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点 M ( x , y )都在这条 曲线上,那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数t 叫做参变数,简称参数. 二、 二次曲线的参数方程 1、圆的参数方程: 中心在(x o , y o ),半径等于r 的圆: { x r cos 特殊地,当圆心是原点时,、 y r si n 注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵 坐标与参数间的关系。 Eg1 :已知点P (x , y )是圆x 2+y 2-6x-4y+12=0 上的动点,求: (1 ) x 2+y 2的最值;(2 ) x+y 的最值;(3 )点P 到直线x+y-1=0 的距离d 的最值。 Eg2 :将下列参数方程化为普通方程 总结:参数方程化为普通方程步骤: (1 )消参(2 )求定义域 2、椭圆的参数方程: 中心在原点,焦点在 x 轴上的椭圆: x x 0 rcos 〔y y o rsin (为参数, 的几何意义为圆心角) (1 ) x=2+3cos y=3sin 1 (|3) x=t+ 一 t Y 2 1 I y=t 2+ ” x=s in y=cos

4、抛物线的参数方程: 顶点在原点,焦点在 x 轴正半轴上的抛物线: x 2pt 2 y 2pt (t 为参数,p > 0 , t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 x a cos y bsin (为参数, 的几何意义是离心角,如图角 AON 是离心角) 注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆, 点的轨迹是椭圆,中心在(x o ,y o )椭圆的参数方程: X 。 a cos y bsi n x Eg :求椭圆 36 y =1上的点到 M (2,0) 20 的最小值。 3、双曲线的参数方程: 中心在原点,焦点在 x 轴上的双曲线: a sec bta n 为参数,代表离心角) ,中心在 (x o ,y o ),焦点在x 轴上的双曲线: x x 0 asec y y 0 bta n 2 2

极坐标与参数方程高考题含答案

极坐标与参数方程高考 题含答案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

极坐标与参数方程高考题 1.在直角坐标系xOy 中,直线1:2C x =-,圆()()2 2 2:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()π R 4 θρ=∈,设23,C C 的交点为,M N ,求2C MN ? 的面积. 解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. (Ⅱ)将= 4 π θ代入2 2cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得 1ρ=,2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积 o 11sin 452?=1 2 . 2.已知曲线194:22=+y x C ,直线?? ?-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 解:(1)曲线C 的参数方程为(θ为参数).直线l 的普通方程为2x+y-6=0. (2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为 |4cos θ+3sin θ-6|, 则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tan α=43 . 当sin(θ+α)=-1时,|PA|取得最大值,.当sin(θ+α)=1时,|PA|取得最小 值,.

极坐标与参数方程专题复习

极坐标与参数方程专题复习

————————————————————————————————作者:————————————————————————————————日期:

试卷第8页,总6页 极坐标与参数方程专题复习 学校:___________姓名:___________班级:___________考号:___________ 一、知识点总结 1.直线的参数方程 (1)标准式过点()000P ,x y ,倾斜角为α的直线l (如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) 定点()000P ,x y 加t 个单位向量就是动点 于是,t 的绝对值就是定点和动点间的距离, (2)一般式?? ?+=+=bt y y at x x 00(t 为参数) 转化为标准式 ??? ? ??? ++=++=t b a b y y t b a a x x 2202 20 2.圆锥曲线的参数方程。“1”的代换 (1)圆()() 22 2 x a y b r -+-=cos sin x a r y b r θ θ=+?? =+? (θ是参数) θ是动半径所在的直线与x 轴正向的夹角,θ∈[]0,2π (2)椭圆122 22 =+b y a x cos sin x a y b θ θ=??=? (θ为参数)

试卷第8页,总6页 椭圆 1 22 22=+b y a y cos sin x b y a θ θ=?? =? (θ为参数) 3.极坐标 (1)极坐标与直角坐标互换。222cos sin x y x y ρρθρθ?=+? =??=? (2)过原点倾斜角为α的直线的极坐标方程:θα= (3)圆心在原点,半径为r 的圆极坐标方程:r ρ= 二、例题示范 题型一、坐标的互化。(略) 题型二、参数方程的本质(表示点)。 1、点到点、点到直线距离的最值。参数方程看做点带入距离公式。 2、点的轨迹方程。参数方程看做点,同时使用跟踪点发。 例1.在直角坐标系xOy 中,直线l 的参数方程为33x t y t =+???=??(t 为参数),以 原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 23sin ρθ=. (1)写出直线l 的普通方程及圆C 的直角坐标方程; (2)点P 是直线l 上的点,求点P 的坐标,使P 到圆心C 的距离最小.

极坐标与参数方程知识点及题型归纳总结

极坐标与参数方程知识点及题型归纳总结 知识点精讲 一、极坐标系 在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角. 二、极坐标与直角坐标的互化 设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立: cos sin x y ρθρθ=??=?或222 tan (0) x y y x x ρθ?=+? ?=≠?? (对0ρ<也成立). 三、极坐标的几何意义 r ρ=——表示以O 为圆心,r 为半径的圆; 0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线; 2cos a ρθ=表示以(,0)a 为圆心过O 点的圆. (可化直角坐标: 2 2cos a ρρθ=2 2 2x y ax ?+=2 2 2 ()x a y a ?-+=.) 四、直线的参数方程 直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为 00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程: 00sin ()()cos 2 y y x x απ αα-= -≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα =+??=+?,2π α=也成立,故直线的参数方程为

北师大版2018-专题突破——极坐标与参数方程专题

极坐标与参数方程专题(1)——直线参数t几何意义的应用1.(2018?银川三模)在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:(t为参 数),两曲线相交于M,N两点. (Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程; (Ⅱ)若P(﹣2,﹣4),求|PM|+|PN|的值. 解:(Ⅰ)根据x=ρcosθ、y=ρsinθ,求得曲线C的直角坐标方程为y2=4x, 用代入法消去参数求得直线l的普通方程x﹣y﹣2=0. (Ⅱ)直线l的参数方程为:(t为参数), 代入y2=4x,得到,设M,N对应的参数分别为t1,t2, 则t1+t2=12,t1?t2=48,∴|PM|+|PN|=|t1+t2|=. 2.(2018?乐山二模)已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为 (t为参数),点A的极坐标为(,),设直线l与圆C交于点P、Q两点.(1)写出圆C的直角坐标方程;(2)求|AP|?|AQ|的值. 解:(1)圆C的极坐标方程为ρ=2cosθ即ρ2=2ρcosθ,即(x﹣1)2+y2=1,表示以C(1,0)为圆心、半径等于1的圆. (2)∵点A的直角坐标为(,),∴点A在直线(t为参数)上. 把直线的参数方程代入曲线C的方程可得t2+t﹣=0. 由韦达定理可得t1?t2=﹣<0,根据参数的几何意义可得|AP|?|AQ|=|t1?t2|=.

3.(2018?西宁模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,C的极坐标方程为ρ=4sin(θ﹣).(I)求直线l和C的普通方程; (II)直线l与C有两个公共点A、B,定点P(2,﹣),求||PA|﹣|PB||的值. 解:(I)直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,所以:直线l的普通方程为: , 因为圆C的极坐标方程为为ρ=4sin(θ﹣),所以圆C的普通方程:.(II)直线l:的参数方程为:(t为参数), 代入圆C2的普通方程:消去x、y整理得:t2﹣9t+17=0,t1+t2=9,t1t2=17, 则:||PA|﹣|PB||=,=. 4.(2018?内江三模)在直角坐标系xOy中,直线l过点P(1,﹣2),倾斜角为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l与曲线C交于A,B两点. (Ⅰ)求直线l的参数方程(设参数为t)和曲线C的普通方程;(Ⅱ)求的值.解:(Ⅰ)∵直线l过点P(1,﹣2),倾斜角为. ∴直线l以t为参数的参数方程为,(t为参数)…(3分) ∵曲线C的极坐标方程为ρ=4cosθ.∴曲线C的普通方程为(x﹣2)2+y2=4.…(5分)(Ⅱ)将直线l的参数方程,(t为参数)代入曲线C的普通方程(x﹣2)2+y2=4,

2018高考数学解题技巧极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22 221x y a b +=的参数方程是cos ()sin x a y b θθθ =??=?为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ =??=?为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即2≥y ,可见与以上参数方程等价的普通方程为)2(422≥=-y y ,显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B.

极坐标系与参数方程一轮复习

极坐标系与参数方程 ?知识梳理 、极坐标 在象限确定. 二、常见曲线的极坐标方程 1、圆的极坐标方程 (1) 圆心在极点,半径为r 的圆的极坐标方程是 _____ ; (2) ______________________________________________________________ 圆心在极轴上的点(a,0)处,且过极点0的圆的极坐标方程是 _________________________ (3)圆心在点(a,处且过极点的圆0的极坐标方程是 ___________ 。 2、直线的极坐标方程 (1) 过极点且倾斜角为 的直线的极坐标方程是 __________ ; (2) _______________________________________________________ 过点(a,0),且垂直于极轴的直线的极坐标方程是 ___________________________________ 三、常见曲线的参数方程 1、极坐标定义:M 是平面上一点, 表示0M 的长度, 是MOx ,则有序实数实数对 (,),叫极径,叫极角;一般地, 2、极坐标和直角坐标互化公式: COS 2 2 x 2 y sin 或 t tan y (x 0) 的象限由点(x, y )所 [0,2 ), 0 x y

第一节 平面直角坐标系中的伸缩、平移变换 知识点】 点P(x,y)的对应点为P'(x',y')。称 为平面直角坐标系中的伸缩变换 定义 2: 在平面内,将图形 F 上所有点按照同一个方向,移动同样长度,称为 图形F 的平移。若以向量a 表示移动的方向和长度,我们也称图形 F 按向量a 平移. F 上任意一点P 的坐标为(x, y),向量a (h, k),平移后 因为平移变换仅改变图形的位置,不改变它的形状和大小.所以,在 平移变换作用下,曲线上任意两点间的距离保持不变。 【典例1】(2014年高考辽宁卷(文))将圆x 2 + /= 1上每一点的横坐标保持不变,纵坐 标变为原来的 2 倍,得曲线 C. (I) 写出 C 的参数方程; (II )设直线1: 2x + y - 2二0与C 的交点为P i ,P 2,以坐标原点为极点,x 轴正半轴为极 轴建立极坐标系,求过线段 P i P 2的中点且与I 垂直的直线的极坐标方程. 练习: 定义 1:设 P(x, y) 是平面直角坐标系中的任意一点,在变换 x' x( y' y( 00) )的作用下, 在平面直角坐标系中,设图形 的对应点为P(x, y )则有: 即有: x x h , y y k 在平面直角坐标系中,由 (x,y) (h,k) (x,y) xh x h 所确定的变换是一个平移变换。 yk

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公 在一般情况下,由确定角时,可根据点所在的象限最小正角. 4.常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的那么,由方程组①所确定的点都在这条曲线上,并且对于的每一个允许值,函数①. 方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周

极坐标与参数方程专题复习汇编

坐标系与参数方程 一、考试大纲解析: 1?坐标系 (1) 理解坐标系的作用; (2) 了解平面坐标系伸缩变换作用下图形的变化情况; (3) 能在坐标系中用极坐标表示点的位置,理解在极坐标和平面之间坐标系表示点的位 置的区别,能进行极坐标和直角坐标的互化; (4) 能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标和直角坐标系中 的方程,理解用方程表示平面图形时选择适当坐标系的意义; 2?参数方程 (1) 了解参数方程和参数方程的意义; (2) 能选择适当的参数写出直线、圆、圆锥曲线的参数方程; (3) 能用参数方程解决一些数学问题和实际的运用; 极坐标和参数方程是新课标考纲里的选考内容之一, 在每年的高考试卷中,极坐标和参 数方程都是放在选作题的一题中来考查。 由于极坐标是新添的内容,考纲要求比较简单,所 以在考试中一般不会有很难的题目。 三、知识点回顾 坐标系 的作用下,点P (x, y )对应到点P (X , y ),称「为平面直角坐标系中的坐标伸缩.变换,简 称伸缩变换? 2.极坐标系的概念: 在平面内取一个定点 0,叫做极点;自极点0引一条射线Ox 叫做极 轴;再选定一个长度单位、 一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这 样就建立了一个极坐标系。 3?点M 的极坐标:设M 是平面内一点,极点 0与点M 的距离|0M |叫做点M 的极径, 记为「;以极轴Ox 为始边,射线 0M 为终边的? xOM 叫做点M 的极角,记为二。有序 数对(OR 叫做点 M 的极坐标,记为M (几旳. 极坐标(几力与(亍门,2k 二)(k ?Z )表示同一个点。极点 0的坐标为(0门)(” R ). 4.若? ::: 0,则- ? 0,规定点(-匚力与点(:「)关于极点对称,即(-6力与(匚二 二) 表示同一点。 如果规定「7,0 V 2二,那么除极点外,平面内的点可用唯一的极坐标 (「门)表 示; 、题型分布: 1 .伸缩变换:设点P (x, y )是平面直角坐标系中的任意一点, 在变换申:丿 X 「X, ( ■ 0),

高考文科数学复习第轮极坐标与参数方程

高考文科数学 一轮复习(极坐标与参数方程)

第二讲极坐标与参数方程 目标认知 考试大纲要求: 1. 理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况; 2. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示 点的位置的区别,能进行极坐标和直角坐标的互化; 3. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方 程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时 选择适当坐标系的意义; 4. 了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表 示点的位置的方法相比较,了解它们的区别; 5. 了解参数方程,了解参数的意义,能选择适当的参数写出直线、圆和圆锥曲线的参 数方程; 6. 了解平摆线、渐开线的生成过程,并能推导出它们的参数方程,了解其他摆线的生 成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。 重点、难点: 1.理解参数方程的概念,了解常用参数方程中参数的意义,掌握参数方程与普通方程 的互化。 2.理解极坐标的概念,掌握极坐标与直角坐标的互化;直线和圆的极坐标方程。 【知识要点梳理】: 知识点一:极坐标 1.极坐标系 平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。 2.极坐标系内一点的极坐标 平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对 就叫做点的极坐标。 (1)一般情况下,不特别加以说明时表示非负数;

当时表示极点; 当时,点的位置这样确定:作射线, 使,在的反向延长线上取一点,使得,点即为所 求的点。 (2)点与点()所表示的是同一个点,即角与的 终边是相同的。 综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对 应, 即,, 均表示同一个点. 3. 极坐标与直角坐标的互化 当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合; ③长度单位相同),平面上一个点的极坐标和直角坐标有如下 关系: 直角坐标化极坐标:; 极坐标化直角坐标:. 此即在两个坐标系下,同一个点的两种坐标间的互化关系. 4. 直线的极坐标方程: (1)过极点倾斜角为的直线:或写成及. (2)过垂直于极轴的直线: 5. 圆的极坐标方程: (1)以极点为圆心,为半径的圆:. (2)若,,以为直径的圆: 知识点二:柱坐标系与球坐标系:

经典《极坐标与参数方程》综合测试题(含答案)

经典《极坐标与参数方程》综合测试题(含答 案) https://www.360docs.net/doc/5b4850356.html,work Information Technology Company.2020YEAR

《极坐标与参数方程》综合测试题 1.在极坐标系中,已知曲线C :ρ=2cosθ,将曲线C 上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C 1,又已知直线 l 过点P (1,0),倾斜角为3 ,且直线l 与曲线C 1交于A ,B 两点. (1)求曲线C 1的直角坐标方程,并说明它是什么曲线; (2)求 +. 2.在直角坐标系xOy 中,圆C 的参数方程(φ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是2ρsin (θ+)=3,射线OM :θ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.

3.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O 为原点,极轴所在直线为x轴建立平面直角坐标系. (Ⅰ)求圆C的参数方程; (Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标. 4.若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程是ρ=. (1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线; (2)若直线l的参数方程为(t为参数), 3 P,0 2 ?? ? ?? ,当直线l与曲线 C相交于A,B两点,求 2 AB PA PB ? .

相关文档
最新文档