河北省衡水中学 高一数学下学期期末试卷文含解析

合集下载

衡水市名校2019-2020学年高一下期末考试数学试题含解析

衡水市名校2019-2020学年高一下期末考试数学试题含解析

衡水市名校2019-2020学年高一下期末考试数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若sinA cosB cosCa b c==,则ABC ∆是( ) A .等边三角形 B .等腰三角形 C .直角或等腰三角形 D .等腰直角三角形【答案】D 【解析】 【分析】先根据题中条件,结合正弦定理得到sin cos B Bbb =,求出角B ,同理求出角C ,进而可判断出结果. 【详解】因为sin cos cos A B Ca b c==, 由正弦定理可得sin sin sin A B Ca b c==, 所以sin cos B B b b =,即sin cos B B =,因为角B 为三角形内角,所以4B π=; 同理,4Cπ;所以2A π=,因此,ABC ∆是等腰直角三角形. 故选D 【点睛】本题主要考查判定三角形的形状问题,熟记正弦定理即可,属于常考题型. 2.在空间中,可以确定一个平面的条件是( ) A .一条直线 B .不共线的三个点 C .任意的三个点 D .两条直线 【答案】B 【解析】试题分析:根据平面的基本性质及推论,即确定平面的几何条件,即可知道答案. 解:对于A .过一条直线可以有无数个平面,故错; 对于C .过共线的三个点可以有无数个平面,故错; 对于D .过异面的两条直线不能确定平面,故错; 由平面的基本性质及推论知B 正确. 故选B .考点:平面的基本性质及推论. 3.如果数列{}n a 的前n 项和为332n n S a =-,那么数列{}n a 的通项公式是( ) A .()221n a n n =++ B .32nn a =⨯C .31n a n =⨯D .23nn a =⨯【答案】D 【解析】 【分析】利用11,1=,2n n n a n a S S n -=⎧⎨-≥⎩计算即可.【详解】 当1n =时,11133,62S a a =-= 当2n 时,1113333332222n n n n n n n a S S a a a a ---⎛⎫=-=---=- ⎪⎝⎭ 即13nn a a -= ,故数列{}n a 为等比数列 则16323n n n a -=⨯=⨯因为623=⨯,所以,()2*3nn a n N ∈=⨯故选:D 【点睛】本题主要考查了已知n S 来求n a ,关键是利用11,1=,2n nn a n a S S n -=⎧⎨-≥⎩来求解,属于基础题.4.如图,在下列四个正方体中,P ,R ,Q ,M ,N ,G ,H 为所在棱的中点,则在这四个正方体中,阴影平面与PRQ 所在平面平行的是( )A .B .C .D .【答案】A【解析】 【分析】根据线面平行判定定理以及作截面逐个分析判断选择. 【详解】A 中,因为11////PQ AC A C ,所以可得//PQ 平面11A BC ,又1//RQ AB ,可得//RQ 平面11A BC ,从而平面//PQR 平面11A BC B 中,作截面可得平面PQR 平面1A BN HN =(H 为C 1D 1中点),如图:C 中,作截面可得平面PQR 平面HGN HN =(H 为C 1D 1中点),如图:D 中,作截面可得1,QN C M 为两相交直线,因此平面PQR 与平面11A MC 不平行, 如图:【点睛】本题考查线面平行判定定理以及截面,考查空间想象能力与基本判断论证能力,属中档题.5.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .3km 【答案】C 【解析】 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30103sin120PB ==,即这时船与灯塔的距离是3km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题. 6.若()2sinsinsin777n n S n N πππ︒=+++∈,则在中,正数的个数是( ) A .16 B .72C .86D .100【答案】C 【解析】 【详解】 令7πα=,则7n n πα=,当1≤n≤14时,画出角序列n α终边如图,其终边两两关于x 轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k 时,Sn>0, 而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.7.某实验单次成功的概率为0.8,记事件A 为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表: 752 029 714 985 034 437 863 694 141 469 037 623 804 601 366 959742761428261根据以上方法及数据,估计事件A 的概率为( ) A .0.384 B .0.65C .0.9D .0.904【答案】C 【解析】 【分析】由随机模拟实验结合图表计算即可得解. 【详解】由随机模拟实验可得:“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中最多成功1次”共141,601两组随机数,则“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”共20218-=组随机数, 即事件A 的概率为180.920=, 故选C . 【点睛】本题考查了随机模拟实验及识图能力,属于中档题. 8.函数y=2的最大值、最小值分别是( ) A .2,-2 B .1,-3C .1,-1D .2,-1【答案】B 【解析】 【分析】根据余弦函数有界性确定最值. 【详解】 因为,所以,即最大值、最小值分别是1,-3,选B.【点睛】本题考查余弦函数有界性以及函数最值,考查基本求解能力,属基本题. 9.为了得到函数sin 22y x π⎛⎫=-⎪⎝⎭的图象,可以将函数sin2y x =的图象( ) A .向右平移4π个单位长度 B .向左平移4π个单位长度 C .向右平移2π个单位长度 D .向左平移2π个单位长度 【答案】A 【解析】 【分析】先将sin 22y x π⎛⎫=- ⎪⎝⎭转化为sin 24y x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦,再判断""4π-的符号即可得出结论. 【详解】解:因为sin 22y x π⎛⎫=-⎪⎝⎭sin 24x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦, 所以只需把sin2y x =向右平移4π个单位. 故选:A 【点睛】函数左右平移变换时,一是要注意平移方向:按“左加右减",如由()f x 的图象变为()(0)f x a a +>的图象,是由""x 变为""x a +,所以是向左平移a 个单位;二是要注意x 前面的系数是不是1,如果不是1,左右平移时,要先提系数1,再来计算.10.已知函数sin y x =和cos y x =在区间I 上都是减函数,那么区间I 可以是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】分别根据sin y x =和cos y x =的单调减区间即可得出答案. 【详解】因为sin y x =和cos y x =的单调减区间分别是32,222k k ππππ⎡⎤++⎢⎥⎣⎦和 []2,2k k πππ+,所以选择B【点睛】本题考查三角函数的单调性,意在考查学生对三角函数图像与性质掌握情况. 11.已知函数()sin()sin ((0,))2f x x x παααπ⎛⎫=+++-∈ ⎪⎝⎭的最大值是2,则α的值为( ) A .6πB .4πC .3π D .2π 【答案】B 【解析】 【分析】根据诱导公式以及两角和差的正余弦公式化简,根据辅助角公式结合范围求最值取得的条件即可得解. 【详解】由题函数()sin()sin 2f x x x παα⎛⎫=+++- ⎪⎝⎭()sin()cos x x αα=++-sin cos cos sin cos cos sin sin x x x x αααα=+++()()cos sin sin cos sin cos x x αααα=+++)cos sin sin 4x παα⎛⎫=++ ⎪⎝⎭,最大值是2,所以cos sin αα+=,平方处理得:12cos sin 2αα+=, 所以sin21α=,(0,)απ∈,所以4πα=. 故选:B 【点睛】此题考查根据三角函数的最值求参数的取值,考查对三角恒等变换的综合应用. 12.已知()y f x =是偶函数,且0x >时4()f x x x=+.若[]3,1x ∈--时,()f x 的最大值为m ,最小值为n ,则m n -=() A .2 B .1C .3D .32【答案】B 【解析】 【分析】根据函数的对称性得到原题转化为[]1,3x ∈直接求4()f x x x=+的最大和最小值即可. 【详解】因为函数是偶函数,函数图像关于y 轴对称,故得到[]3,1x ∈--时,()f x 的最大值和最小值,与[]1,3x ∈时的最大值和最小值是相同的,故[]1,3x ∈直接求4()f x x x=+的最大和最小值即可; 根据对勾函数的单调性得到函数的最小值为()24f =,()()1315,33f f ==,故最大值为()15f =,此时 1.m n -= 故答案为:B. 【点睛】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。

2021年河北省衡水市第十四中学高一数学文下学期期末试题含解析

2021年河北省衡水市第十四中学高一数学文下学期期末试题含解析

2021年河北省衡水市第十四中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 方程组的解集是A. B. C. D.参考答案:C2. 设是两条不同的直线,是两个不同的平面,给出下列条件,能得到的是()A.B.C.D.参考答案:试题分析:从选项入手:中与可能平行,相交,或是垂直,错误;中与可能垂直或在平面内,错误;中与可能平行,相交,或是垂直,错误;故选.考点:排除法,线面垂直的判定.3. 已知平面α⊥平面β,α∩β=l,则下列命题错误的是()A.如果直线a⊥α,那么直线a必垂直于平面β内的无数条直线B.如果直线a∥α,那么直线a不可能与平面β平行C.如果直线a∥α,a⊥l,那么直线a⊥平面βD.平面α内一定存在无数条直线垂直于平面β内的所有直线参考答案:B4. 下列函数中,图象的一部分如右图所示的是()A. B.C. D.参考答案:D略5. 集合和,则以下结论中正确的是()A.B.C.D.参考答案:B6. 函数,满足f(lg2015)=3,则的值为()A.﹣3 B.3 C.5 D.8参考答案:C【考点】函数奇偶性的性质.【专题】转化思想;定义法;函数的性质及应用.【分析】根据条件构造函数g(x)=f(x)﹣1,判断函数的奇偶性,进行求解即可.【解答】解:∵f(x)=ax3+bx++4,∴f(x)﹣4=ax3+bx+是奇函数,设g(x)=f(x)﹣4,则g(﹣x)=﹣g(x),即f(﹣x)﹣4=﹣(f(x)﹣4)=4﹣f(x),即f(﹣x)=8﹣f(x),则=f(﹣2015)若f(2015)=3,则f(﹣2015)=8﹣f(2015)=8﹣3=5,故选:C.【点评】本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.7. 对任意平面向量、,下列关系式中不恒成立的是()A.|·|≤||||B.|-|≤|||-|||C.(+)2=|+|2 D.(+)(-)=2-2参考答案:B【考点】向量的模.【分析】根据平面向量数量积的定义与运算性质,对每个选项判断即可.【解答】解:对于A,∵|?|=||×||×|cos<,>|,又|cos<,>|≤1,∴|?|≤||||恒成立,A正确;对于B,由三角形的三边关系和向量的几何意义得,|﹣|≥|||﹣|||,∴B错误;对于C,由向量数量积的定义得(+)2=|+|2,C正确;对于D,由向量数量积的运算得(+)?(﹣)=2﹣2,∴D正确.故选:B.8. 若集合A={1,a,b},B={1,﹣1,2},且B=A,则a+b的值为()A.3 B.1 C.0 D.不能确定参考答案:B【考点】集合的相等.【专题】集合思想;综合法;集合.【分析】根据集合的相等,求出a,b的值,相加即可.【解答】解:∵集合A={1,a,b},B={1,﹣1,2},且B=A,∴a=﹣1,b=2或a=2,b=﹣1,则a+b=1,故选:B.【点评】本题考查了集合的相等问题,是一道基础题.9. 函数的零点所在的区间是()A.B. C. D.参考答案:C10. 等差数列{a n}中其前n项和为S n, 则为( ).A. 84B. 108C. 144D. 156参考答案:B【分析】根据等差数列前项和性质可得:,,成等差数列;根据等差数列定义可求得结果.【详解】由等差数列前项和性质可知:,,成等差数列又,本题正确选项:B【点睛】本题考查等差数列前项和性质的应用问题,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(Ⅰ)直方图中的值为___________;(Ⅱ)在这些用户中,用电量落在区间内的户数为_____________.参考答案:0.0044,70.12. (5分)已知集合A={﹣2,﹣1,0,1},集合B={x|x 2﹣1≤0,x∈R},则A∩B= .参考答案:{﹣1,0,1}考点: 交集及其运算. 专题: 集合.分析: 求解一元二次不等式化简集合B ,然后直接利用交集的运算求解. 解答: ∵A={﹣2,﹣1,0,1},B={x|x 2﹣1≤0,x∈R}={x|﹣1≤x≤1}, 则A∩B={﹣1,0,1}. 故答案为:{﹣1,0,1}.点评: 本题考查交集及其运算,考查了一元二次不等式的解法,是基础的计算题.13. 已知函数,函数为一次函数,若,则__________.参考答案:由题意,函数为一次函数,由待定系数法,设(),,由对应系数相等,得,.14. 函数的定义域是 .参考答案:(1,2]【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】由函数的解析式可得 =,可得 0<x ﹣1≤1,由此解得x 的范围,即为所求.【解答】解:由于函数,故有=,∴0<x ﹣1≤1,解得 1<x≤2, 故答案为 (1,2].【点评】本题主要考查求函数的定义域,对数函数的单调性和特殊点,属于基础题.15. 已知直线,则过点且与直线垂直的直线方程为 .参考答案:16. 若是偶函数,则a=__________.参考答案: -3考点:正弦函数的奇偶性. 专题:三角函数的求值.分析:利用和角公式、差角公式展开,再结合y=cosx 是偶函数,由观察法解得结果. 解答:解:是偶函数, 取a=﹣3,可得为偶函数.故答案为:﹣3.点评:判断一个函数是偶函数的方法就是偶函数的定义,若f (﹣x )=f (x )则f (x )是偶函数.有时,仅靠这个式子会使得计算相当复杂,这时观察法就会起到重要的作用. 17. 入射光线射在直线:上,经过轴反射到直线上,再经过轴反射到直线上,则直线的一般式方程为 .参考答案:三、解答题:本大题共5小题,共72分。

2024届河北省衡水市十三中数学高一下期末联考试题含解析

2024届河北省衡水市十三中数学高一下期末联考试题含解析

2024届河北省衡水市十三中数学高一下期末联考试题考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线l 是圆224x y +=在(1,3)-处的切线,点P 是圆22430x x y -++=上的动点,则点P 到直线l 的距离的最小值等于( ) A .1B .2C .3D .22.已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1a =( ) A .2-B .1-C .1D .23.为了得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,可以将函数2sin 2y x =的图像( ) A .向右平移3π个长度单位 B .向左平移3π个长度单位 C .向右平移6π个长度单位 D .向左平移6π个长度单位 4.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,且3 cos 4a C csin A =,已知ABC ∆的面积等于10,4b =,则a 的值为( ) A .233B .283C .263D .2535.利用随机模拟方法可估计无理数的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数, 是与的比值,执行此程序框图,输出结果的值趋近于 ( )A .B .C .D .6.已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆22:(1)(1)4C x y +++=的一条动弦,且23AB =则PA PB +的最小值是( )A .2B .42C .222D .4227.化简sin 2013o 的结果是 A .sin 33oB .cos33oC .-sin 33oD .-cos33o8.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =( )A .5B .4C .3D .99.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数是( )A .91B .91.5C .92D .92.510.若a b >,则下列正确的是( ) A .22a b > B .ac bc > C .22ac bc >D .a c b c ->-二、填空题:本大题共6小题,每小题5分,共30分。

最新版河北省衡水市高一下学期期末数学试卷(文科)(a卷) Word版(含解析)

最新版河北省衡水市高一下学期期末数学试卷(文科)(a卷) Word版(含解析)

2015-2016学年河北省衡水市冀州中学高一(下)期末数学试卷(文科)(A卷)一、选择题:(共15小题.每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的.)1.cos42°cos78°﹣sin42°sn78°=()A.B.﹣C.D.﹣2.已知向量,满足+=(1,﹣3),﹣=(3,7),•=()A.﹣12 B.﹣20 C.12 D.203.若函数,则f(f(1))的值为()A.﹣10 B.10 C.﹣2 D.24.已知,那么cosα=()A.B.C.D.5.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1 D.26.已知△ABC是边长为1的等边三角形,则(﹣2)•(3﹣4)=()A.﹣B.﹣C.﹣6﹣ D.﹣6+7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.8.定义2×2矩阵=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到函数g(x),则函数g(x)解析式为()A.g(x)=﹣2cos2x B.g(x)=﹣2sin2xC.D.9.若sin(π+α)=,α是第三象限的角,则=()A.B.C.2 D.﹣210.已知一个几何体的三视图如图所示,则该几何体的体积为()A.7 B.7C.7D.811.(1+tan18°)(1+tan27°)的值是()A.B.C.2 D.2(tan18°+tan27°)12.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),则f(6)的值为()A.﹣1 B.0 C.1 D.213.在下列四个正方体中,能得出AB⊥CD的是()A.B.C.D.14.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是()A.[0,] B.[,π)C.[0,]∪(,π) D.[,)∪[,π)15.若函数f(x)=单调递增,则实数a的取值范围是()A.(,3) B.[,3)C.(1,3)D.(2,3)二.填空题:(共5小题,每小题4分,共20分.)16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.17.已知向量、满足||=1,||=1,与的夹角为60°,则|+2|=.18.若tan(α﹣)=,且,则sinα+cosα=.19.在四棱锥S﹣ABCD中,SA⊥面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为.20.圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by﹣2=0(a,b∈R)对称,则ab的取值范围是.三、解答题:(本大题共6个小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)21.已知平面向量=(1,x),=(2x+3,﹣x)(x∈R).(1)若∥,求|﹣|(2)若与夹角为锐角,求x的取值范围.22.已知,且,(1)求cosα的值;(2)若,,求cosβ的值.23.已知向量=(sinx,sinx),=(cosx,sinx),若函数f(x)=•.(1)求f(x)的最小正周期;(2)若x∈[0,],求f(x)的单调减区间.24.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.25.如图,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD 是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.(1)求证:BG⊥PD;(2)求点G到平面PAB的距离.26.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“飘移点”x0.(1)函数f(x)=是否有“飘移点”?请说明理由;(2)证明函数f(x)=x2+2x在(0,1)上有“飘移点”;(3)若函数f(x)=lg()在(0,+∞)上有“飘移点”,求实数a的取值范围.2015-2016学年河北省衡水市冀州中学高一(下)期末数学试卷(文科)(A卷)参考答案与试题解析一、选择题:(共15小题.每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的.)1.cos42°cos78°﹣sin42°sn78°=()A.B.﹣C.D.﹣【考点】两角和与差的余弦函数.【分析】利用两角和的余弦公式,诱导公式,求得所给式子的值.【解答】解:cos42°cos78°﹣sin42°sn78°=cos(42°+78°)=cos120°=﹣cos60°=﹣,故选:B.2.已知向量,满足+=(1,﹣3),﹣=(3,7),•=()A.﹣12 B.﹣20 C.12 D.20【考点】平面向量数量积的运算.【分析】求出两向量的坐标,代入数量积的坐标运算即可.【解答】解:∵=(4,4),∴,∴=(﹣1,﹣5).∴=2×(﹣1)﹣2×5=﹣12.故选A.3.若函数,则f(f(1))的值为()A.﹣10 B.10 C.﹣2 D.2【考点】函数的值.【分析】先求f(1),再求f(f(1))即可.【解答】解:f(1)=2﹣4=﹣2,f(f(1))=f(﹣2)=2×(﹣2)+2=﹣2,故选C.4.已知,那么cosα=()A.B.C.D.【考点】诱导公式的作用.【分析】已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.【解答】解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.故选C.5.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1 D.2【考点】平面向量的基本定理及其意义.【分析】如图所示,由于=+,可得:PA是平行四边形PBAC的对角线,PA与BC 的交点即为BC的中点D.即可得出.【解答】解:如图所示,∵=+,∴PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.∴=1.故选:C.6.已知△ABC是边长为1的等边三角形,则(﹣2)•(3﹣4)=()A.﹣B.﹣C.﹣6﹣ D.﹣6+【考点】平面向量数量积的运算.【分析】将式子展开计算.【解答】解:(﹣2)•(3﹣4)=3﹣4﹣6+8=3×1×1×cos120°﹣4×1×1×cos60°﹣6×12+8×1×1×cos60°=﹣﹣2﹣6+4=﹣.故选:B.7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.【考点】正弦定理.【分析】由已知及正弦定理可得sinC==,又AB<AC,利用大边对大角可得C为锐角,根据同角三角函数基本关系式即可求得cosC得值.【解答】解:∵AB=2,AC=3,∠B=60°,∴由正弦定理可得:sinC===,又∵AB<AC,C为锐角,∴cosC==.故选:D.8.定义2×2矩阵=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到函数g(x),则函数g(x)解析式为()A.g(x)=﹣2cos2x B.g(x)=﹣2sin2xC.D.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【分析】利用三角恒等变换化简函数f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,求得函数g(x)解析式.【解答】解:由题意可得f(x)==cos2x﹣sin2x﹣cos(+2x)=cos2x+sin2x=2cos(2x﹣),则f(x)的图象向右平移个单位得到函数g(x)=2cos[2(x﹣)﹣]=2 cos(2x﹣π)=﹣2cos2x,故选:A.9.若sin(π+α)=,α是第三象限的角,则=()A.B.C.2 D.﹣2【考点】运用诱导公式化简求值.【分析】已知等式利用诱导公式化简求出sinα的值,根据α为第三象限角,利用同角三角函数间基本关系求出cosα的值,原式利用诱导公式化简,整理后将各自的值代入计算即可求出值.【解答】解:∵sin(π+α)=﹣sinα=,即sinα=﹣,α是第三象限的角,∴cosα=﹣,则原式====﹣,故选:B.10.已知一个几何体的三视图如图所示,则该几何体的体积为()A.7 B.7C.7D.8【考点】由三视图求面积、体积.【分析】根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,结合图中数据即可求出它的体积.【解答】解:根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,如图所示;所以该几何体的体积为V=V﹣﹣正方体=23﹣××12×2﹣××1×2×2=7.故选:A.11.(1+tan18°)(1+tan27°)的值是()A.B.C.2 D.2(tan18°+tan27°)【考点】两角和与差的正切函数.【分析】要求的式子即1+tan18°+tan27°+tan18°tan27°,再把tan18°+tan27°=tan45°(1﹣tan18°tan27°)代入,化简可得结果.【解答】解:(1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=1+tan45°(1﹣tan18°tan27°)+tan18°tan27°=2,故选C.12.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),则f(6)的值为()A.﹣1 B.0 C.1 D.2【考点】奇函数.【分析】利用奇函数的性质f(0)=0及条件f(x+2)=﹣f(x)即可求出f(6).【解答】解:因为f(x+2)=﹣f(x),所以f(6)=﹣f(4)=f(2)=﹣f(0),又f(x)是定义在R上的奇函数,所以f(0)=0,所以f(6)=0,故选B.13.在下列四个正方体中,能得出AB⊥CD的是()A.B.C.D.【考点】直线与平面垂直的性质.【分析】在图A中作出经过AB的对角面,发现它与CD垂直,故AB⊥CD成立;在图B 中作出正方体过AB的等边三角形截面,可得CD、AB成60°的角;而在图C、D中,不难将直线CD进行平移,得到CD与AB所成角为锐角.由此可得正确答案.【解答】解:对于A,作出过AB的对角面如图,可得直线CD 与这个对角面垂直,根据线面垂直的性质,AB ⊥CD 成立; 对于B ,作出过AB 的等边三角形截面如图,将CD 平移至内侧面,可得CD 与AB 所成角等于60°;对于C 、D ,将CD 平移至经过B 点的侧棱处,可得AB 、CD 所成角都是锐角. 故选A .14.直线x +(a 2+1)y +1=0(a ∈R )的倾斜角的取值范围是( )A .[0,] B .[,π) C .[0,]∪(,π) D .[,)∪[,π)【考点】直线的倾斜角.【分析】由直线的方程得 斜率等于,由于 0>﹣≥﹣1,设倾斜角为 α,则 0≤α<π,﹣1≤tan α<0,求得倾斜角α 的取值范围.【解答】解:直线x +(a 2+1)y +1=0(a ∈R )的 斜率等于,由于 0>﹣≥﹣1,设倾斜角为 α,则 0≤α<π,﹣1≤tan α<0,∴≤α<π,故选 B .15.若函数f (x )=单调递增,则实数a 的取值范围是( )A .(,3)B .[,3)C .(1,3)D .(2,3)【考点】函数单调性的判断与证明.【分析】利用函数的单调性,判断指数函数的对称轴,以及一次函数的单调性列出不等式求解即可【解答】解:∵函数f (x )=单调递增,由指数函数以及一次函数的单调性的性质,可得3﹣a >0且a >1. 但应当注意两段函数在衔接点x=7处的函数值大小的比较,即(3﹣a )×7﹣3≤a ,可以解得a ≥,综上,实数a 的取值范围是[,3).故选:B.二.填空题:(共5小题,每小题4分,共20分.)16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.【考点】平面向量共线(平行)的坐标表示;三点共线.【分析】利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.【解答】解:向量,∴又A、B、C三点共线故(4﹣k,﹣7)=λ(﹣2k,﹣2)∴k=故答案为17.已知向量、满足||=1,||=1,与的夹角为60°,则|+2|=.【考点】平面向量数量积的运算.【分析】根据条件进行数量积的计算便可得出,从而便可求出,这样即可求出的值.【解答】解:根据条件,;∴;∴.故答案为:.18.若tan(α﹣)=,且,则sinα+cosα=.【考点】三角函数的恒等变换及化简求值.【分析】直接利用两角差的正切函数,求出tanα的值,根据角的范围,求出sinα+cosα的值.【解答】解:∵tan(α﹣)=,∴,∴tanα=3,∵,∴sinα=,cosα=∴sinα+cosα==.故答案为:19.在四棱锥S﹣ABCD中,SA⊥面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为17π.【考点】球内接多面体.【分析】如图所示,连接AC,BD相交于点O1.取SC的中点,连接OO1.利用三角形的中位线定理可得OO1∥SA.由于SA⊥底面ABCD,可得OO1⊥底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心,SC是外接球的直径.【解答】解:如图所示连接AC,BD相交于点O1.取SC的中点,连接OO1.则OO1∥SA.∵SA⊥底面ABCD,∴OO1⊥底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心.因此SC是外接球的直径.∵SC2=SA2+AC2=9+8=17,∴4R2=17,∴四棱锥P﹣ABCD外接球的表面积为4πR2=π•17=17π.故答案为:17π20.圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by﹣2=0(a,b∈R)对称,则ab的取值范围是(﹣∞,].【考点】直线与圆的位置关系.【分析】由已知得直线2ax﹣by﹣2=0经过圆x2+y2+2x﹣4y+1=0的圆心(﹣1,2),从而得到a=﹣b﹣1,进而ab=b(﹣b﹣1)=﹣b2﹣b,由此利用配方法能求出ab的取值范围.【解答】解:∵圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by﹣2=0(a,b∈R)对称,∴直线2ax﹣by﹣2=0经过圆x2+y2+2x﹣4y+1=0的圆心(﹣1,2),∴﹣2a﹣2b﹣2=0,即a=﹣b﹣1,∴ab=b(﹣b﹣1)=﹣b2﹣b=﹣(b2+b)=﹣(b+)2+≤.∴ab的取值范围是(﹣∞,].故答案为:(﹣∞,].三、解答题:(本大题共6个小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)21.已知平面向量=(1,x),=(2x+3,﹣x)(x∈R).(1)若∥,求|﹣|(2)若与夹角为锐角,求x的取值范围.【考点】平面向量数量积的运算;平面向量共线(平行)的坐标表示.【分析】(1)根据向量平行与坐标的关系列方程解出x,得出的坐标,再计算的坐标,再计算||;(2)令得出x的范围,再去掉同向的情况即可.【解答】解:(1)∵,∴﹣x﹣x(2x+3)=0,解得x=0或x=﹣2.当x=0时,=(1,0),=(3,0),∴=(﹣2,0),∴||=2.当x=﹣2时,=(1,﹣2),=(﹣1,2),∴=(2,﹣4),∴||=2.综上,||=2或2.(2)∵与夹角为锐角,∴,∴2x+3﹣x2>0,解得﹣1<x<3.又当x=0时,,∴x的取值范围是(﹣1,0)∪(0,3).22.已知,且,(1)求cosα的值;(2)若,,求cosβ的值.【考点】二倍角的余弦;同角三角函数间的基本关系;两角和与差的正弦函数.【分析】(1)把已知条件平方可得sinα=,再由已知,可得cosα的值.(2)由条件可得﹣<α﹣β<,cos(α﹣β)=,再根据cosβ=cos(﹣β)=cos[(α﹣β)﹣α],利用两角和差的余弦公式,运算求得结果.【解答】解:(1)由,平方可得1+sinα=,解得sinα=.再由已知,可得α=,∴cosα=﹣.(2)∵,,∴﹣<α﹣β<,cos(α﹣β)=.∴cosβ=cos(﹣β)=cos[(α﹣β)﹣α]=cos(α﹣β)cosα+sin(α﹣β)sinα=+=﹣.23.已知向量=(sinx,sinx),=(cosx,sinx),若函数f(x)=•.(1)求f(x)的最小正周期;(2)若x∈[0,],求f(x)的单调减区间.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(1)利用平面向量的数量积运算法则确定出f(x)解析式,找出ω的值,代入周期公式即可求出最小正周期;(2)根据正弦函数的递减区间及x的范围确定出f(x)的递减区间即可.【解答】解:(1)∵=(sinx,sinx),=(cosx,sinx),∴f(x)=•=sinxcosx+sin2x=sin2x+﹣cos2x=sin(2x﹣)+,∵ω=2,∴T=π;(2)由2kπ+≤2x﹣≤2kπ+,k∈Z,且x∈[0,],得到kπ+≤x≤kπ+,则f(x)的单调递减区间为[,].24.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.25.如图,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD 是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.(1)求证:BG⊥PD;(2)求点G到平面PAB的距离.【考点】点、线、面间的距离计算.【分析】(1)连接PG,证得PG⊥平面ABCD,即可得PG⊥GB,结合GB⊥AD,得GB⊥平面PAD,即可证得结论;(2)由等体积法V G﹣PAB =V A﹣PGB,即可得出答案.【解答】(1)证明:连接PG,∴PG⊥AD,∵平面PAG⊥平面ABCD,∴PG⊥平面ABCD,∴PG⊥GB,又GB⊥AD,∴GB⊥平面PAD∵PD⊂平面PAD∴GB⊥PD…(2)解:设点G到平面PAB的距离为h,在△PAB中,PA=AB=a,PB=a,∴面积S=a2,∵V G﹣PAB =V A﹣PGB,∴=,∴h=…26.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“飘移点”x0.(1)函数f(x)=是否有“飘移点”?请说明理由;(2)证明函数f(x)=x2+2x在(0,1)上有“飘移点”;(3)若函数f(x)=lg()在(0,+∞)上有“飘移点”,求实数a的取值范围.【考点】抽象函数及其应用.【分析】(1)按照“飘移点”的概念,只需方程有根即可,据此判断;(2)本问利用零点定理即可判断,即判断端点处的函数值异号;(3)若函数在(0,+∞)上有飘移点,只需方程在该区间上有实根,然后借助于二次函数的性质可以解决.【解答】解:(1)假设函数有“飘移点”x0,则即由此方程无实根,与题设矛盾,所以函数没有飘移点.(2)令h(x)=f(x+1)﹣f(x)﹣f(1)=2(2x﹣1+x﹣1),所以h(0)=﹣1,h(1)=2.所以h(0)h(1)<0.所以有“飘移点”.(3)上有飘移点x0,所以lg=lg+lg成立,即,整理得,从而关于x的方程g(x)=(2﹣a)x2﹣2ax+2﹣2a在(0,+∞)上应有实数根x0.当a=2时,方程的根为,不符合要求,所以a>0,当0<a<2时,由于函数g(x)的对称轴,可知只需4a2﹣4(2﹣a)(2﹣2a)≥0,所以,即3﹣.所以a的范围是[).2016年8月2日。

2024届河北省衡水市重点名校高一数学第二学期期末经典试题含解析

2024届河北省衡水市重点名校高一数学第二学期期末经典试题含解析

2024届河北省衡水市重点名校高一数学第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角α的终边过点(1,2)P -,则sin α等于 ( ) A .55B .255C .55-D .255-2.将函数cos sin y x x =-的图像先向右平移()0ϕϕ>个单位,再将所得的图像上每个点的横坐标变为原来的a 倍,得到cos 2sin 2y x x =+的图像,则,a ϕ的可能取值为( ) A .,22a πϕ== B .3,28a πϕ== C .31,82a πϕ== D .1,22a πϕ==3.已知在Rt ABC ∆中,两直角边1AB =,2AC =,D 是ABC ∆内一点,且60DAB ∠=,设(,)AD AB AC R λμλμ=+∈,则λμ=( )A .233B .33C .3D .234.已知向量()3,1a =,()3,3b =-,则向量a 在向量b 方向上的投影为( )A .3-B .1-C .3D .15.ABC ∆的斜二测直观图如图所示,则原ABC ∆的面积为( )A .2 B .1C 2D .26.掷一枚均匀的硬币,如果连续抛掷2020次,那么抛掷第2019次时出现正面向上的概率是( )A.12019B.12C.12020D.201920207.Rt△ABC的三个顶点都在一个球面上,两直角边的长分别为6和8,且球心O到平面ABC的距离为12,则球的半径为()A.13 B.12 C.5 D.108.若,则向量的坐标是()A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4)9.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A.12B.16C.19D.11210.如图,在等腰梯形ABCD中,1,2DC AB BC CD DA===,DE AC⊥于点E,则DE=()A.1122AB AC-B.1122AB AC+C.1124AB AC-D.1124AB AC+二、填空题:本大题共6小题,每小题5分,共30分。

河北省衡水中学11-12学年高一下学期期末考试(数学文)

河北省衡水中学11-12学年高一下学期期末考试(数学文)

图1乙甲75187362479543685343212019学年度第二学期期末考试 高一年级数学(文科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)注意事项:1.答卷Ⅰ前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知向量),2,1(),,2(==b t a若1t t =时,a ∥b ;2t t =时,b a ⊥,则 ( ) A .1,421-==t t B.1,421=-=t t C.1,421-=-=t t D.1,421==t t 2.下列函数中,在区间(0,2π)上为增函数且以π为周期的函数是 ( ) A .2sin x y = B .x y sin = C .x y tan -= D .x y 2cos -=3.某路口,红灯时间为30秒,黄灯时间为5秒,绿灯时间为45秒,当你到这个路口时,看到黄灯的概率是 ( ) A 、121B 、83C 、65D 、.1614.图1是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是 ( ) A 、62 B 、63 C 、64 D 、655.若,5sin 2cos -=+αα则αtan = ( ) A .21 B .2 C .21- D .2-6.则ϕ的值为A.B.C.7.如果执行右面的程序框图,那么输出的=S()A、22 B、46 C、94 D、1908.已知的取值范围为()9.如图,在1,3ABC AN NC∆=中,P是BN上的一点,若211AP mAB AC=+,则实数m的值为()A.911B.511C.311D.21110.锐角三角形ABC中,内角CBA,,的对边分别为cba,,,若2B A=,则ba的取值范围是()A.B. C. D.11.如图,在四边形ABCD中,||||||4,0,AB BD DC AB BD BD DC→→→→→→→++=⋅=⋅=→→→→=⋅+⋅4||||||||DCBDBDAB,则→→→⋅+ACDCAB)(的值为()12.△ABC满足23AB AC⋅=︒=∠30BAC,yxyx2222cossin1cossin2+=+则,第7题第9题设M 是△ABC 内的一点(不在边界上),定义),,()(z y x M f =,其中,,x y z 分别表示△MBC ,△MCA ,△MAB 的面积,若)21,,()(y x M f =,则xy 的最大值为 ( )A.81B.91 C.161 D.181第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分。

2020-2021学年河北省衡水市第五中学高一数学文下学期期末试题含解析

2020-2021学年河北省衡水市第五中学高一数学文下学期期末试题含解析

2020-2021学年河北省衡水市第五中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若关于x的不等式>m解集为{︱0<<2},则m的值为( )A.1B.2C.3D.0参考答案:A2. 已知函数,若,则实数 ()A. B. C.或D.或参考答案:C3. 已知集合,集合,则A∩B=()A.(0,1] B.C.D.参考答案:C4. 已知扇形的圆心角为,半径为4,则扇形的面积是参考答案:略5. 已知定义在[1-a,2a -5]上的偶函数f(x )在[0,2a-5]上单调递增,则函数f(x)的解析式不可能的是()A. B. C. D.参考答案:B6. 已知函数为奇函数,且当时,,则()(A) (B) 0 (C) 1 (D) 2参考答案:A7. 函数f(x)=sinx﹣cosx的图象()A.关于直线x=对称B.关于直线x=﹣对称C.关于直线x=对称D.关于直线x=﹣对称参考答案:B【考点】三角函数的化简求值;正弦函数的图象.【分析】函数解析式提取,利用两角差的正弦函数公式化简,利用正弦函数图象的性质即可做出判断.【解答】解:函数y=sinx﹣cosx=sin(x﹣),∴x﹣=kπ+,k∈Z,得到x=kπ+,k∈Z,则函数的图象关于直线x=﹣对称.故选:B.【点评】本题考查了两角差的正弦函数公式,考查正弦函数图象的性质,熟练掌握公式是解本题的关键,是基础题.8. 若直线a∥直线b,且a∥平面,则b与平面的位置关系是()A、一定平行B、不平行C、平行或在平面内D、平行或相交参考答案:C略9. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1 B.y=lnx C.y=x3 D.y=|x|参考答案:D【考点】函数单调性的判断与证明;函数奇偶性的判断.【分析】选项A:y=在(0,+∞)上单调递减,不正确;选项B:定义域为(0,+∞),故为非奇非偶函数,不正确;选项C:满足f(﹣x)=﹣f(x),且在区间(0,+∞)上单调递增,正确;选项D:f(﹣x)≠﹣f(x),故y=|x|不是奇函数,不正确.【解答】解:选项A:y=在(0,+∞)上单调递减,不正确;选项B:定义域为(0,+∞),不关于原点对称,故y=lnx为非奇非偶函数,不正确;选项C:记f(x)=x3,∵f(﹣x)=(﹣x)3=﹣x3,∴f(﹣x)=﹣f(x),故f(x)是奇函数,又∵y=x3区间(0,+∞)上单调递增,符合条件,正确;选项D:记f(x)=|x|,∵f(﹣x)=|﹣x|=|x|,∴f(x)≠﹣f(x),故y=|x|不是奇函数,不正确.故选D10. 已知集合,,则=()A. B.C. D.参考答案:A考点:集合运算.二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,则的值为参考答案:512. 函数f(x)=的定义域为[-1,2],则该函数的值域为_________.参考答案:13. 圆锥的底面半径是1,它的侧面展开图是一个半圆,则它的母线长为。

河北省衡水市桃城区第十四中学2019-2020学年高一数学下学期期末考试试题【含答案】

河北省衡水市桃城区第十四中学2019-2020学年高一数学下学期期末考试试题【含答案】

cos 30

14.设 x R 且 x 0, n N ,则1 x x2 x3 xn ______.
1 n, x 1
1
x n 1
【答案】 1 x ,
x 1
【解析】当 x 1 时,1 x x2 x3 xn 1 n ;
当 x 1时,数列 xn 是首项为1,公比为 x 的等比数列,

a 2b c
a
13 2
39

sin A 2sin B sin C sin A 3 3
2
9.已知△ABC 的三个内角 A, B, C 所对的边分别为 a, b, c ,△ABC 的外接圆的面积为 3π ,
且 cos2 A cos2 B cos2 C 1 sin Asin C ,则△ABC 的最大边长为( )
y sin x 4 (0 x π)
D.
sin x
【答案】C
【解析】选项 A 错误,∵ x 可能为负数,没有最小值;
y 2
x2 2
1
选项 B 错误,化简可得
x2 2 ,
x2 2 1
由基本不等式可得取等号的条件为
x2 2 ,即 x2 1,
显然没有实数满足 x2 1;
选项 D 错误,由基本不等式可得取等号的条件为 sin x 2 ,但由三角函数的值域可知
A. 2
【答案】B
B. 3
C. 3
D. 2 3
【解析】△ABC 的外接圆的面积为 πR2 3π , R 3 ,
cos2 A cos2 B cos2 C 1 sin Asin C ,
则1 sin2 A 1 sin2 B 1 sin2 C 1 sin Asin C ,
sin2 A sin2 B sin2 C sin Asin C 0 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年河北省衡水中学高一(下)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若点(,2)在直线l:ax+y+1=0上,则直线l的倾斜角为()A.30° B.45° C.60° D.120°2.圆x2+y2+2x+6y+9=0与圆x2+y2﹣6x+2y+1=0的位置关系是()A.相交 B.外切 C.相离 D.内切3.在数列{a n}中,a1=,a n+1=1﹣,则a10=()A.2 B.3 C.﹣1 D.4.设α,β是两个不同的平面,m是一条直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m∥α,α⊥β,则m⊥β.则()A.①②都是假命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是真命题5.一个等比数列的前n项和为45,前2n项和为60,则前3n项和为()A.85 B.108 C.73 D.656.在正三棱锥S﹣ABC中,异面直线SA与BC所成角的大小为()A.B.C.D.7.《算法统宗》是中国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八節竹一莖,为因盛米不均平;下頭三節三生九,上梢三節貯三升;唯有中間二節竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端3节可盛米3升,要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升.由以上条件,要求计算出这根八节竹筒盛米的容积总共为()升.A.9.0 B.9.1 C.9.2 D.9.38.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π9.若等差数列{a n}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和S n取最小值时,n的值等于()A.7 B.6 C.5 D.410.已知圆C:(x+1)2+y2=32,直线l与一、三象限的角平分线垂直,且圆C上恰有三个点到直线l的距离为2,则直线l的方程为()A.y=﹣x﹣5 B.y=﹣x+3C.y=﹣x﹣5或y=﹣x+3 D.不能确定11.在2013年至2016年期间,甲每年6月1日都到银行存入m元的一年定期储蓄,若年利率为q保持不变,且每年到期的存款本息自动转为新的一年定期,到2017年6月1日甲去银行不再存款,而是将所有存款的本息全部取回,则取回的金额是()A.m(1+q)4元B.m(1+q)5元C.元D.元12.已知函数f(x)的定义域为R,当x>0时,f(x)<2,对任意的x,y∈R,f(x)+f (y)=f(x+y)+2成立,若数列{a n}满足a1=f(0),且f(a n+1)=f(),n∈N*,则a2017的值为()A.2 B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知数列{b n}是等比数列,b9是1和3的等差数列中项,则b2b16= .14.过点A(4,a)和B(5,b)的直线与y=x+m平行,则|AB|的值为.15.将底边长为2的等腰直角三角形ABC沿高线AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的体积为.16.若数列{a n}满足a2﹣a1<a3﹣a2<a4﹣a3<…<a n+1﹣a n<…,则称数列{a n}为“差递增”数列.若数列{a n}是“差递增”数列,且其通项a n与其前n项和S n满足3S n=1+λ﹣2a n(n∈N*),则λ的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且a2=2,S5=15.(Ⅰ)求数列{a n}的通项公式a n及前n项和S n;(Ⅱ)记b n=,求数列{b n}的前n项和T n.18.如图,在四棱锥S﹣ABCD中,四边形ABCD为矩形,E为SA的中点,SB=2,BC=3,.(Ⅰ)求证:SC∥平面BDE;(Ⅱ)求证:平面ABCD⊥平面SAB.19.已知数列{a n}的各项均为正数,其前n项和为S n,且满足4S n=(a n+1)2,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,T n为数列{b n}的前n项和,求证T n<6:.20.如图(1)所示,已知四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且点A为线段SD的中点,AD=2DC=1,AB=SD,现将△SAB沿AB进行翻折,使得二面角S﹣AB﹣C的大小为90°,得到的图形如图(2)所示,连接SC,点E、F 分别在线段SB、SC上.(Ⅰ)证明:BD⊥AF;(Ⅱ)若三棱锥B﹣AEC的体积是四棱锥S﹣ABCD体积的,求点E到平面ABCD的距离.21.已知圆O:x2+y2=9,直线l1:x=6,圆O与x轴相交于点A,B(如图),点P(﹣1,2)是圆O内一点,点Q为圆O上任一点(异于点A、B),直线AQ与l1相交于点C.(1)若过点P的直线l2与圆O相交所得弦长等于4,求直线l2的方程;(2)设直线BQ、BC的斜率分别为k BQ、k BC,求证:k BQ•k BC为定值.22.已知数列{a n}满足:a n+1+a n=2n,且a1=1,b n=a n﹣×2n.(1)求证:数列{b n}是等比数列;(2)设S n是数列{a n}的前n项和,若a n a n+1﹣tS n>0对任意n∈N*都成立.试求t的取值范围.2016-2017学年河北省衡水中学高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若点(,2)在直线l:ax+y+1=0上,则直线l的倾斜角为()A.30° B.45° C.60° D.120°【考点】I2:直线的倾斜角.【分析】设直线l的倾斜角为θ∈[0°,180°).由点(,2)在直线l:ax+y+1=0上,代入可得a+2+1=0,解得a.利用tanθ=﹣a,即可得出.【解答】解:设直线l的倾斜角为θ∈[0°,180°).∵点(,2)在直线l:ax+y+1=0上,∴ a+2+1=0,解得a=﹣.∴tanθ=﹣a=.则直线l的倾斜角θ=60°.故选:C.2.圆x2+y2+2x+6y+9=0与圆x2+y2﹣6x+2y+1=0的位置关系是()A.相交 B.外切 C.相离 D.内切【考点】JA:圆与圆的位置关系及其判定.【分析】把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R﹣r和R+r的值,判断d与R﹣r及R+r的大小关系即可得到两圆的位置关系.【解答】解:把圆x2+y2+2x+6y+9=0与圆x2+y2﹣6x+2y+1=0的分别化为标准方程得:(x+1)2+(y+3)2=1,(x﹣3)2+(y+1)2=9,故圆心坐标分别为(﹣1,﹣3)和(3,﹣1),半径分别为r=1和R=3,∵圆心之间的距离d==2,R+r=4,R﹣r=2,∵,∴R+r<d,则两圆的位置关系是相离.故选:C.3.在数列{a n}中,a1=,a n+1=1﹣,则a10=()A.2 B.3 C.﹣1 D.【考点】8H:数列递推式.【分析】由a1=,a n+1=1﹣,可得a n+3=a n.即可得出.【解答】解:∵a1=,a n+1=1﹣,∴a2=1﹣2=﹣1,同理可得:a3=2,a4=,…,∴a n+3=a n.∴a10=a3×3+1=a1=.故选:D.4.设α,β是两个不同的平面,m是一条直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m∥α,α⊥β,则m⊥β.则()A.①②都是假命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是真命题【考点】2K:命题的真假判断与应用.【分析】由面面垂直的判定①为真命题;若m∥α,α⊥β,m与β不垂直,【解答】解:由面面垂直的判定,可知若m⊥α,m⊂β,则α⊥β,故①为真命题;如图m∥α,α⊥β,m与β不垂直,故②是假命题.故选:B.5.一个等比数列的前n项和为45,前2n项和为60,则前3n项和为()A.85 B.108 C.73 D.65【考点】89:等比数列的前n项和.【分析】由等比数列的性质得S n,S2n﹣S n,S3n﹣S2n成等比数列,由此能求出结果.【解答】解:由等比数列的性质得:S n,S2n﹣S n,S3n﹣S2n成等比数列,∵等比数列的前n项和为45,前2n项和为60,∴45,60﹣45,S3n﹣60成等比数列,∴(60﹣15)2=45(S3n﹣60),解得S3n=65.故选:D.6.在正三棱锥S﹣ABC中,异面直线SA与BC所成角的大小为()A.B.C.D.【考点】LM:异面直线及其所成的角.【分析】取BC中点O,连结AO、SO,推导出BC⊥平面SOA,从而得到异面直线SA与BC所成角的大小为90°.【解答】解:取BC中点O,连结AO、SO∵在正三棱锥S﹣ABC中,SB=SC,AB=AC,∴SO⊥BC,AO⊥BC,∵SO∩AO=O,∴BC⊥平面SOA,∵SA⊂平面SAO,∴BC⊥SA,∴异面直线SA与BC所成角的大小为90°.故选:C.7.《算法统宗》是中国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八節竹一莖,为因盛米不均平;下頭三節三生九,上梢三節貯三升;唯有中間二節竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端3节可盛米3升,要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升.由以上条件,要求计算出这根八节竹筒盛米的容积总共为()升.A.9.0 B.9.1 C.9.2 D.9.3【考点】8B:数列的应用.【分析】要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由等差数列通项公式及前n项和公式列出方程组求出a1,d,由此能求出中间两节可盛米的容积,可得结论..【解答】解:要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由题意得,解得a1=1.306,d=﹣0.06,∴中间两节可盛米的容积为:a4+a5=(a1+3d)+(a1+4d)=2a1+7d=2.292这根八节竹筒盛米的容积总共为:2.292+3.9+3≈9.2(升).故选:C.8.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【考点】L!:由三视图求面积、体积.【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.故选C.9.若等差数列{a n}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和S n取最小值时,n的值等于()A.7 B.6 C.5 D.4【考点】8M:等差数列与等比数列的综合.【分析】由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值【解答】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{a n}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=﹣11,a n=a1+(n﹣1)d=﹣11+2(n﹣1)=2n﹣13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和S n取最小值时,n=6.故选:B.10.已知圆C:(x+1)2+y2=32,直线l与一、三象限的角平分线垂直,且圆C上恰有三个点到直线l的距离为2,则直线l的方程为()A.y=﹣x﹣5 B.y=﹣x+3C.y=﹣x﹣5或y=﹣x+3 D.不能确定【考点】J9:直线与圆的位置关系.【分析】设直线l的方程为y=﹣x+b,圆C的圆心C(﹣1,0),半径r=4,由圆C上恰有三个点到直线l的距离为2,得到圆心C(﹣1,0)到直线l:y=﹣x+b的距离为2,由此能求出直线l的方程.【解答】解:∵直线l与一、三象限的角平分线垂直,∴设直线l的方程为y=﹣x+b,圆C:(x+1)2+y2=32的圆心C(﹣1,0),半径r=4,∵圆C上恰有三个点到直线l的距离为2,∴圆心C(﹣1,0)到直线l:y=﹣x+b的距离为2,∴d==2,解得b=3或b=﹣5,∴直线l的方程为y=﹣x﹣5或y=﹣x+3.故选:C.11.在2013年至2016年期间,甲每年6月1日都到银行存入m元的一年定期储蓄,若年利率为q保持不变,且每年到期的存款本息自动转为新的一年定期,到2017年6月1日甲去银行不再存款,而是将所有存款的本息全部取回,则取回的金额是()A.m(1+q)4元B.m(1+q)5元C.元D.元【考点】88:等比数列的通项公式.【分析】2013年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q)4,2014年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q)3,2015年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q)2,2016年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q),由此利用等比数列前n项和公式能求出到2017年6月1日甲去银行将所有存款的本息全部取回,取回的金额.【解答】解:2013年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q)4,2014年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q)3,2015年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q)2,2016年6月1日到银行存入m元的一年定期储蓄,到2017年6月1日本息和为:m(1+q),∴到2017年6月1日甲去银行将所有存款的本息全部取回,则取回的金额是:S=m(1+q)(1+q)+m(1+q)2+m(1+q)3+m(1+q)4==.故选:D.12.已知函数f(x)的定义域为R,当x>0时,f(x)<2,对任意的x,y∈R,f(x)+f (y)=f(x+y)+2成立,若数列{a n}满足a1=f(0),且f(a n+1)=f(),n∈N*,则a2017的值为()A.2 B. C. D.【考点】3P:抽象函数及其应用.【分析】计算a1,判断f(x)的单调性得出递推公式a n+1=,两边取倒数化简得出∴{+}是等比数列,从而得出{a n}的通项公式.【解答】解:令x=y=0得f(0)=2,∴a1=2.设x1,x2是R上的任意两个数,且x1<x2,则x2﹣x1>0,∵x>0,f(x)<2;∴f(x2﹣x1)<2;即f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)+f(x1)﹣2<2+f(x1)﹣2=f(x1),∴f(x)在R上是减函数,∵f(a n+1)=f(),∴a n+1=,即=+1,∴+=3(+),∴{+}是以1为首项,以3为公比的等比数列,∴+=3n﹣1,∴a n=,∴a2017=.故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知数列{b n}是等比数列,b9是1和3的等差数列中项,则b2b16= 4 .【考点】88:等比数列的通项公式.【分析】利用等差数列与等比数列的性质即可得出.【解答】解:∵b9是1和3的等差数列中项,∴2b9=1+3,解得b9=2.由等比数列的性质可得:b2b16==4.故答案为:4.14.过点A(4,a)和B(5,b)的直线与y=x+m平行,则|AB|的值为.【考点】II:直线的一般式方程与直线的平行关系.【分析】由两点表示的斜率公式求出AB的斜率,再根据AB的斜率等于1,得到b﹣a=1,再代入两点间的距离公式运算.【解答】解:由题意,利用斜率公式求得k AB==1,即b﹣a=1,所以,|AB|==,故答案为:.15.将底边长为2的等腰直角三角形ABC沿高线AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的体积为.【考点】LG:球的体积和表面积.【分析】通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OM,求出球O的半径OD,即可求解球O的体积.【解答】解:如图,在△BCD中,BD=1,CD=1,∠BDC=60°,底面三角形BCD的外接圆圆半径为r,则∴AD是球的弦,DA=1,∴OM=∴球的半径R=OD=,∴球O的体积为=.故答案为:16.若数列{a n}满足a2﹣a1<a3﹣a2<a4﹣a3<…<a n+1﹣a n<…,则称数列{a n}为“差递增”数列.若数列{a n}是“差递增”数列,且其通项a n与其前n项和S n满足3S n=1+λ﹣2a n(n∈N*),则λ的取值范围是(﹣1,+∞).【考点】8E:数列的求和.【分析】根据数列递推公式得到数列{a n}是以2为公比的等比数列,求出数列{a n}的通项公式,再根据新定义,即可求出λ的范围.【解答】解:∵3S n=1+λ﹣2a n(n∈N*),n≥2时,3S n﹣1=1+λ﹣2a n﹣1,两式相减得5a n=2a n﹣1.故数列{a n}是以为公比的等比数列,当n=1时,a1=,∴a n=,可得a n+1﹣a n=,a n﹣a n﹣1=,由此可得(a n+1﹣a n)﹣(a n﹣a n﹣1)=,可得1+λ>0⇒λ>﹣1故答案为:(﹣1,+∞)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且a2=2,S5=15.(Ⅰ)求数列{a n}的通项公式a n及前n项和S n;(Ⅱ)记b n=,求数列{b n}的前n项和T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(Ⅰ)设数列{a n}的公差为d,由题意得解得,利用等差数列通项公式,求和公式即可求解(Ⅱ)由(Ⅰ)得,b n===2(),累加即可.【解答】解:(Ⅰ)设数列{a n}的公差为d,由题意得解得,所以a n=n(n∈N+),(n∈N+).(Ⅱ)由(Ⅰ)得,b n===2(),.则T n b1+b2+b3+…+b n=2(1﹣)=2(1﹣)=.18.如图,在四棱锥S﹣ABCD中,四边形ABCD为矩形,E为SA的中点,SB=2,BC=3,.(Ⅰ)求证:SC∥平面BDE;(Ⅱ)求证:平面ABCD⊥平面SAB.【考点】LY:平面与平面垂直的判定;LS:直线与平面平行的判定.【分析】(Ⅰ)连接AC交BD于F,则F为AC中点,连接EF,可得EF∥SC,即SC∥平面BDE.(Ⅱ)由SB2+BC2=SC2,得BC⊥SB,又四边形ABCD为矩形,即BC⊥平面SAB,可证平面ABCD⊥平面SAB.【解答】证明:(Ⅰ)连接AC交BD于F,则F为AC中点,连接EF,∵E为SA的中点,F为AC中点,∴EF∥SC,又EF⊂面BDE,SC⊄面BDE,∴SC∥平面BDE.(Ⅱ)∵SB=2,BC=3,,∴SB2+BC2=SC2,∴BC⊥SB,又四边形ABCD为矩形,∴BC⊥AB,又AB、SB在平面SAB内且相交,∴BC⊥平面SAB,又BC⊂平面ABCD,∴平面ABCD⊥平面SAB.19.已知数列{a n}的各项均为正数,其前n项和为S n,且满足4S n=(a n+1)2,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,T n为数列{b n}的前n项和,求证T n<6:.【考点】8E:数列的求和;8H:数列递推式.【分析】(Ⅰ)当n≥2时,4S n﹣1=(a n﹣1+1)2,4S n=(a n+1)2,n∈N*.两式相减,得(a n+a n)(a n﹣a n﹣1﹣2)=0(a n﹣a n﹣1﹣2)=0,得a n﹣a n﹣1=2即可.﹣1(Ⅱ)由(Ⅰ)知,b n==,利用错位相减法求T n即可证明.【解答】解:(Ⅰ)当n=1时,4S1=(a1+1)2,即a1=1.当n≥2时,4S n﹣1=(a n﹣1+1)2,又4S n=(a n+1)2,n∈N*.两式相减,得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0(a n﹣a n﹣1﹣2)=0.因为数列{a n}的各项均为正数,所以a n﹣a n﹣1=2.所以数列{a n}是以1为首项,2为公差的等差数列,即a n=2n﹣1(n∈N*).(Ⅱ)由(Ⅰ)知,b n==,则T n=…①=…②①﹣②,得=1+﹣=3﹣所以T n=6﹣<6.20.如图(1)所示,已知四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且点A为线段SD的中点,AD=2DC=1,AB=SD,现将△SAB沿AB进行翻折,使得二面角S﹣AB﹣C的大小为90°,得到的图形如图(2)所示,连接SC,点E、F 分别在线段SB、SC上.(Ⅰ)证明:BD⊥AF;(Ⅱ)若三棱锥B﹣AEC的体积是四棱锥S﹣ABCD体积的,求点E到平面ABCD的距离.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【分析】(Ⅰ)推导出SA⊥AD,SA⊥AB,从而SA⊥平面ABCD,进而SA⊥BD,再求出AC⊥BD,由此得到BD⊥平面SAC,从而能证明BD⊥AF.(Ⅱ)设点E到平面ABCD的距离为h,由V B﹣AEC=V E﹣ABC,且=,能求出点E到平面ABCD的距离.【解答】证明:(Ⅰ)∵四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,二面角S﹣AB﹣C的大小为90°,∴SA⊥AD,又SA⊥AB,AB∩AD=A,∴SA⊥平面ABCD,又BD⊂平面ABCD,∴SA⊥BD,在直角梯形ABCD中,∠BAD=∠ADC=90°,AD=2CD=1,AB=2,∴tan∠ABD=tan∠CAD=,又∠DAC+∠BAC=90°,∴∠ABD+∠BAC=90°,即AC⊥BD,又AC∩SA=A,∴BD⊥平面SAC,∵AF⊂平面SAC,∴BD⊥AF.解:(Ⅱ)设点E到平面ABCD的距离为h,∵V B﹣AEC=V E﹣ABC,且=,∴===,解得h=,∴点E到平面ABCD的距离为.21.已知圆O:x2+y2=9,直线l1:x=6,圆O与x轴相交于点A,B(如图),点P(﹣1,2)是圆O内一点,点Q为圆O上任一点(异于点A、B),直线AQ与l1相交于点C.(1)若过点P的直线l2与圆O相交所得弦长等于4,求直线l2的方程;(2)设直线BQ、BC的斜率分别为k BQ、k BC,求证:k BQ•k BC为定值.【考点】J9:直线与圆的位置关系.【分析】(1)若过点P的直线l2与圆O相交所得弦长等于4,圆心O(0,0)到直线的距离,分类讨论,求直线l2的方程;(2)求出相应直线的斜率,即可证明结论.【解答】(1)解:因直线l2与圆O相交所得弦长等于4,所以圆心O(0,0)到直线的距离设直线l2的方程为y﹣2=k(x+1),即kx﹣y+k+2=0由解得又过点P且与x轴垂直的直线x=﹣1显然符合要求所以直线l2的方程是x=﹣1或3x+4y﹣5=0﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)证明:设点C的坐标为(6,h),则直线AC的方程为由解得从而得点,所以所以k BQ•k BC=﹣3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.已知数列{a n}满足:a n+1+a n=2n,且a1=1,b n=a n﹣×2n.(1)求证:数列{b n}是等比数列;(2)设S n是数列{a n}的前n项和,若a n a n+1﹣tS n>0对任意n∈N*都成立.试求t的取值范围.【考点】8E:数列的求和;88:等比数列的通项公式.【分析】(1)由已知推导出,由此能证明数列{b n}是首项为,公比为1的等比数列.(2)先求出,数列{a n}的前n项和S n= [],从而a n a n+1= [2n﹣(﹣1)n][2n+1﹣(﹣1)n+1],由此根据n为正奇数和n为正偶数,分类讨论,能求出t的取值范围.【解答】证明:(1)∵数列{a n}满足:a n+1+a n=2n,且a1=1,b n=a n﹣×2n,∴,∴=﹣1,∵=,∴数列{b n}是首项为,公比为1的等比数列.解:(2)由(1)知=,∴,∴数列{a n}的前n项和:S n={(2+22+23+…+2n)﹣[﹣(﹣1)+(﹣1)2+…+(﹣1)n}= []=﹣﹣.∵a n a n+1﹣tS n>0对任意n∈N*都成立.∴由a n= [2n﹣(﹣1)n],得a n a n+1= [2n﹣(﹣1)n][2n+1﹣(﹣1)n+1],S n=﹣﹣.①当n为正奇数时,a n a n+1﹣tS n=(2n+1)(2n+1﹣1)﹣(2n+1﹣1)>0对任意n∈N*都成立,∵2n+1﹣1>0,∴(2n+1)﹣>0,即t(2n+1)对任意正奇数n都成立,又因为数列{}递增,所以当n=1时,有最小值1,∴t<1;②当n为正偶数时,a n a n+1﹣tS n=(2n﹣1)(2n+1+1)﹣,即(2n﹣1)(2n+1+1)﹣>0对任意n∈N*都成立,又∵2n﹣1>0,∴>0,即t<任意正偶数n都成立,又数列{(2n+1+1)}递增,∴当n=2时,有最小值.∴t.综上所述,当n为正奇数时,t的取值范围是(﹣∞,1);当n为正偶数时,t的取值范围是(﹣1,).21。

相关文档
最新文档