《整式的除法(1)》教学设计1
整式的除法(1)导学案教学设计

(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x
幂的运算性质是整式除法的关键,符号仍是运算中的重要问题.在此可由学生口答,要求学生说出式子每步变形的依据,并要求学生养成检验的习惯,利用乘除互为逆运算,检验商式的正确性.
在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.
注:教科书提供了一些多项式除以单项式的题目,鼓励学生利用已经学习过的内容独立解决这些问题.教学中仍应提倡算法多样化,让学生说明每一步的理由,并鼓励学生间的交流.学生可以类比数的除法把除以单项式看成是乘以这个单项式的倒数,也可以利用逆运算进行考虑.
(学生以小组为单位进行探索交流,教师可参与到学生的讨论中,对遇到困难的同学及时予以启发和帮助)
讨论结果展示:
可以从两方面考虑:
1.从乘法与除法互为逆运算的角度.
(1)我们可以想象5.98×1021·()=1.90×1024.根据单项式与单项式相乘的运算法则:单项式与单项式相乘,是把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变作为积的因式,可以继续联想:所求单项式的系数乘以5.98等于1.90,所以所求单项式系数为1.90÷5.98≈0.318,所求单项式的幂值部分应包含1024÷1021即103,由此可知5.98×1021·(0.318×103)=1.90×1024.所以(1.90×1024)÷(5.98×1021)=0.38×103.
(2)可以想象2a·()=8a3,根据单项式与单项式相乘的运算法则,可以考虑:8÷2=4,a3÷a=a2即2a·(4a2)=8a3.所以8a3÷2a=4a2.
整式的除法教案

整式的除法(1)教学目标:1.会进行单项式除以单项式的整式除法运算。
2.理解单项式除以单项式的运算算理。
教学重点:单项式除以单项式的整式除法运算教学难点:单项式除以单项式运算法则的探究过程教学准备:自学1、自读文本:根据学习目标,认真阅读课本第28-29页,做到整体理解,在你预习的过程中,你有哪些疑问请纪录下来。
2、思路整理:从同底数幂的乘除法入手,通过计算,总结出单项式除以单项式的法则,并运用法则进行计算。
(5x)·(2xy2 )(-3mn)·(4n2 )3、基础自清:(1)两数相除,号得正,号得负,并把相除。
(2)同底数幂的除法法则是。
(3)零指数幂的意义。
4、计算:(2m2n)·( )=8m2n2 →(8m2n2) ÷(2m2n)=(-x)·( )=-2x3 →(-2x3) ÷(-x)=教学过程:一:自学检测(检测昨天预习效果)1、计算:(8m 2n 2) ÷(2m 2n) (-2x 3) ÷ (-x) (-53x 2y 3) ÷(3x 2 y) (10a 4b 3c 2)÷(5a 3bc) 学生口答,并回答怎么做的。
单项式相除,把系数、同底数幂分别相除,作为商的因式.2、计算:(8m 2n 2x ) ÷(2m 2n) (-2x 3y 2) ÷ (-x)对于只在被除式里含有的 x 、y 2,应该怎样处理 ?(对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.)二:研学(要求:先独立完成,再同桌之间互对答案,并把不一致的题目交至组长处,组长带领全组解决疑问较多的题目,最后确定展示人选。
)1、 计算:(-5m 2n 2) ÷ (3m)(2x 2y)3 · (-7xy 2) ÷ (14x 4y 3)[9(2a+b)4] ÷ [ 3(2a+b)2]注意:1、运算顺序:先算乘方,在算乘除,最后算加减;如果有括号,先算括号里面的。
整式的除法(一)教案

1.9 整式的除法
教学目标:
一、知识与技能:
1、历经探索整式的过程,掌握简单的整式除法运算。
2、理解并掌握整式除法的运算法则。
二、过程与方法
发展学生观察、归纳、猜测、验证的能力。
三、情感与态度
运算法则可由分数“约分”类比可得到。
也可这样进行:∵(-2)(+3)=(-6),∴(-6)÷(+3)=-2,∵x2(x3y)=x5y, ∴x5y÷x2=x3y。
除法运算仅是一个
载体,通过对它的掌握,培养学生解决问题的能力,从而也体现“数学是人人都可以学会的”,“数学好玩”,培养学生学习数学的兴趣。
重点与难点:
重点:
理解并正确应用整式除法运算法则。
难点:
正确并熟练地应用法则。
课前准备:
投影仪、幻灯片
教学设计:。
2024北师大版数学七年级下册1.7.1《整式的除法》教案1

2024北师大版数学七年级下册1.7.1《整式的除法》教案1一. 教材分析《整式的除法》是北师大版数学七年级下册第1章第7节的内容,本节课主要介绍整式除法的基本概念和运算方法。
通过本节课的学习,学生能够理解整式除法的意义,掌握整式除法的运算方法,并能够应用整式除法解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了整式的加减法和乘法,对整式的基本概念和运算方法有一定的了解。
但是,对于整式除法这一概念,学生可能较为陌生,需要通过实例和练习来理解和掌握。
三. 教学目标1.理解整式除法的概念和意义。
2.掌握整式除法的运算方法。
3.能够应用整式除法解决实际问题。
四. 教学重难点1.整式除法的概念和意义。
2.整式除法的运算方法。
五. 教学方法采用问题驱动法、实例教学法和练习法,通过引导学生思考和解决问题,让学生理解和掌握整式除法。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引导学生思考:已知两个整式的商和余数,如何求被除式?让学生回顾整数除法的概念,为新课的学习做好铺垫。
2.呈现(10分钟)讲解整式除法的定义和运算方法,通过PPT课件展示实例,让学生跟随老师一起完成整式除法的运算。
在此过程中,强调整式除法的基本步骤:确定除数、试除、商式、余式。
3.操练(10分钟)让学生独立完成PPT课件上的练习题,老师巡回指导,解答学生遇到的问题。
在此过程中,注意引导学生运用整式除法的基本步骤,培养学生的运算能力。
4.巩固(10分钟)通过PPT课件上的练习题,让学生巩固整式除法的运算方法。
老师选取部分学生的作业进行点评,指出优点和不足,并进行针对性的讲解。
5.拓展(10分钟)让学生思考:整式除法在实际问题中的应用。
老师出示几个实际问题,让学生运用整式除法进行解决。
通过这个过程,培养学生运用数学知识解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调整式除法的概念和运算方法。
北师大版七下1.7《整式的除法》教案1

1.7整式的除法课时安排说明:《整式的除法》是第一章《整式的乘除》的最后一节.本节内容共分两课时,第一课时,主要内容是单项式除以单项式;第二课时,主要内容是多项式除以单项式.一、学生起点分析:学生的知识技能基础:学生在小学已经学习过整数除法,对整数除法的运算掌握较为熟练.在本章前面几节课中,又学习了同底数幂的除法,单项式乘以单项式的法则,并利用其解决了一些问题,这些知识储备为学生本节课的学习奠定了良好的知识技能基础.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力.同时在本章前面的数学学习中学生已经经历了探究幂的乘法除法以及乘法运算的过程,为探究除法运算打下了基础,并且经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析:教科书基于学生对整式乘法以及整数除法的认识,提出了本课的具体学习任务:掌握单项式除以单项式的运算法则,并能够综合运用所学知识解决实际问题.本课内容从属于“数与代数”这一数学学习领域,因而必须服务于代数教学的远期目标:“让学生经历观察、操作、推理、想象等探索过程,能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感.发展学生的合作交流能力、推理能力和有条理的表达能力”,同时也应力图在学习中逐步达成学生的有关情感态度目标.为此,本节课的教学目标是:1.知识与技能:理解整式除法运算的算理,会进行简单的整式除法运算;2.过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力.3、情感与态度:体会数学在生活中的广泛应用三、教学过程设计:利用学案:整式的除法(1)【课标分析】:掌握单项式除以单项式的运算法则【学习目标】:1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算;2、理解整式除法运算的算理,发展有条理的思考及表达能力。
《整式的除法》第一课时参考教案

1.9 整式的除法(一)●教学目标(一)教学知识点1.单项式除以单项式的运算法则及其应用.2.单项式除以单项式的除法运算算理.(二)能力训练要求1.经历探索单项式除以单项式的运算法则的过程,会进行单项式与单项式的除法运算.2.理解单项式与单项式相除的算理,发展有条理的思考及表达能力.(三)情感与价值观要求1.经历探索单项式除以单项式的运算法则的过程,获得成功的体验,积累丰富的数学经验.2.鼓励多样化的算法,培养学生的创新能力.●教学重点单项式除以单项式的运算法则及其应用.●教学难点单项式除以单项式的运算法则的探索过程.●教学方法自主探索法学生凭借已有的数学经验,自主探索单项式与单项式相除的法则,并能用自己的语言有条理的思考及表达.●教具准备投影片四张第一张:提出问题,记作(§1.9.1 A)第二张:议一议,记作(§1.9.1 B)第三张:例1,记作(§1.9.1 C)●教学过程Ⅰ.创设问题情景,引入新课[师](出示投影片§1.9.1 A)我们看下面几个算式.计算下列各题,并说说你的理由.(1)(x5y)÷x2;(2)(8m2n2)÷(2m2n);(3)(a4b2c)÷(3a2b).同学们观察上式,可知它们属于哪一种运算?[生]这三个算式都是单项式与单项式相除.[师]我们前面学习了整式的加法、减法、乘法,从今天开始我们来学习整式的除法,先来学习单项式与单项式的除法.Ⅱ.讲授新课1.探索单项式除以单项式的运算法则[师]在除法运算中,我们都有一个限制条件,是什么呢?[生]除数不能为零.制:除式恒不为零.下面就请同学们凭借自己的数学经验计算上面的三个算式,可以用多种算法.但要说明每一步的理由,同学之间可互相交流算法.(教师可深入到学生探索交流过程中,对较困难的学生以启示)[生]我们已学习了整式的乘法运算,而乘法的运算法则大多是联系整数的运算法则和运算律得出的.于是我想到了整数除法运算.根据乘法和除法互为逆运算,来解答上面三个算式如下:(1)我们可想象x2·( )=x5y与单项式相乘,是把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变作为积的因式.可继续联想:所求单项式系数肯定为1;x2·( )=x5.所以所求单项式字母部分应包含x 5÷x 2即x 3,还应包含y.由此可知x 2·(x 3y)=x 5y.所以(x 5y)÷x 2=x 3y(2)可想象(2m 2n)·( )=8m 2n 2,根据单项式与单项式相乘的法则,可知:8÷2=4,n 2÷n=n.即(2m 2n)·(4n)=8m 2n 2所以(8m 2n 2)÷(2m 2n)=4n. (3)可想象(3a 2b)·( )=a 4b 2c.根据单项式与单项式相乘的法则,可得系数部分应为1÷3=31,a 4÷a 2=a 2,b 2÷b=b,即(3a 2b)·)31(2bc a =a 4b 2c.所以(a 4b 2c)÷(3a 2b)= 31a 2bc.[生]我是用类似于分数的约分的方法计算的. (1)(x 5y)÷x 2=25x y x =232)(x y x x ⋅=x 3y;(2)(8m 2n 2)÷(2m 2n)=nm n m 22228=nm n n m222)4()2(⋅=4n;(3)(a 4b 2c)÷(3a 2b) =b ac b a 2243=ba b a bc a 2223)(⋅=32bc a=31a 2bc.[师生共析]上面两位同学的想法都是有理有据的.我们一块再来看一下前后式子的联系出示投影片(§1.9.1 B)议一议:如何进行单项式除以单项式的运算?你能用自己的语言有条理的描述出来吗?[生]从上述分析的过程,可得出:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.实际上单项式相除是在同底数幂的基础上进行的.[生]其实单项式相除可以分为系数、同底数幂,只在被除式里含有的字母三部分运算.[师]同学们用很条理的语言描述出了单项式相除的运算法则,下面我们就来具体做几个单项式的除法.(出示投影片§1.9.1 C)[例1]计算:3x2y3)÷(3x2y);(1)(-5(2)(10a4b3c2)÷(5a3bc);(3)(2x2y)3·(-7xy2)÷(14x4y3);(4)(2a+b)4÷(2a+b)2.分析:(1)、(2)直接运用单项式除法的运算法则;(3)注意运算顺序(先乘方再乘除,再加减);(4)鼓励学生悟出,将(2a+b)视为一个整体来进行单项式除以单项式的运算.3x2y3)÷(3x2y)解:(1)(-5=(-53÷3)·(x 2÷x 2)·(y 3÷y)=-51·x 2-2y 3-1=-51y 2;(2)(10a 4b 3c 2)÷(5a 3bc)=(10÷5)·(a 4÷a 3)·(b 3÷b)·(c 2÷c) =2·a 4-3b 3-1c 2-1=2ab 2c; (3)(2x 2y)3·(-7xy 2)÷(14x 4y 3) =(8x 6y 3)·(-7xy 2)÷(14x 4y 3) =-56x 7y 5÷(14x 4y 3) =-4x 3y 2;(4)(2a+b)4÷(2a+b)2 =(2a+b)4-2 =(2a+b)2 =4a 2+4ab+b 2. Ⅲ.随堂练习 1.(课本P 40)计算: (1)(2a 6b 3)÷(a 3b 2); (2)(481x 3y 2)÷(161x 2y);(3)(3m 2n 3)÷(mn)2; (4)(2x 2y)3÷(6x 3y 2). 解:(1)(2a 6b 3)÷(a 3b 2)=(2÷1)·(a 6÷a 3)·(b 3÷b 2)=2a 3b; (2)(481x 3y 2)÷(161x 2y)=(481÷161)·(x 3÷x 2)·(y 2÷y)=31xy;(3)(3m2n3)÷(mn)2=(3m2n3)÷(m2n2)=3·(m2÷m2)·(n3÷n2)=3n;(4)(2x2y)3÷(6x3y2)4x3y=(8x6y3)÷(6x3y2)=3(注意(3)(4)题中的运算顺序)2.我们都知道“先看见闪电,后听见雷声”,那是因为在空气中光的传播速度比声音快.科学家们发现,光在空气里的传播速度约为3×108米/秒,而声音在空气里的传播速度大约只有300米/秒.你能进一步算出光的传播速度是声音的多少倍吗?解:(3×108)÷300=(3×108)÷(3×102)=106(倍)光的传播速度是声音的106倍.Ⅳ.课时小结这节课同学们结合我们学过的分数约分、乘法和除法互为逆运算,从不同的方面出发探索出单项式除法的法则,并运用到整式除法的运算,积累了一定的数学经验.Ⅴ.课后作业,习题1.15,第1、2、3题.1.课本P412.如果你刷牙时一直开着水龙头,估计会白白地流走多少水?说说你是如何获得这个数据的.(提示:本题的解决需将测量、幂的运算等内容综合起来).Ⅵ.活动与探究已知a=2002x+2001,b=2002x+2002,c=2002x+2003,求a2+b2+c2-ab-bc-ca 的值.[过程]由题设条件是求不出a,b,c的值的.观察代数式,联想到公式2(a2+b2+c2-ab-bc-ca)=(a-b)2+(b-c)2+(c-a)2,所以a2+b2+c2-ab-bc-1[(a-b)2+(b-c)2+(c-a)2],因此只需求出a-b、b-c、c-a即可.ca=2[结果]a=2002x+2001 ①b=2002x+2002 ②c=2002x+2003③由①-②得a -b=-1; 由②-③得b -c=-1; 由③-①得c -a=2.则a 2+b 2+c 2-ab -bc -ca=21[(a -b)2+(b -c)2+(c -a)2]=21[(-1)2+(-1)2+22]=21×6=3.●板书设计1.9 整式的除法(一)一、(x 5y)÷x 2=x 3y=(x 5÷x 2)·y(8m 2n 2)÷(2m 2n)=4n=(8÷2)·(m 2÷m 2)·(n 2÷n) (a 4b 2c)÷(3a 2b)= 31a 2bc=(1÷3)·(a 4÷a 2)·(b 2÷b)·c单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只含在被除式里的字母,则连同它的指数一起作为商的一个因式.二、应用例1(略) 例2(略) ●备课资料 一、参考例题 [例1]计算(1)(-5x 5y 4)÷(-3x 3y 3) (2)15a 2m+1b 2n c ÷(-5a 2m b n ) (3)(1.2×107)÷(5×104)(4)[5(x+y)2(x -y)]3÷[3(x+y)2(x -y)]2 解:(1)(-5x 5y 4)÷(-3x 3y 3)=[-5÷(-3)](x 5÷x 3)(y 4÷y 3) =35x 2y(2)15a 2m+1b 2n c ÷(-5a 2m b n )=[15÷(-5)](a 2m+1÷a 2m )(b 2n ÷b n )c =-3ab n c(3)(1.2×107)÷(5×104) =(1.2÷5)(107÷104) =0.24×103=240(4)[5(x+y)2(x -y)]3÷[3(x+y)2(x -y)]2 =[125(x+y)6(x -y)3]÷[27(x+y)4·(x -y)2] =(125÷27)[(x+y)6÷(x+y)4][(x -y)3÷(x -y)2] =27125(x+y)2(x -y)=27125x 3+27125x 2y -27125xy 2-27125y 3[例2]计算(1)(-32a 2b 4c 6)(-9a 2c)÷34ab 4c 3(2)(3xy)2(x 2-y 2)-(4x 2y 2)2÷8y 2+18x 6y 8÷2x 2y 6+9x 2y 4 解:(1)(-32a 2b 4c 6)(-9a 2c)÷34ab 4c 3=6a 4b 4c 7÷34ab 4c=(6×43)a 3c 6=29a 3c 6(2)(3xy)2(x 2-y 2)-(4x 2y 2)2÷8y 2+18x 6y 8÷2x 2y 6+9x 2y 4 =9x 2y 2(x 2-y 2)-(16x 4y 4)÷8y 2+18x 6y 8÷2x 2y 6+9x 2y 4 =9x 4y 2-9x 2y 4-2x 4y 2+9x 4y 2+9x 2y 4 =16x 4y 2 二、参考练习 1.填空(1)12x8y3z÷(-4x2yz)= .(2)-9a2m b2m+3c÷3a m b2m= .(3)8a3b2c÷ =2a2bc.1a3bc.(4) ÷2ab2=2(5)3.2×105÷ =-1.6×106.(6) ÷(2×107)=-5×103.2.计算(1)-12a6b3c2÷(-3a4b2)(2)18a m+2x n+3y5÷(-6a m x n+1y)(3)12(a+b)7(a+2b)5÷[-3(a+b)6(a+2b)](4)(-1.1×104)(2.3×105)÷(-5.06×1013)答案:1.(1)-3x6y2 (2)-3a m b3c (3)4ab (4)a4b3c (5)-0.2 (6)-10112.(1)4a2bc2 (2)-3a2x2y4 (3)-4(a+b)(a+2b)4 (4)5×10-5。
[精品教案]整式的除法(1)教案
![[精品教案]整式的除法(1)教案](https://img.taocdn.com/s3/m/3a211c0ebe23482fb5da4c4b.png)
整式的除法(1)教案
以下是为您推荐的1.9 整式的除法(1)教案,希望本篇
文章对您学习有所帮助。
1.9 整式的除法(1)
1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;
2.理解整式除法运算的算理,发展有条理的思考及表达能力. 教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算. 教学难点:确实弄清单项式除法的含义,会进行单项式除法运算. 教学过程:
一、探索练习,计算下列各题,并说明你的理由.
(1)
(2)
(3)
提醒:可以用类似于分数约分的方法来计算.
讨论:通过上面的计算,该如何进行单项式除以单项式的运算?
结论:
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.
二、例题讲解:
1.计算:(1) ;(2) ;
(3) .
做巩固练习1.
2.月球距离地球大约
3.84105千米,一架飞机的速度约为8102千米/时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间?
做巩固练习2. 三、巩固练习:
1.计算:
(1) ;(2) ;
(3) ;(4) .
2.计算:
(1) ;
(2) .
小结:弄清单项式除法的含义,会进行单项式除法运算. 作业:课本P41习题1.15:1、2、4.
教学后记:。
《整式的除法(1)》教学案

1、计算
(1) 2a 6 b 3 a 3b 2 (3) 3m 2 n 3 (m n) 2 (2) 1 3 2 1 2 x y x y 48 16 2 3 (4) (2 x y ) 6 x 3 y 2
2、计算: (1) 12x3 y 4 z 2 4x2 y 2 z
年级 备人
七年级 宋剑
6.8 整式的除法(1) 学科 数学 时间 2016.8.30
课型 班级
新授 7、8 班
师生活 动和学 法指导
学习目标: 1.探索单项式除以单项式法则 2.运用单项式除法法则进行简单计算
一、舒畅导学: (课堂引入) (设置自主学习的引入情景)
第一环节:复习回顾
1、同底数幂的除法: 2、单项式乘单项式法则 3、填空:
单项式相除 系数 同底数幂
只在被除式里含有的字 母连同其指数一起作为
的因式
四、幸福展示:
例题讲解 例1 计算:
3 (1) x 2 y 3 3x 2 y 5 ( 2) 10a 4 b 3 c 2 5a 3bc (3) ( 2 x 2 y ) 3 ( 7 xy 2 ) 14x 4 y 3 ( 4) ( 2a b) 4 ( 2a b) 2
课后反思:
3
(2)
1 6 4 a b c 2 a 3c 4
(3) 2mn 1 8m2 n 1
3
(4) 6a b
5
1 a b 3 3
2
六、开心提升: (课堂小结) 特别强调:在运用单项式除以单项式的法则应注意以下几点
1、系数相除与同底数幂相除的区别。 2、符号问题。 3、指数相同的同底数幂相除商为 1 而不是 0。 4、在混合运算中,要注意运算的顺序课堂练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.7整式的除法(一)
教学过程:
师:第三题在做时需注意什么?哪位同学叙述过程老师板演。
生:(3)(y x 22)3•(27xy -)÷3414y x 单项式相乘除(同级运算按照从左到右的顺
序依次进行)
=368y x •(27xy -)÷3414y x 把系数、同底数幂分别相乘除
=5756y x -÷3414y x
=234y x -
让学生尝试独立完成其余题目,安排学生板演,让学生进行评价。
教师根据学
生遇到的问题和出现的错误,有针对性地进行讲解和板书示范。
同时教学中应
通过恰当的方式让学生明确每一部运算的依据.
强调:
一要注意运算顺序,
二是当底数是多项式时,把该多项式看成一个整体
随堂练习:
下列计算是否正确?如果不正确,指出错误原因并加以改正
(1) (2)
(3) (4)
生:(1)错,应为-23
2
xy (2)错,应为25y (3)错,应为8x (4)对
设计意图:对照法则,进行独立的简单计算,体会法则在解题中的应用,提高
学生的计算能力。
九.教学反思:
纵观整节课, 通过同底数幂的除法的复习让学生有个知识的链接,能把同底数幂的除法运算合理准确的应用到本节做了很好的铺垫, 学生在探究新知的过程中通过自主学习、小组交流、合作展示等,准确把握住单项式除以单项式的运算法则并能总结规律,为多项式除以单项式埋下很好的伏笔和合理的过度,学生能比较快的理解、应用、掌握和计算。
由于要急于完成教学内容、也缺乏足够的耐心,急于得出结论,致使个别同学理解不透。
另外个别由于运算基础不够好,做题时还有个别同学有计算错误。
在以后的教学中吸取教训,力求效果更好。