连续时间马氏链

合集下载

随机过程-第五章-连续时间的马尔可夫链

随机过程-第五章-连续时间的马尔可夫链

第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质:(1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p(2) ;1=∑∈ij I j p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得===+=+)})0()({)(i X j s t X P s t p ij=∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i j i t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记},)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布. 定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质:(1) ,0)(≥t p j(2) ,1)(=∑∈t p j I j(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii I i i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链.证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++=,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X }= })()({11n n n n i i t X t X P -=-++ .另一方面,因为})()({11n n n n i t X i t X P ==++ =})0()()()({11n n n n n n i X t X i i t X t X P =--=-++=})()({11n n n n i i t X t X P -=-++ 所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++.即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性.当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t e ij t ---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j i j i j t e t p t s p ij t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj i r ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在(1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v tt p(2).,)(lim 0j i q t t p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量.推论 对有限齐次马尔可夫过程,有∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii I j ij ∆=∆-=∆∑∑≠∈ 由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4) 对于状态空间无限的齐次马尔可夫过程,一般只有∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q q q q q Q .....................101111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到)()()(lim )()(lim 00t p q t p hh p h t p h t p ij ii kj i k ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论:定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inf lim 0t p h h p kj i k ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj N k i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以 )()()(inf lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0N k ik kj N k i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj N k i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤N k i k ik ii kj N k i k ik q q t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得)()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik I k kj I k ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得 ),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以)}.()(1)()({lim )()(lim 00t p hh p h h p t p h t p h t p ij jj kj j k ik h ij ij h --=-+∑≠→→ 假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的.定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件.,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10),)()(Q t P t P =' (5.11)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=............ (222120121110)020100q q q q q q q q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= (22)2120121110020100p p p p p p p p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为.!)()(0∑∞===j jQt j Qt e t P 定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程: .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj j k ik i I i jj ij iI i ij I i i q t p p q t p p t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的. 定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj j k k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有.)(lim j j t t p π=∞→(2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则 ,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--=由对称性知,)()(0011t e t p μλμλ+-+=,)()(0010t e t p μλμμ+--=转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为0100,λπμπ==若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P则过程在时刻t 的绝对概率分布为,)()(lim )(1lim 1001010011011q h p dh d h h p h h p q h h h ====-==→→μ,)()(lim )(1lim 010********00q h p dhd h h p h h p q h h h ====-==→→λ)()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例 5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫ ⎝⎛--=μμλλQ . 根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可.由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下.定义 5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.)()()(1010101t p p t p p t p +=,2),()(,≥-=j i h o h p j i若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程.生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dh d t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q i i h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务.假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nn n μλμλμλμλπ。

第05章 连续时间马尔可夫链S

第05章 连续时间马尔可夫链S

体诸成员的年龄之和的均值。时刻 t 诸年龄之和,记为 A(t),
X (t )1
可表示为 A(t) a0 t (t Si ) i 1
其中 a0 是初始个体在 t=0 时的年龄。对 X(t)取条件
n
E[A(t) | X (t) n 1} a0 t E[ (t Si ) | X (t) n 1} i 1
1 vi
i 1
1 i2
)。假设所考虑的全部马尔可
夫链是规则的。
第四页,共六十九页。
对一切i j,qij定义为
qij vi Pij
因为vi是过程离开状态 i 的速率而 Pij 是它转移到 j 的概率,所以
qij是过程从状态 i 转移到状态 j 的速率;称qij 是从 i 到 j 的转移
率。显然vi qij ji
连续时间马尔可夫链是具有马尔可夫性的随机过程,即已 知现在 s 时的状态 X(s)及一切过去时刻 u,0u<s 的状态 X(u)的 条件下在将来时刻 t+s 的状态 X(t+s)的条件分布只依赖现在的状 态 X(s)而与过去独立。
第一页,共六十九页。
二、连续时间马尔可夫链的状态逗留时间和转移速率
命题 以i 记过程在转移到另一状态之前停留在状态 i 的时 间,则对一切 s,t0 有 P{ i t s | i s} P{ i t},因此, 随机变量i 是无记忆的必有指数分布,其参数设为vi
态 i-1 或 i+1,当状态增长 l 时,就说生了一个;而当它减少 1
时,就说死了一个。设i qi,i1,i qi,i1,值{i , i 0}与{i , i 1}
分 别 称 为 生 长 率 与 死 亡 率 。 因 为 qij vi , 可 见 ji

连续时间的马尔可夫链

连续时间的马尔可夫链
P X t n 1 i n 1 X t1 i1 , X t 2 i 2 , ..., X t n i n P X t n 1 in 1 X t n in




成立,称{X(t),t ≥0}为连续参数马尔可夫链。
(0)
1, Pij
(0)
1 , i j 0 ( i j ) 知 lim p ij ( t ) t 0 0 , i j
定义5.5:连续参数齐次马氏链{X(t),t ≥0}称 p P X 0 j
j
即X(0)的概率分布,为连续参数齐次马氏链的初 始分布。 称
ii ii
(1) lim
1 p ii ( t ) t p ij ( t ) t
t 0
i q ii
( 2 ) lim
t 0
q ij , j i
q ii 表 示 在 t时 刻 通 过 状 态 i的 通 过 速 度 , q ij 表 示 在 时 刻 t由 状 态 i 到 状 态 j的 速 度 。

由切普曼-柯尔莫哥洛夫方程有

kI
p ij ( t h )
p ik ( h ) p k j ( t )
p ij ( t h ) p ij ( t ) p ij ( t ) lim

k i
p ik ( h ) p k j ( t ) [1 p ii ( h )] p ij ( t )
e p ij ( s , t ) p ij ( t ) 0
t
( j i )! , j i
, j i
转移概率与s无关,泊松过程具有齐次性。

连续时间Markov链

连续时间Markov链

02
03
特性
转移密度函数具有非负性、积分归一 化、连续性。
03
连续时间Markov链的特 性
无记忆性
定义
连续时间Markov链的无记忆性是指,给定当前状态,过去的状态 对未来的状态没有影响。
数学表达
如果一个连续时间Markov链满足无记忆性,则未来状态的条件概 率分布只依赖于当前状态,与过去状态无关。
公式
$P_{ij}(t) = P(X(t)=j|X(0)=i)$,表示从状态i在时 间t转移到状态j的概率。
3
特性
转移概率具有时齐性、可加性、非负性。
转移密度函数
定义
转移密度函数描述了Markov链从一个状态转移到其他所 有状态的概率分布。
01
公式
$f_{ij}(t) = frac{d}{dt}P_{ij}(t)$,表示 从状态i到状态j的转移概率密度。
应用领域的拓展
生物信息学
将连续时间Markov链应用于基因表达、蛋白质相互作用等生物 信息学领域,以揭示生物过程的动态机制。
金融市场分析
利用连续时间Markov链对金融市场的复杂动态进行建模,以预 测市场趋势和风险评估。
社交网络分析
研究社交网络中用户行为的连续时间Markov链模型,以揭示用 户行为的动态模式和社区结构的演化。
直接模拟
通过直接模拟系统状态转移过程,适用于状态空间较 小且转移速率已知的情况。
计算转移概率
转移速率矩阵
01
根据已知的转移速率计算转移速率矩阵,用于描述状态之间的
转移关系。
稳态转移概率
02
在长期观察下,通过转移速率矩阵计算稳态转移概率,用于描
述系统在长期运行下的状态转移规律。

第五章 连续时间马尔可夫链

第五章  连续时间马尔可夫链

的停留时间
i 超过x的概率为1,则称状态i为吸收状态. 随机过程讲义
第五章 连续时间的马尔可夫链
定理5.1 齐次马尔可夫过程的转移概率具有下列性:
(1) pij(t) 0; (2)
kI
p (t ) 1;
jI ij
(3) pij ( t s ) pik ( t ) pkj ( s ) 证 由概率的定义, (1)(2)显然成立, 下证(3).
ji
p ( t )
ijtຫໍສະໝຸດ qij .ji
说明 对状态空间无限的齐次马尔可夫过程, 一般只有
qii qij .
ji
随机过程讲义
第五章 连续时间的马尔可夫链
二、柯尔莫哥洛夫方程
问题:若连续时间齐次马尔可夫链具有有限状态空间为 I={0,1,2, ,n}, 则其转移速率可构成矩阵
iI iI
(4) p j ( t ) pi ( t ) pij ( );
iI
jI
pi pii1 ( t1 ) pi1i2 ( t 2 t1 )
, X ( t n ) in }
pin1in ( t n t n1 ).
随机过程讲义
第五章 连续时间的马尔可夫链
分布律
(n) pij 0,
转移方程
( n) ( l ) ( nl ) pij pik pkj k I

j I
(n) pij 1
时间 连续
1 , i j lim pij ( t ) t 0 0 , i j
pij ( t ) 0
p (t ) 1
j I ij
则对一切i,j及t 0, 有
( t ) qik pkj ( t ) qii pij ( t ) Qi Pj . pij

5--连续时间马尔可夫链--beamer

5--连续时间马尔可夫链--beamer
特别地, 当 ������������+1 − ������������ = ������ 时, 有
������ (������ (������) = ������, ������ (2������) = ������, · · · , ������ (������������) = ������|������ (0) = ������) = [������������������ (������)] .
(������ −������)!
当 ������
������,
⎩ 0, ������ = ������, ������ ̸= ������.
第五章: 连续时间马尔可夫链
当 ������ < ������,
其中 ������������������ 是马氏链.
������������������ (0) = ������������������
并且对于 ������ ������, 有
∞ ∞ ∑︁ ������������ (������) ∑︁ ������������ ������ −������ ������������������ = (������)������ ������������ (−1)������−������ ������! ������! ������=0 ∞ ∑︁
称矩阵 ������ = (������������������ (������))������,������ ∈������ 为马氏链的一步转移概率矩阵, 简称为转移矩阵.
韩参变量 (某某大学)
第五章: 连续时间马尔可夫链
3 / 61
连续时间马氏链的性质
1. ������������������ 是 ������ 函数, 即 ������������������ (0) = ������������������ = ⎧ ⎨ 1, ⎩ 0, ������ = ������, ������ ̸= ������.

随机过程第五章连续时间的马尔可夫链

随机过程第五章连续时间的马尔可夫链

第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布; (2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质: ;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足: ⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性. 5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有 ≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得 )()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p 5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ)()()(1010101t p p t p p t p +=,0,0),()(01,=>+=-μμμi i i i h o h h p ),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+- 由定理5.3得到 ,0,)()(,0≥+=-==i h p dhdt q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh dt q i i h ij ij μλ,2,0≥-=j i q ij 故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ 逐步递推得,2),()(,≥-=j i h o h p j i,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j jj μμμλλλπ,112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ.0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。

连续时间马尔可夫链的研究和应用

连续时间马尔可夫链的研究和应用

连续时间马尔可夫链的研究和应用马尔可夫链是用于描述随机过程的数学工具,其特点是未来状态的转移仅依赖于当前状态,与过去状态无关。

在时间离散的情况下,马尔可夫链的数学理论已经十分成熟且应用广泛。

然而,在实际问题中,许多系统的状态变化是连续的,如金融市场、生产流程、医疗领域等。

为了更好地描述和分析这类系统,连续时间马尔可夫链成为了研究的焦点之一。

一、连续时间马尔可夫链的基本定义和性质连续时间马尔可夫链是一个连续时间随机过程,其状态在时间上的变化满足马尔可夫性质。

与离散时间马尔可夫链不同的是,在连续时间马尔可夫链中,状态的转移并不是以离散的时刻进行,而是在连续的时间区间内发生。

连续时间马尔可夫链可以用状态转移概率密度函数描述,记为P(t)。

该函数表示在时间t到t+dt之间,状态从i转移到状态j的概率为P(t)dt。

连续时间马尔可夫链的转移概率满足总概率为1的条件,即∫P(t)dt=1。

连续时间马尔可夫链的状态转移矩阵可用生成矩阵(Q)表示。

该矩阵的元素q(i,j)表示在单位时间内,状态从i转移到j的概率。

连续时间马尔可夫链的状态转移矩阵满足非负性和行和为零的条件。

二、连续时间马尔可夫链的稳定性与收敛性连续时间马尔可夫链的稳定性是指在长时间模拟中,系统的状态分布是否趋于稳定。

对于稳定的连续时间马尔可夫链,其状态转移概率在时间的演化中不再发生显著改变。

连续时间马尔可夫链的稳定性与其转移速率矩阵相关。

转移速率矩阵是连续时间马尔可夫链中的关键概念,它描述了系统在各个状态之间转移的速率。

只有当连续时间马尔可夫链的转移速率矩阵满足一定条件时,系统的状态分布才会趋于稳定。

在实际应用中,连续时间马尔可夫链的稳定性常被用来分析系统的可靠性、资源分配方案以及市场行为等。

利用连续时间马尔可夫链模型,可以预测系统在不同状态下的持续时间、发展趋势以及转移概率,为决策提供科学依据。

三、连续时间马尔可夫链的应用案例1. 金融市场预测连续时间马尔可夫链可以应用于金融市场的预测和风险评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X (n) i 有关,而与以前的状态 X(n 1 ) in1 ,…, X( 0 ) i0 无关。
一、连续时间马尔科夫链的有关定义及其性质
现在讨论时间连续状态离散的马尔可夫过程,取时间参数 t 0 ,状态空间 I={0,1,2,…} 定义 4.17 设随机过程 { X (t ), t 0} 的状态空间为 I={in,n0},若对任意的 0t1<t2<…<tn<tn+1,及 i1 , i2 ,
pij ( s,t ) P{ X (t s ) j | X ( s ) i }
它表示系统在 s 时刻处于状态 i,经过时间 t 后转移到状态 j 的转移概率。 若上述概率与 s 无关,则称连续时间马尔科夫链为齐次马尔科夫链,此时转移概率简 记为
pij ( s,t ) pij (t )
定义 4.16 设随机过程 { X(t),t T } ,其中时间 T={0,1,…},状态空间 I={0,1,2,…}, 若对任一时刻 n,以及任意状态 i0 ,i1, ,in1,i,j ,
1 2014 年 12 月 11 日星期四 大连海事大Байду номын сангаас数学系
第五章 连续时间马氏链
有 P{ X(n 1 ) j | X(n) i, X(n 1 ) in1 ,
定义 4.18 对于任一 t0,记
p j (t ) P{ X (t ) j }
p j p j (0) P{ X (0) j }, j I
分别称 { p j (t ), j I } 和 { p j , j I } 为齐次马氏链的绝对概率分布和初始概率分布。 性质 2:对任意 0 t0 t1 tn , i0 ,i1, ,in I ,有
t 0
lim
1 pii ( t) qii , ( 0 qi ) ,并且对任意 t 0 ,有 t
0
1 pii (t) qii t
(2) lim
t 0
pij ( t) t
qij
qij
证明:略。 注 1:若 qii 0 ,则有 pii(t) 1 即 i 为吸收态。 注 2:当 | t | 较小时
p00 ( h) ,或 p01 (h), p10 (h), p11 (h)
(2)在时刻 t,机器正常工作的概率是多少? p0 (t )
转移概率 绝对概率
机器维修问题 2 设有 m 台机床,s 个维修工人(s<m) 。机床或者工作,或者损坏等待修理,机床损坏 后,空着的维修工人立即来修理,若维修工人不空,则机床按先坏先修排队等待维修。 假定在 h 时间内,每台机床从工作转到损坏的概率的 t t ,每台修理的机床转到 工作的概率为 t (t ) 。 当已知 m,,后,怎样合理安排维修工人人数 s?
(j=1,2,…,n)
研究的问题:无论从哪个状态出发,经过时间 t 转移到状态 j 的概率。 如何求 P(t),在实际问题中往往是很困难, 但考虑到密度矩阵 Q (qij ) ,是由
P(t) (pij ) 在 t 0 的导数组成,所以实际问题中先得到 (qij ) ,再算 P(t) 。
注 2:费勒已经证明了向后方程与向前方程有同一解 pij (t ) ,但具体应用哪一个方程 组求解,要看具体问题而定。 例 3 两状态链 机器维修问题 1 设状态 0 代表某机器正常工作,状态 1 代表机器出故障。在 h 时间内,机器由正常工 作变为出故障的概率为 p01 (h) 1 e 变为正常工作的概率为 p10 (h) 1 e
第五章 连续时间马氏链
4.5 连续时间马尔科夫链
应用实例
机器维修问题 1 设状态 0 代表某机器正常工作,状态 1 代表机器出故障。在 h 时间内,机器由正常工 作变为出故障的概率为 p01 (h) h o(h) ; 在 h 时间内, 机器由故障经修复后变为正常工 作的概率为 p10 (h) h o(h) 。 研究的问题: (1)在 t=s 时正常工作,在 t=s+h 时仍然正常工作的概率是多少?
故叫做连续时间齐次马氏链的切普曼—柯尔莫哥洛夫方程
例 1 考虑一个电话总机接到的呼唤流,以 X(t) 表示这个总机在[0,t]中接到的呼唤次 数,由于呼唤流在不相交的时间区间中接到的呼唤次数是相互独立的,且 X(t) 服从泊松 分布, 所以 X(t) 是一个时间连续状态离散的马氏过程, 而且是齐次的。 写出它的转移概率。 解:其状态空间 I={0,1,2,…},当呼唤次数 i j 时,转移概率
qij t 加上一个比t 高阶的无穷小量。
推论: (1)对任意 i I , 0

i j
qij qi
(2)对时间连续的齐次有限马氏链, i I ,有
q
i j
ij
qi
密度矩阵
由跳跃强度 qij 构成的矩阵
q00 Q q10
q01 q11
它表明系统从状态 i 出发,是继续留在状态 i,还是跳跃到状态 j,在不计一个高阶无 穷小时,决定于 qii 与 qij 。 称 qij 为齐次马氏链从状态 i 到状态 j 的转移速率或跳跃强度。定理中的极限的概率意 义为:在长为t 的时间区间内,过程从状态 i 转移到另一其他状态的概率为 1 pii ( t) , 等于 qii t 加上一个比t 高阶的无穷小量;而从状态 i 转移到状态 j 的概率 pij ( t ) ,等于
这个条件称为正则性条件。正则性条件说明:过程刚进入某状态不可能立即又跳跃到 另一个状态。这正好说明一个物理系统要在有限时间内发生无限多次跳跃,从而消耗无穷 多的能量是不可能的。
定理 4.17 设 pij (t ) 是连续时间齐次马氏链的转移矩阵,则对任意 i, j I , i j ,下 列极限存在 (1)
iI
pin1in (tn tn 1 )
例 2 证明齐次泊松过程 { X (t ),t 0} 为连续时间齐次马氏链。 证明 略。
二、Q 矩阵
对于转移概率 pij (t ) ,一般假定它满足:对任意的 i, j I ,有
i j 1 lim pij(h) δij h0 0 , i j
4 2014 年 12 月 11 日星期四 大连海事大学数学系
第五章 连续时间马氏链
t 0
lim
1 pii ( t) qii t
等价 pii ( t) 1 qii t ο( t)
t 0
lim
pij ( t) t
qij
等价 pij ( t) qij t ο( t)
( pi1(t), pi2 (t),
(向前方程)
(t)) ( pi1(t), pi 2 (t), , pin
P(t) QP(t)
, pin (t))Q
(i=1,2,…,n)
研究的问题:从状态 i 出发经过时间 t ,转移到任意一个状态 j 的概率. (向后方程)
j (t) p1 p1 j (t) j (t) p2 p2 j (t) Q p (t) p (t) nj nj
jI j
(3) p j (t )
p p (t ) ;
iI i ij
(4) p j (t )
p (t ) p ( ) ;
iI i ij
(5) P{ X (t1 ) i1 , X (t2 ) i2 ,
, X (tn ) in }
pi pii1 (t1 ) pi1i2 (t2 t1 )
q
i j
ij
qii ,对任意
5
2014 年 12 月 11 日星期四
大连海事大学数学系
第五章 连续时间马氏链
i,j I 和 t 0 ,有
(t) (1) pij
p
k j
ik
(t)qkj q jj pij (t )
sup {qi }
i
(t) (2) pij
pin1in
注:连续时间齐次马氏链的有限维概率分布由它的初始分布和转移矩阵所确定。
性质 3:齐次马氏链的绝对概率及有限维概率分布具有下列性质: (1) p j (t ) 0 ;
3 2014 年 12 月 11 日星期四 大连海事大学数学系
第五章 连续时间马氏链
(2)
p (t ) 1 ;
q
k i
ik
pkj (t) qii pij (t)
证明: (2) pij (t h)
p
kI
ik
(h) pkj (t )
pij (t h) pij (t ) pik ( h) pkj (t ) [1 pii ( h)] pij (t )
k i
lim
P{ X( t i0 , X ( 1t) i1 ,, X ( n t ) in } 0)
P{X(t 0 ) i0 } pi0i1(t1 t0 ) pin1in (tn tn1 )
注:性质 2 对应于离散时间 P{ X 0 i0 , X 1 i1 ,, X n in } pi0 (0) pi0i1 pi1i2

称为时间连续马氏链的密度矩阵或 Q 矩阵。 若对一切 i I ,有
q
i j
ij
qii
则称 Q 矩阵为保守的 ,也称连续马氏链是保守的。 由定理 4.17 推论可知,时间连续的齐次有限马氏链是保守的。
三、柯尔莫哥洛夫定理
定理 4.18 设 { X (t ), t 0} 是时间连续的齐次马氏链,
, in1 I ,有
, X (tn ) in }
相关文档
最新文档