物理化学 溶液吸附法测定固体物质的比表面

合集下载

溶液吸附法测定固体比表面积

溶液吸附法测定固体比表面积
-3 2
2 -1 2 -1
次甲基蓝原始溶液 2g·dm ;次甲基蓝标准溶液 0.1g·dm ;颗粒活性炭。 三、实验步骤 1.活化样品 将活性炭置于瓷坩埚中放入 500℃马福炉中活化 1h(或在真空箱中 300℃活化 1h), 然后 置于干燥器中备用。 2.溶液吸附 取 50mL 带塞锥形瓶 5 只,分别准确称取活化过的活性炭约 0.1g,按照下表给出的比例 配制不同浓度的次甲基蓝溶液 50mL,塞上包有锡纸的软木塞,然后放在振荡器上振荡 3h。 编号 V(次甲基蓝溶液)/mL V(蒸馏水)/mL 3.配制次甲基蓝标准溶液 用台称分别称取 2g、4g、6g、8g、11g 浓度为 0.3126×10 mol·dm 的标准次甲蓝溶液 于 100mL 容量瓶中,用蒸馏水稀释至刻度,待用。 4.原始溶液的稀释 为了准确测定原始溶液的浓度,在台称上称取浓度为 0.2%的原始溶液 2.5g 放入 500mL 容量瓶中,稀释至刻度。 5.平衡液处理 样品振荡 3h 后,取平衡溶液 5mL 放入离心管中,用离心机旋转 10min,得到澄清的上 层溶液。分别取 5g 澄清液放入 500mL 容量瓶中,并用蒸馏水稀释到刻度。 6.选择工作波长 用某一待用标准溶液,以蒸馏水为空白液,在 600nm~700nm 范围 内测量吸光度,以最 大吸收时的波长作为工作波长。 7.测量吸光度。 在工作波长下, 依次分别测定五个标准溶液的吸光度, 以及稀释以后的原始溶液及平衡 溶液的吸光度。 四、注意事项 1.标准溶液的浓度要准确配制,原始溶液及吸附平衡后溶液的浓度都应选择适当的范围, -3 -3 本实验原始溶液的浓度为 2g·dm 左右,平衡溶液的浓度不小于 1g·dm 。 2.活性炭颗粒要均匀,且五份称重应尽量接近。 3.振荡时间要充足,以达到吸附饱和,一般不应小于 3h。 五、数据处理 1.把数据填入下表 稀释后原始溶液的吸光度:1.332 标准溶液 A 平衡溶液 A 标准溶液称 取量 浓 度 /(mol/L) 2g 0.289 1 2.121 2.作 A—C 工作曲线。 2g 0.0626 4g 0.125 6g 0.188 8g 0.25 11g 0.344 4g 0.662 2 0.466 6g 1.257 3 0.137 8g 1.672 4 0.118 11g 1.999 5 0.044

溶液吸附法测定固体比表面积

溶液吸附法测定固体比表面积
|
1. 求各种固体的饱和吸附量
式中:q 为吸附量(mg/g), 为亚甲基蓝原始浓度(ppm),c 为亚甲基 蓝平衡浓度(ppm),w 为固体样品重(g)。
吸光度 A
活性炭 硅藻土 碱性 Al2O3
(
固体样品数据表
工 作 曲 线 上 稀释倍数 求出相应浓 度 c`(pm)
10
(
对应亚甲基 蓝平衡浓度 c(ppm)
据颜色深浅,稀释不同倍数,使吸光度值在工作曲线的范围内。测定各种滤
液的吸光度,并在工作曲线上求出相应浓度,乘上稀释倍数,求出各种滤液
的平衡浓度。
四、 ) 五、 数据处理
c 亚甲基蓝==
吸光度 A—亚甲基蓝浓度 c 表
c 亚甲基蓝(ppm)
第一次
吸光度 A 第二次
平均
.

吸光度 A—亚甲基蓝浓度 c 工作曲线
H3C S H
CH3
Cl-
CH3 N
CH3
亚甲基蓝分子的平面结构如图所示。阳离子大小为×10-10m×76×10-10m×325 ×10-10m。亚甲基蓝的吸附有三种趋向:平面吸附,投影面积为×10-18m2;侧面吸 附,投影面积为×10-19m2;端基吸附,投影面积为×10-19m2。对于非石墨型的活性
为工作波长。662nm
6. 制作亚甲基蓝工作曲线
以蒸馏水为空白。用 1cm 比色皿分别测定 1ppm、3ppm、5ppm、8ppm、10ppm
亚甲基蓝标准溶液的吸光度。并作吸光度 A—亚甲基蓝浓度 c 工作曲线,备
用。
7. 测定亚甲基蓝平衡浓度
样品振荡 4h 后,取下锥形瓶,用滤纸过滤,去滤液 5ml,然后收集滤液,根

3. 列表讨论 列表表示活性炭、硅藻土、碱性 Al2O3 对亚甲基蓝的吸附量,并讨论大

固体比表面积的测定

固体比表面积的测定

固体比表面积的测定——溶液吸附法一、目的要求1. 学会用次甲基蓝水溶液吸附法测定活性炭的比表面积。

2. 了解郎缪尔单分子层吸附理论及溶液法测定比表面积的基本原理。

二、基本原理溶液的吸附可用于测定固体比表面积。

次甲基蓝是易于被固体吸附的水溶性染料,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合郎缪尔吸附理论。

郎缪尔吸附理论的基本假设是:固体表面是均匀的,吸附是单分子层吸附,吸附剂一旦被吸附质覆盖就不能被再吸附;在吸附平衡时候,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。

设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有吸附速率: r 吸 = k 1N (1-θ)c (k 1为吸附速率常数) 脱附速率: r 脱 = k -1N θ (k -1为脱附速率常数)当达到吸附平衡时: r 吸 = r 脱 即 k 1N (1-θ)c = k -1N θ由此可得: c K cK 吸吸+=1θ (2-25-1)式中K 吸=k 1/k -1称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温度,K 吸值越大,固体对吸附质吸附能力越强。

若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则: θ =Γ /Γ∞带入式(2-25-1)得 cK cK 吸吸+=∞1ΓΓ (2-25-2)整理式(2-25-2)得到如下形式c K c∞∞+=ΓΓΓ11吸 (2-25-3)作c /Γ~c 图,从直线斜率可求得Γ∞,再结合截距便可得到K 吸。

Γ∞指每克吸附剂对吸附质的饱和吸附量(用物质的量表示),若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面积可以按照下式计算S =Γ∞L σA (2-25-4)式中S 为吸附剂比表面积,L 为阿伏加德罗常数。

次甲基蓝的结构为:阳离子大小为17.0 ×7.6× 3.25 ×10-30 m3次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20m 2,侧面吸附投影面积为75×10–20m 2,端基吸附投影面积为39×10–20m 2。

实验6 溶液吸附法测定固体吸附剂的比表面积 操作步骤

实验6 溶液吸附法测定固体吸附剂的比表面积 操作步骤

实验6 溶液吸附法测定固体吸附剂的比表面积注意事项:1.吸附用溶液和标准溶液均需精确配制。

2.活性炭颗粒应均匀,且称重应尽量接近,称量速度要快。

3.实验所用活性炭位于马弗炉里,磨口小试管位于靠窗口的烘箱中。

实验步骤:1.活化样品:称取给定活性炭约1 g,置于磨口瓶中。

将电子恒温干燥箱的接触温度计调至200 ℃,将称好的活性炭放入,恒温1-2 h。

(已提前由老师准备好)2.亚甲基蓝溶液A的稀释:用刻度移液管分别取2.00 mL、2.50 mL、3.00 mL、3.50 mL和4.00 mL亚甲基蓝溶液A于5个已洗净的10 mL容量瓶中,用去离子水稀释到刻度,摇匀备用。

3.溶液吸附:从靠窗口的恒温干燥箱中取出活性炭立即放入干燥器中,待凉至室温后取出,用电子分析天平迅速称取5份各20.0 mg活性炭,放入已洗净烘干的磨口小试管中(烘干的试管位于靠窗口的烘箱里),倒入步骤2中已稀释好的各溶液,迅速塞上塞子。

放入振荡器中恒温(20-30℃)振荡2h.4. 配制标准溶液:用刻度移液管分别取2.00 mL、4.00 mL、6.00 mL、8.00 mL、10.00 mL 和12.00 mL亚甲基蓝溶液B于6个已洗净的50 mL容量瓶中,用去离子水稀释到刻度,摇匀备用。

5.取上述标准溶液1份,以去离子水为空白液,测定最大吸收波长λmax。

该波长即为工作波长。

在此波长下,测不同浓度标准溶液的吸光度。

6.待步骤3振荡结束后取出磨口瓶,静置使活性炭沉淀。

取上层清液放入离心管内,离心分离5-10分钟。

将澄清溶液注入比色皿内(注意5份溶液的编号不要乱!)7.在步骤5所测得最大吸收波长下测5份待测液的吸光度,再根据标准工作曲线求出各平衡溶液的浓度。

数据处理:1.绘制A~c工作曲线。

2.由工作曲线确定吸附平衡后各溶液的浓度,并计算相应浓度对应的吸附量Γ。

3.作c /Γ ~ c图,由直线斜率求出饱和吸附量Γ∞。

4.依据式(6-3)计算活性炭的质量表面积A m。

实验十八溶液吸附法测定固体的比表面积一、目的1用次甲基蓝水溶液

实验十八溶液吸附法测定固体的比表面积一、目的1用次甲基蓝水溶液

一、目的1.用次甲基蓝水溶液吸附法测定颗粒活性炭的比表面积2.了解Langmuir 单分子层吸附理论3.了解溶液法测定比表面的基本原理二、原理根据光吸收定律,当入射光为一定波长的单色光时,其溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比式中A 为吸光度,I 0为入射光强度,I 为透射光的强度,a 为吸光系数,l 为光径长度或液层厚度,c 为溶液的浓度。

实验表明,次甲基蓝溶液在可见区有两个吸收峰:445nm 和665nm ,但在445nm 处活性炭吸附对吸收峰有很大的干扰,故本实验选用的工作波长为665nm 。

水溶性染料的吸附已应用于测定固体比表面,在所有的染料中次甲基蓝具有最大的吸附倾向,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合Langmuir 吸附理论。

设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,则有:吸附质分子(在溶液) 吸附质分子(在固体表面)吸附速率解吸速率当达到动态平衡时所以式中称为吸附平衡常数,a 逾大,固体对吸附质的吸附能力逾强。

若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据的单分子层吸附量,即饱和吸附量,则代入(18-1)式有变为直线形式可得吸附 k 1 解吸 k -1 A I I a l c ==lg 0 r k N c r k N a d =-=-111()θθ实验十八 溶液吸附法测定固体的比表面积Γ Γ ∞ Γ ∞ Γ Γ Γ ∞ Γ ∞作c /Γ~c 图,从其斜率可求得Γ∞,再结合截距便得到k 吸 ,Γ∞指每克吸附剂饱和吸附吸附质的物质的量,若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面(s )可以按下式计算式中L 为Avogadro 常数。

次甲基蓝是一个具有矩形结构的分子:阳离子的大小为17.0×7.6×3.25×10-30m 3,次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10-20m 2,侧面吸附投影面积为75×10-20m 2,端基吸附投影面积为39 ×10-20m 2,对于非石墨型的活性炭,次甲基蓝是以端基吸附取向,吸附在活性炭表面,因此σA =39×10-20m 2。

固体比表面积的测定溶液吸附法

固体比表面积的测定溶液吸附法

固体比表面积的测定——溶液吸附法一、目的要求1. 学会用次甲基蓝水溶液吸附法测定活性炭的比表面积。

2. 了解郎缪尔单分子层吸附理论及溶液法测定比表面积的基本原理。

二、基本原理溶液的吸附可用于测定固体比表面积。

次甲基蓝是易于被固体吸附的水溶性染料,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合郎缪尔吸附理论。

郎缪尔吸附理论的基本假设是:固体表面是均匀的,吸附是单分子层吸附,吸附剂一旦被吸附质覆盖就不能被再吸附;在吸附平衡时候,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。

设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有吸附速率: r 吸 = k 1N (1-θ)c (k 1为吸附速率常数) 脱附速率: r 脱 = k -1N θ (k -1为脱附速率常数)当达到吸附平衡时: r 吸 = r 脱 即 k 1N (1-θ)c = k -1N θ由此可得: c K cK 吸吸+=1θ (2-25-1)式中K 吸=k 1/k -1称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温度,K 吸值越大,固体对吸附质吸附能力越强。

若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则: θ =Γ /Γ∞带入式(2-25-1)得 cK cK 吸吸+=∞1ΓΓ (2-25-2)整理式(2-25-2)得到如下形式c K c∞∞+=ΓΓΓ11吸 (2-25-3)作c /Γ~c 图,从直线斜率可求得Γ∞,再结合截距便可得到K 吸。

Γ∞指每克吸附剂对吸附质的饱和吸附量(用物质的量表示),若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面积可以按照下式计算S =Γ∞L σA (2-25-4)式中S 为吸附剂比表面积,L 为阿伏加德罗常数。

次甲基蓝的结构为:阳离子大小为17.0 ×7.6× 3.25 ×10-30 m3次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20m 2,侧面吸附投影面积为75×10–20m 2,端基吸附投影面积为39×10–20m 2。

物化实验 溶液吸附法测定固体比表面积数据处理

物化实验     溶液吸附法测定固体比表面积数据处理

溶液吸附法测定固体比表面积数据处理
浓度 2 4 6 原始平衡
吸光度0.138 0.397 0.529 0.813 1.104
工作波长:645nm
实验误差分析
吸光度大于0.8时,朗伯比尔定律已有偏差,而平衡浓度吸光度都
1.104,所以用标准曲线法测得的部分溶液浓度不准,影响后面计算。

溶液吸附法测定固体材料比表面积误差较大, 一般在10%甚至更高些, 对同一吸附剂,影响测定结果的因素有: 吸附温度、吸附质浓度、吸附振荡时间、吸附剂表面处理、仪器、药品等。

我们采用的紫外分光光度计无恒温装置, 测定吸光度时有一定误差.
测量吸光度时要按从稀到浓的顺序,每个溶液要测3~4次,取平均值,而我们做的只是一次,有一定的误差。

物理化学——溶液吸附法测定比表面积

物理化学——溶液吸附法测定比表面积

物理化学——溶液吸附法测定比表面积1. 目的要求(1)用溶液吸附法测定颗粒活性炭的比表面。

(2)了解溶液吸附法测定比表面的基本原理。

(3)了解721型分光光度计的基本原理并熟悉使用方法。

2. 基本原理比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。

测定固体物质比表面的方法很多,常用的有BET低温吸附法、电子显微镜法和气相色谱法等,不过这些方法都需要复杂的装置,或较长的时间。

溶液吸附法测定固体物质比表面,仪器简单,操作方便,还可以同时测定许多个样品,因此常被采用,但溶液吸附法测定结果有一定误差。

其主要原因在于:吸附时非球型吸附层在各种吸附剂的表面取向并不一致,每个吸附分子的投影面积可以相差很远,所以,溶液吸附法测得的数值应以其它方法校正之。

然而,溶液吸附法常用来测定大量同类样品的相对值。

溶液吸附法测定结果误差一般为10%左右。

水溶性染料的吸附已广泛应用于固体物质比表面的测定。

在所有染料中,次甲基蓝具有最大的吸附倾向。

研究表明,在大多数固体上,次甲基蓝吸附都是单分子层,即符合朗格缪尔型吸附。

但当原始溶液浓度较高时,会出现多分子层吸附,而如果吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此,原始溶液的浓度以及吸附平衡后的溶液浓度都应选在适当的范围内。

根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。

此时吸附剂活性炭的比表面可按式(1)计算:(1)式中,S0为比表面(m2·kg-1); C0为原始溶液的质量分数; C为平衡溶液的质量分数; G为溶液的加入量(kg);W为吸附剂试样质量(kg);2.45×106是1kg次甲基蓝可覆盖活性炭样品的面积图 4.1 次甲基蓝分子的平面结构(m 2·kg-1)。

次甲基蓝分子的平面结构如图所示。

阳离子大小为1.70×10-10m×76×10-10m×325×10-10m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四 数据处理与实验结论
表一 溶液吸附法测定固体物质的比表面数据记录
编号
硅胶重量(mg)
亚甲基蓝溶液浓度(mg/ml) 光密度
标准曲线查得的浓度
平衡溶液浓度
C(mg/ml) 吸附亚甲基蓝质量△W(mg) 2 0 0.0050 0.100 3 0 0.0075 0.158 4 0 0.0100 0.215 5 0
0.0125 0.280 图一
吸附剂的比表面①平面吸附投影面积S=
△WAN A
WM
=0.0006*1.35*10−18*6.022*1023/0.0486*373.88=26.845
②侧面吸附投影面积 S=△WAN A
WM =0.0006*7.52*10−19*6.022*1023/0.0486*373.88=14.95 ③端基吸附投影面积S=△WAN A
WM
=0.0006*3.95*10−19*6.022*1023/0.0486*373.88=7.85
由上表得△W=0.6
五.实验讨论
实验中测定吸光度与标准溶液的浓度的关系时得到吸光度与浓度的标准工作曲线y = 23.28x - 0.0129 R= 0.9990≈1 所以曲线拟合性较好。

六.思考题
1公式(9-1)的应用要求的条件?
测量比表面较大的试样所得的结果较为满意
2产生实验结果的偏差荡后吸取清液时为什么不能吸取上硅胶?
实验要测量的是硅胶吸附后的甲基蓝溶液的浓度,吸上硅胶可能会导致硅胶中的甲基蓝重新析出,影响光密度和实验结果。

3比表面的测定与温度,吸附质的浓度,吸附平衡的时间有什么关系?
温度高时吸附量低,反而吸附量高,吸附质的浓度至少要能满足吸附剂达到饱和吸附时所需的浓度但溶液不能太浓,否则会出现多层吸附震荡要达到饱和吸附时所需时间,吸附剂颗粒大小不要相差太大。

4亚甲基蓝吸附投影面积A对测定比表面有什么影响?如何测定?
S=△WAN A
亚甲基蓝吸附吸附于吸附剂上有三种取向,平面吸附投影侧面吸附投影端基吸附WM
投影。

不同投影方式有不同的面积,从而影响比表面。

通常用已知的比表面的样品,实验测
反求A。

得△W和W,用S=△WAN A
WM。

相关文档
最新文档