波谱分析紫外和可见光谱
四大光谱法的解析原理及规律

四大光谱法的解析原理及规律在检测领域,有四大名谱,也是检测领域的“四大天王”分别为色谱、光谱、质谱、波谱,在检测特色和适用范围上各有不同,但总有一款适合你!质谱:分析分子、原子、或原子团的质量的,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱:是一种兼顾分离与定量分析的手段,可分辨样品中的不同物质。
光谱:定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱:通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
光谱分析法光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成和相对含量。
光谱分析时,可利用发射光谱,也可以利用吸收光谱。
这种方法的优点是非常灵敏而且迅速。
某种元素在物质中的含量达10皮克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来。
光谱的分类按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱。
按产生的本质不同,可分为原子光谱和分子光谱。
按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱。
按光谱表现形态不同,可分为线光谱、带光谱和连续光谱。
分光光谱技术可用于:通过测定某种物质吸收或发射光谱来确定该物质的组成;通过测量适当波长的信号强度确定某种单独存在或其他物质混合存在的一种物质的含量;通过测量某一种底物消失或产物出现的量同时间的关系,示踪反应过程。
鉴定分子式、结构式的方法紫外光谱:反应分子中共轭体系状况;红外光谱:光能团鉴定、分子中环、双键数目。
光谱法的优缺点(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。
(2)操作简便有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。
波谱分析第6章 紫外可见光谱(1)

图 分子轨道的能级和电子跃迁类型
s*
*
E
n
s
跃迁能量大小:
σ→σ* > n →σ* > π→π* > n→π*
仅在远紫外区可能观察到它们的吸收峰。
杂原子非键轨道中的电子向σ*轨道的跃迁,一般在 200 nm左右。
电子由成键轨道向*轨道的跃迁。如具有一个孤 立键的乙烯,跃迁的吸收光谱约在165 nm。分子中 如有两个或多个键处于共轭的关系,则这种谱带将 随共轭体系的增大而向长波方向移动。
max
254nm
270nm
红移和蓝移 增色效应与减色效应
最大吸收波长(λmax);在峰旁边一个小 的曲折称为肩峰;在吸收曲线的波长最 短一端,吸收相当大但不成峰形的部分 称为末端吸收。整个吸收光谱的形状是
鉴定化合物的标志。
吸收带分类
根据电子和轨道的种类,可以把吸收谱带分为四 类: K 吸收带、R 吸收带、B 吸收带和 E 吸收带。
图 (a) Frank-Condon原理示意图
(b) 紫外光谱的精细结构
6.1.2 电子跃迁选择定则(Selection rule)
跃迁必须遵守选择定则
理论上,允许的跃迁,跃迁几率大,吸收强度高( max大);禁阻的跃迁,
跃迁几率小,吸收强度低或者观察不到。 实际上禁阻的跃迁也可以观察到,只是其强度要比允许跃迁要小得多。
紫外-可见光谱分析
6.1.1紫外-可见光谱的基本原理
紫外-可见吸收光谱(UV-VIS) 分子吸收10~800nm光谱区的电磁波而产生的吸收光谱。该数 量级能量的吸收,可导致分子的价电子由基态(S0)跃迁至高能 级的激发态(S1, S2, S3, …) 紫外-可见光区分为三个区域:
波谱分析简介

➢ 紫外吸收光谱 分子中最外层价电子在不同能级轨道上
跃迁而产生的,反映了分子中价电子跃迁时的能量变化与化 合物所含发色基团之间的关系。
-胡罗卜素 咖啡因
几种有机化合的 分子吸收光谱图。
阿斯匹林
丙酮
T(%)
➢ 红外吸收光谱 分子振-转光谱,由分子的振动-转动能 级间的跃迁而产生的。鉴别分子中所含有的特征官能团和化学 建的类型,进而确定化合物分子的化学结构。
红外光谱
转动、自旋跃迁 微波谱、顺磁共振
核自旋跃迁
核磁共振
三、分子不饱和度的计算
在已知分子式的情况下,结构解析的优先步骤之一是求出 不饱和度。
U=1+ n4 + 1/2(n3-n1 )
n4 、 n3、n1 -分别为4价、 3价、1价原子的个数。
稠环芳烃不饱和度: 例:
U=4r-s
r-稠环芳烃的环数 s-共用边数
r=3 s =2 U=4×3-2=10
C6H6 C2H5NO2
U=1+6 + 1/2(0-6 ) = 4 U=1+2 + 1/2(1-5 ) = 1
四、波谱实验样品的准备
波谱测定前需根据样品的来源、性质、纯度、杂质组分不 同以及不同波谱测定目的作样品的准备工作。
1.样品量
(1)首先取决于检测灵敏度。即不同波谱对样品需要的量不 同。MS(10-12g)、 UV(10-6g)、IR、NMR(几毫克)
苯酚的红外光谱
➢ 核磁共振波谱 分子具有核磁矩的原子核1H、13C(或 15N、19F、31P等)在外加磁场中,通过射频电磁波的照射,
吸收一定频率的电磁波能量,由低能级跃迁到高能级,并产 生核磁共振信号。
有机波谱知识点总结

有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。
有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。
本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。
一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。
红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。
2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。
红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。
3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。
此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。
二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。
紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。
2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。
紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。
3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。
此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。
三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。
质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。
有机波谱分析--紫外-可见光谱法

②呈一宽峰,且有精细结构。 ③当苯环被烷基以外的基团取代或溶剂极性增大时,精细
结构将会减弱甚至消失。
(4)E 带:芳香族化合物的特征谱带。
Ethylene
●E1带:苯环中“乙烯键”的π→π*跃迁产生的吸收带。 λmax=180~200nm,远紫外区; εmax=5×104L·mol-1·cm-1,强吸收。(不常用)
3.互变异构
4.氢键效应 1)溶质分子间氢键
使n→*共轭受限,轨道能差增大,波长蓝移。
2)分子内氢键:能差减小,波长红移。
例如:邻硝基苯酚和间硝基苯酚
分子内氢键
max=278nm =6.6103
无分子内氢键
max=273nm =6.6103
邻硝基苯酚, 由于分子内氢键的形成,红移了5nm。
3)溶质与溶剂间形成的氢键(属于溶剂效应)
波谱范围:10~800nm
(1)远紫外光区10~200nm (2)近紫外光区200~400nm (3)可见区400~800nm.
一般的紫外光谱是指近紫外区。
1、紫外光谱产生的条件
2、有机分子的化学键类型
★构成分子的化学键主要有 键、 键,还 有未成键孤
对电子构成的非键(n 键)。
★ 5种轨道分别是:
54
2)单环共轭烯烃(乙醇溶剂) ◆母体值: ①共轭二烯不在同一环内
217nm
②共轭二烯在同一环内
◆扩展共轭: ◆取代基增加值: 烷基 卤素 ◆环外双键
253nm
+30nm
+5nm +17nm +5nm
55
●注意: (1)母体值只是指共轭二烯母体本身的λ值,不包括C=C-C=C
光谱的分类

光谱的分类
光谱的分类通常有以下几种方式:
1.根据电磁波谱的类型和波长进行分类:
- 可见光谱:指人眼可见的光波谱,包括红、橙、黄、绿、蓝、靛、紫七个颜色。
- 红外光谱:波长比可见光长的光谱,用于红外光谱分析。
- 紫外光谱:波长比可见光短的光谱,包括近紫外(200-380nm)、中紫外(100-200nm)和远紫外(10-100nm)。
- 微波谱和射频谱:波长范围较长,用于通信、雷达等应用。
- X射线谱和γ射线谱:波长非常短,用于核物理、医学影像等领域。
- 延伸至无线电波、太赫兹波等其他电磁波段的光谱。
2.根据光谱的产生方式进行分类:
- 发射光谱:物质吸收能量后反向转发射出的光谱。
- 吸收光谱:物质吸收特定波长光的现象。
- 散射光谱:光在物质中发生散射现象,产生的光谱。
- 荧光光谱:物质吸收能量后在短时间内发射出的光谱。
- 光谱探测光谱:利用光学仪器对物质进行分析和检测。
3.根据光谱的应用进行分类:
- 分子光谱:用于分析和研究化学物质的结构和性质。
- 原子光谱:通过原子或离子的光谱研究元素和化合物的组成和性质。
- 大气光谱:用于研究大气中的气体成分、温度分布和辐射特性等。
- 天体光谱:用于研究宇宙中的天体物质的组成、温度、速度等。
- 核磁共振光谱:利用核磁共振现象对物质进行分析和研究。
需要注意的是,光谱的分类并不是互斥的,不同的分类方式可以有重叠和交叉。
有机波谱分析总结

有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。
本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。
一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。
通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。
有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。
二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。
通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。
红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。
2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。
质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。
3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。
通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。
核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。
4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。
紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。
三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。
结构鉴定法常用于核磁共振谱和质谱。
2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。
波谱分析

E
E
质子磁矩顺外加磁场方向 H0
△E
=
h
H0
= h
,
= H0
为磁旋比(物质的特征常数)
是照射频率 h为Plank常数
当照射电磁波的能量恰好等于两能级能量之差时,质子 吸收电磁波从低能级跃迁到高能级,这时就发生了核磁 共振。
样品管
N
记录仪 S
无线电波 振荡器
放大器
△E
=
h
H0
= h
,
= H0
FT-ICR-MS HPLC/MS
UV-Spectrophotometer
IR
电场或磁场
7.1 电磁波谱(Electromagnetic Spectrum)
A
一个循环
c =
△E=h
吸收光谱——分子吸收电磁波所形成的光谱。
分子内的各种跃迁都是不连续的,即量子化的,只有当 光子的能量与两个能级之间的能量差相等时,这个光子 的能量才能被吸收产生分子内跃迁。
H实 = H0-H = H0-σH0= H0(1-σ)
H实为质子实际感受到的磁场强度 H0为外加磁场强度 H 为感应磁场强度 σ为屏蔽常数
核外电子对质子产生的这种作用称为屏蔽效应。质子周围的电子云密度 越大,屏蔽效应越大,只有增加磁场强度才能使质子发生共振。反之, 若感应磁场与外加磁场方向相同,质子实际感受到的磁场强度为外加磁 场与感应磁场强度之和,这种作用称去屏蔽效应,只有减小外加磁场强 度才能使质子共振。由于分子中不同质子核周围的电子云密度各有不同, 或者说质子所处的化学环境不同,因此它们发生核磁共振所需的外磁场 强度各有不同,即产生了化学位移(chemical shift)。
问题5:分子式为C2H4Cl2的红外光谱图和氢谱如下,推测其结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)要考虑溶质和溶剂分子之间的作用力。 一般溶剂分子的极性强则与溶质分子的作 用力强,因此应尽量采用低极性溶剂。
吸收波长渐增
1单,选取一定 溶剂,将适量样品溶于其中,即可进行测 定。当需测定摩尔吸收系数时,需定量称 取样品。 由于不同官能团的摩尔吸收系数可以有 四、五个数量级之差,因此当样品的紫外 吸收不强时,需要特别注意样品的纯度, 否则杂质可能造成主要的吸收。
当样品有几个吸收带时,在不同的波 段可用不同浓度作图,即尽可能使每个吸 收带都较明显。 紫外—可见分光光度计可自动扫描波 长,得出波长(横坐标)和吸光度(纵坐 标)的曲线。 选取溶剂需要注意下列几点:
1)当光的波长减小到一定数值时,溶 剂会对它产生强烈的吸收(即溶剂不透明), 这即是所谓“端吸收”,样品的吸收带应处 于溶剂的透明范围。透明范围的最短波长称 透明界限。常用的透明界限如表1.1所示。
2)样品在溶剂中能达到必要的浓度(此浓 度值决定于样品摩尔吸收系数的大小)。
表1.1 常用溶剂的透明界限
分子的能量 = 电子状态能 + 振动能 + 转动能 分子的电子状态能约为8.38×104—8.38 × 105J/mol(4.19×105 J/mol相当于286nm处发生紫外 吸收)。
分子振动能约为4.19× 103—2.09×104 J/mol。
分子转动能约为4.19—41.9 J/mol。
上式右端各项能量大约顺次差两个数量级。需 要说明的是,每种能量虽然有一定变化范围,但其 变化均是量子化的。
人对可见光是可感知的。不同波长的光具有不 同的颜色,这称为光谱色。白光照到物体上,物体 吸收一定范围波长的光,显示出其余波长范围的光, 后者称为补色。可见光区不同波长的光的光谱色及 其补色如表1.2所示。
表1.2 不同波长光的光谱色和补色
波长(nm) 400—435 435—480 480—490 490—500 500—560 560—580 580—595 595—610 610—750 光谱色 紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 橙 红 补色 黄绿 黄 橙 红 红紫 紫 蓝 绿蓝 蓝绿
1.1.3 朗伯-比尔定律
朗伯(Lambert)定律阐述为: 光被透明介质吸收的比率与入射光的强度 无关;在光程每等厚层介质吸收相同比例值的光。 比尔(Beer)定律阐述为: 光被吸收的量正比于光程中产生光吸收的 分子数目。可用一数学式表达上述两个定律:
Io log Cl I
式中I0 和 I分别为入射光及通过样品后的透射光 强度;logI0/I称为吸光度旧称光密度; C为样品浓度; l为光程; ε为光被吸收的比例系数。 当浓度采用摩尔浓度时, ε为摩尔吸收系数。它 与吸收物质的性质及入射光的波长λ有关。 ε变化的范围从几到105,从量子力学的观点来考 虑,若跃迁是完全 “允许的”, ε值大于104; 若跃迁几率低时,ε值小于103; 若跃迁是“禁戒的”, ε值小于几十。
1.2.2 紫外吸收谱带的形状
紫外吸收谱带总呈较钝的形状,这可 通过图1.1得到说明。
气态
气态压力
较高
低极性溶剂
高极性溶剂
图1.1
紫外吸收谱带的形成
图1.1以双原子分子为例。位能曲线上的横线 表示振动能级(转动能级未表示)。分子吸收能量 之后,电子从基态跃迁到激发态,其同时伴随有振 动能级的跃迁,跃迁时保持核间距不变(FrankCondon原理)。它们和原能级(电子能级基态、振 动能级基态)之间的能级差分别为Ⅰ、Ⅱ、Ⅲ。因 此时还伴随有转动能级的跃迁,所以围绕Ⅰ、Ⅱ、 Ⅲ,有一系列分立的转动能级跃迁谱线,这就是在 稀薄气态下所测的紫外吸收谱(图1.1a)。
当分子从辐照的电磁波吸收能量之后, 分子会从低能级跃迁到较高的能级。吸收 频率决定于分子的能级差,其计算式为
ΔE = h υ
或Δ
E
hc
式中: ΔE 为分子跃迁前后能级差; ν,λ分别为所吸收的电磁波的频率及波长; C 为光速; h 为普朗克常量。
分子从电子基态跃迁到电子激发态的 ΔE远大于振动能级、转动能级的ΔE,因此 电子跃迁所吸收的电磁波是吸收光谱中频 率最高(波长最短)的,即紫外和可见光。 由于电子状态能远大于振动能及转动能, 因此分子从电子能级的基态跃迁到激发态时, 伴随有振动、转动能级的跃迁。
4)为与文献对比,宜采用文献中所使用 的溶剂。 5)其它如溶剂的挥发性、稳定性、精制 的再现性等也要考虑。
1.1.2 紫外及可见光的波段
常见的紫外谱图波长范围为 200-400nm,这称为 近紫外区,也称为石英紫外区。这个区域是我们重 点讨论的区域。小于200nm称为远紫外区。
波长更长即为可见光区(400-800nm)。
当气态压力增高时,转动能级受限 制,形成连续曲线(图1.1b)。 在低极性溶剂中测定紫外吸收,还 能保留一些紫外吸收的精细结构(图 1.1c)。 在高极性溶剂中作图,精细结构完 全消失(图1.1d)。(因此,紫外测定 要尽可能地使用低极性溶剂)
1.2.3 多原子分子电子能级跃迁的种类
通过上面对双原子分子的讨论,我们 了解了转动、振动能级跃迁与紫外吸收的 关系。为简化对多原子分子紫外吸收的讨 论,现仅讨论电子能级的跃迁。 有机化合物外层电子为:σ键上的σ 电子; π键上的π电子;未成键的孤电 子对n电子。它们所可能发生的跃迁,定 性地可用图1.2表示。
当产生紫外吸收的物质为未知物时,其 吸收强度可用
E
式中 C 为100ml溶液中溶质的克数; b 为光程,以厘米为单位; A 为该溶液产生的紫外吸收;
1% 表示 : 1cm
E
1% 1cm
A Cb
E
时产生的吸收。
1% 1cm 表示1cm光程且该物质浓度为1g/100ml
1.2 基本原理
1.2.1 电子的跃迁产生紫外、可见吸收光谱