现代控制理论3-1线性系统的状态空间描述

合集下载

线性系统的状态空间描述

线性系统的状态空间描述

第一章 线性系统的状态空间描述 1. 内容系统的状态空间描述化输入-输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换组合系统的状态空间方程与传递函数矩阵2. 基本概念系统的状态和状态变量状态:完全描述系统时域行为的一个最小变量组。

状态变量:构成系统状态的变量。

状态向量设系统状态变量为)(,),(),(21t x t x t x n 写成向量形式称为状态向量,记为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()(21t x t x t x t x n状态空间状态空间:以状态变量为坐标轴构成的n 维空间。

状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条轨迹。

3. 状态空间表达式设系统r 个输入变量:)(,),(),(21t u t u t u r m 个输出:)(,),(),(21t y t y t y m n 个状态变量:)(,),(),(21t x t x t x n例:图示RLC 电路,建立状态空间描述。

电容C 和电感L 两个独立储能元件,有两个状态变量,如图中所注,方程为)()()()()()(t i dtt du C t u t u t Ri dtt di LL c c L L ==++ )()(),()(21t u t x t i t x c L ==状态方程)(01)()(0/1/1/)()()()()()()()(212112211t u t x t x C L L R t xt x t x t xC t u t x t Rx t x L ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇔⎩⎨⎧==++⇔输出方程[]⎥⎦⎤⎢⎣⎡==)()(01)()(21t x t x t u t y c 一般定义状态方程:状态变量与输入变量之间的关系[][][]t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx r n n n n r n r n );(,),(),();(,),(),()()();(,),(),();(,),(),()()();(,),(),();(,),(),()()(212121212222121111======用向量表示,得到一阶的向量微分方程[]t t u t x f t x),(),()(= 其中n n r r n n f f f f t u t u t u t u t x t x t x t x R R R ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙∙∙=∙∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()(:)(,)()()(:)(,)()()(:)(212121输出方程:系统输出变量与状态变量、输入变量之间的关系,即[][][]t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y r n m m r n r n );(,),(),();(,),(),()();(,),(),();(,),(),()();(,),(),();(,),(),()(2121212122212111=== 用向量表示为[]t t u t x g t y ),(),()(=4系统分类:1) 非线性时变系统[][]⎩⎨⎧==t t u t x g t y t t u t x f t x ),(),()(),(),()(2) 非线性定常系统[][]⎩⎨⎧==)(),()()(),()(t u t x g t y t u t x f t x3) 线性时变系统⎪⎩⎪⎨⎧+++++=+++++=rnr n n nn n n r r n n u t b u t b x t a x t a xu t b u t b x t a x t a x)()()()()()()()(1111111111111写成向量形式即为⎩⎨⎧+=+=)()()()()()()()()()(t u t D t x t C t y t u t B t x t A t x其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t b t b t b t b t b t b t b t b t b t B t a t a t a t a t a t a t a t a t a t A nr n n r r nn n n n n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t d t d t d t d t d t d t d t d t d t D t c t c t c t c t c t c t c t c t c t C mr m m r r mn m m n n4) 线性定常系统⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x5 状态空间表达式的系统结构图状态和输出方程可以用结构图表示,形象地表明系统中信号传递关系。

现代控制理论第3章

现代控制理论第3章
f 0 (t f ) f (t ) n 1 1 f 有唯一解 A B f ( t ) n 1 f
(t f )]
X(0) B
AB
f 0 (t f ),
,f
n1
(t f )
2 rank [ B AB A B
A n1B] n
2 P2 A ( P A ) A P A P3 1 1 3 P3 A ( P2 A) A P A P4 1
n 1 Pn 1 A ( Pn 2 A) A P A Pn 1
P P 1 1 P P A P 2 1 , 其中P 1 ? n 1 P P A n 1 P 0 1B P AB 0 , 转置以后得 PB 1 n 1 P A B 1 1 1B P P 1 B P 1 AB AB
3.2控制系统的能观性
自动化学院 CISIA
一.能观性定义
定义: 对于线性定常系统 x Ax Bu, y Cx
在任意给定的输入 u(t) 下,能够根据输出量 y(t) 在
有限时间区间 [t0,tf] 内的测量值,唯一地确定系统
在 t0 时刻的初始状态 x(t0 ),就称系统状态x(t0 )是
X AX BU X PX Y CX
Y CX
X AX BU
A P 1 AP P非奇异 其中 B P 1B A与A为相似矩阵 C CP


det A det A, Rank ( A) Rank ( A)
a
i 1
n
ii
a ii ,
2.问题的提出 能控性问题?

现代控制理论状态空间法

现代控制理论状态空间法

根据系统微分方程建立状态空间表达式.
1.输入项中不含输入导数项的线性系统空间状态 表达式
• 系统描述为:
y (n ) a1 y (n1) an1 y an y u
(1)
讨论:状态如何选择
y(t) C (t)x(t) D(t)u(t)
2)线性时不变系统: x Ax Bu y Cx Du
在通常情况下,大多数还是研究线性时不变 系 统,即线性定常系统,因此本课程的主要研究对 象是线性定常系统。
4.状态空间描述的结构图(或称状态变量图)
• 例:根据上例画出结构图. • 解:先将例子写成下述形式
现代控制理论
第一章 状态空间法
控制系统的状态空间描述
一.问题的引出 1 --古典控制理论的局限性 1、仅适用于SISO的线性定常系统(外部描述,
时不变系统) 2、古典控制理论本质上是复频域的方法.(理论) 3、设计是建立在试探的基础上的.(应用) 4、系统在初始条件为零,或初始松驰条件下,才
能采用传递函数.
定义2.状态变量
状态变量是确定系统状态的最小一组变量,如果以最
少的n个变量 x1 (t ), x2 (t ), , xn (t ) 可以完全描述系
统的行为 (即当t≥ 时输入和
t0
在t= t0初始状态给定后,系统的状态完全可以确定),那 么
x1 (t ), x2 (t ), 是一, xn组(t )状态变量.
(2)状态变量选取不唯一,有时选取状态变量仅为数 学描述所需,而非明确的物理意义。
(3)状态变量是系统的内部变量,一般情况下输出是 状态的函数,但输出总是希望可量测的。
(4)仅讨论有限个状态变量的系统。 (5)有限个数的状态变量的集合,称为状态向量。 (6)状态向量的取值空间称为状态空间。

大连理工大学 现代控制理论 王金城 第三章 答案

大连理工大学 现代控制理论 王金城 第三章  答案

第3章习题参考答案:3-1 (1)1101 0221rank[] 2 rank[]2c o c o ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦==Q Q Q Q 能控,能观测(2) 1979818100139155153 rank[] 3 201618139153c c ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦Q Q 100210123 rank[] 33812913363550141o o ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Q Q 能控,能观测(3) 根据能控/能观测判别准则二知,系统能控,但不能观测 (4) 00()()1t t ⎡⎤==⎢⎥⎣⎦M b1001d()(t)()()d t t t t t -⎡⎤=-+=⎢⎥-⎣⎦M A M M [][][]010*******()() rank[]21()()01d()()()()0d ()01 rank[]2()0c c o o t t t t t t t t t t tt t t -⎡⎤===⎢⎥-⎣⎦===+=-⎡⎤⎡⎤==<⎢⎥⎢⎥⎣⎦⎣⎦Q M M Q N c N N A N N Q Q N能控但不能观测(5) 02()()t t e t t e --⎡⎤==⎢⎥⎣⎦M b1000d()(t)()()0d t t t t ⎡⎤=-+=⎢⎥⎣⎦M A M M[]0120100010()() rank[]20()()1d ()()()()13d ()1rank[]2()13tc c tt tt o o t e t t e t t e t t t t e tt e t e ------⎡⎤==<⎢⎥⎣⎦⎡⎤==⎣⎦⎡⎤=+=--⎣⎦⎡⎤⎡⎤==<⎢⎥⎢⎥--⎣⎦⎣⎦Q M M Q N c N N A N N Q Q N能观测但不能控3-2 (1) 矩阵A 为约当标准形,对应于唯一特征值12λ=-共有3个约当块。

系统完全能控的充要条件是矩阵B 中对应于三个约当小块的末行为行线性无关。

控制系统的状态空间描述

控制系统的状态空间描述
解: 方法一、直接根据微分方程求解
03
方法二、根据传递函数求解
状态方程的标准形式
状态方程的定义 状态方程 所谓状态方程,就是描述系统的状态之间以及输入和状态之间动态关系的一阶微分方程组。
3.2.2 状态空间表达式
向量矩阵形式为
状态向量
输入向量
维的函数向量
3、线性定常系统的状态方程
向量矩阵形式为
维的系数矩阵
维的系数矩阵
输出方程
输出方程的标准形式
解:列写回路的电压方程和节点的电流方程
选取 为状态变量,输出 ,得系统的状态空间表达式为
消去 并整理得
设初始条件为零,对上式两端进行拉普拉斯变换,得
写成向量矩阵形式为
其中
输入变量的Laplace变换象函数
2)数目最小的含义:是指这个变量组中的每个变量都是相互独立的。
二、状态向量
若一个系统有n个状态变量: ,用这n个状态变量作为分量所构成的向量 ,就称为该系统的状态向量,用 表示。
例 试建立下图所示电路网络的状态方程和输出方程。
01
考虑标量的一阶微分方程
02
用拉氏变换解有:
3.2.2 状态微分方程的解
定义矩阵指数函数为:
上式也经常写做状态转移矩阵的形式
系统的零输入响应为:
1.3 传递函数矩阵
例:系统如下图所示,输入为 和 ,输出为 。
较之传递函数,状态空间描述的优点有:
3、状态空间分析是一种时域分析方法,可用计算机直接在时域中进行数值计算。
2、由前面的分析可以看出,对于不同维数的系统,可以采用同一表达方式来进行描述,由此可见从低维系统得到的结论可以方便地推广到高维系统,只是计算复杂一些而已。

线性控制理论总复习(2012)

线性控制理论总复习(2012)
: x A(t ) x B(t )u y C (t ) x
(1)
线性时变系统的对偶系统的状态空间描述为:
d : T AT (t ) T C T (t ) T T BT (t ) T
(2)
式中: —协状态, n维行向量; —输出, p维行向量;
如果其状态空间描述具有如下形式
ˆ ˆ ˆ ˆ x Ao x bou
其中:
0 0 0 1 1 ˆ Ao 1 n-1
ˆ ˆ y co x
ˆ co 0 0 1
则称此状态空间描述为能观测规范形。
25
总复习:现代控制理论
2.PBH秩判据
i I A rank n; C
i 1, 2, , n
3.对角线规范型判据
4.约当规范型判据
13
总复习:现代控制理论
3. 对角线规范型判据(※)
当矩阵A的特征值 1 , 2 ,, n 为两两相异时, 线性定常连续系统 x Ax x(0) x0 t0 y Cx
x (t ) L1 X ( s ) L1 (s A) 1[ x0 +B U ( s )]
9
总复习:现代控制理论
第4章 线性系统的可控性与可观测性
一、线性定常连续系统的可控性判据(※) 1.秩判据
rankQc rank B AB An 1 B n
2.PBH秩判据
rank i I A B n
i 1, 2, , n
3.对角线规范型判据 4.约当规范型判据
10
总复习:现代控制理论
3.对角线规范型判据(※)
当矩阵A的特征值 1 , 2 ,, n 为两两相异时, 线性定常连续系统 x(t ) Ax(t ) Bu (t ) x(0) x0 t 0 完全能控的充分必要条件是:其对角线规范型

现代控制理论(8-11讲:第3章知识点)

现代控制理论(8-11讲:第3章知识点)

f () I - A n an1 n1 a1 a0
f (A) An an1An1 a1A a0I 0
f () I - A 2 5 7 0
用A代替λ ,则
f (A) A 5A 7I 0
1 2 2 t 0 0 1t 2! 1 1 1 .. .. 0 nt 1 0
1 2 2 1 k k P (I + At + A t + ... + A t + ...)P 2! k!
11
习题: 2.4 (2) (3) 2.5 (1):1, 2
12
(2)系统矩阵A具有n重特征值: 则
Φ(t ) e
At
i t e Q
te e
i t
i t
0
1 ( n 1) i t ... t e (n 1)! 1 ... ... Q .. tei t i t e
2
15
例2:设矩阵为:
0 0 A 0 1
1 0 0 0
0 1 0 0
0 0 1 0
试用Cayly-Hamilton定理,求A7-A3+2I。 解:
0 1 0 0 1 0 4 1 0 I A 0 0 1 1 0 0
At
e 0 (t )I 1 (t )A an1 (t )A
At
n1
证: A 即
n
an1A
n1
a1A a0I 0
An an1An1 a1A a0I
an1 (an1An1 a1A a0I) an2 A n1 ... a0 A

胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(线性系统的状态空间分析与综合)【圣才】

胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(线性系统的状态空间分析与综合)【圣才】
2.状态空间的基本概念 (1)状态:系统在时间域中的行为或运动信息的集合。 (2)状态变量:能够完全表征系统运动状态的一组独立的变量,常用符号 x1(t),x2 (t),…,xn(t)表示。 (3)状态向量:由 n 个用来描述系统状态的状态变量 x1(t),x2(t),…,xn(t)组 成的向量 x(t)称为 n 维状态向量,表示为 x(t)=[x1(t),x2(t),…,xn(t)]T。 (4)状态空间:以 n 个状态变量为基底所组成的 n 维空间。 (5)状态轨迹:系统状态在状态空间中随时间变化而形成的轨迹,又称状态轨迹。 (6)线性系统的状态空间表达式:又称为动态方程。
具有非正(负或零)实部,且具有零实部的特征值为 A 的最小多项式单根。
(2)系统的唯一平衡状态 xe=0 是渐近稳定的充分必要条件:A 的所有特征根均具有
3.线性定常连续系统状态方程的解 (1)齐次方程求解方法:幂级数法;拉普拉斯变换法。 (2)非齐次方程求解方法:积分法;拉普拉斯变换法。
4.传递函数矩阵 表达式:G(s)=C(sI-A)-1B+D
二、线性系统的可控性与可观测性 1.可控性 如果系统的每一个状态变量的运动都可由输入来影响和控制,而由任意的始点达到原点, 则该系统是完全可控系统,简称为系统可控。 (1)可控标准形
5 / 75
圣才电子书 十万种考研考证电子书、题库视频学习平台

的任意初始态 x0 出发的运动轨迹 x(t;x0,t0),在 t→∞都满足:||x(t;x0,t0)-xe||≤ε,
t≥t0,则称 xe 是李雅普诺夫意义下稳定的。
(3)渐近稳定
系统不仅满足李氏意义下的稳定,且
(2)可观测性判据
3 / 75
圣才电子书 十万种考研考证电子书、题库视频学习平台
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一步:选择状态变量,n阶系统,一般选择n个状态变量
x1 , x 2 , ⋯⋯, x n
x1 = y ɺ x2 = y x3 = ɺɺ y ⋮ xn = y ( n −1)
第二步:求各个状态一阶导数,并代入原微分方程,有
ɺ x1 = x2 x = x ɺ 3 2 ⋮ x = x ɺ n−1 n xn = −a0 x1 − a1 x2 − ⋯⋯ − an−1 xn + β 0u ɺ
di 1 + Ri(t ) + ∫ i (t )dt = u (t ) dt C 1 u c (t ) = ∫ i (t )dt C L
(1)取流过电感L的电流i(t)和电容C两端电压uc(t) 作为系统的两个状态变量,分别记作 x1=i1和x2=uc,则有
dx1 L dt + Rx1 + x 2 = u (t ) dx 2 = 1 x 1 dt C y = x2
电路如图1.1所示 系统的控制输入量为u(t),系统输出为u 例1.2 RLC电路如图 所示 系统的控制输入量为 电路如图 所示,系统的控制输入量为 ,系统输出为 c(t) ,建立 系统的状态空间表达式。 系统的状态空间表达式。
解:该RLC电路有两个独立的储能元件L和C, 设回路电流为i(t),根据基尔霍夫电压定律和R、 L、C元件的电压电流关系,可得下列方程
n
x1 = y − β 0 u ɺ xi = xi −1 − β i −1u, i = 2,3, ⋯ , n
其中 β 0 , β 1 , ⋯ , β n −1 是n个待定系数。
根据上述定义有
x1 = y − β 0 u ɺ x 2 = x1 − β1u ɺ xi = xi −1 − β i −1u ɺ x n −1 = x n − 2 − β n − 2 u ɺ x n = x n −1 − β n −1u
• • • • • •
ɺ y ɺ 由 x i及 u , u , , ⋯ u ( n −1) 求出y, ɺɺ, ⋯ y ( n −1) ,即:
x1 = y − β 0 u → y = x1 + β 0 u
ɺ ɺ ɺ ɺ x 2 = y − β 0 u − β 1u → y = x 2 + β 0 u + β 1u ɺɺ ɺ x3 = ɺɺ − β 0 u − β 1u − β 2 u y
例1.3 机械运动系统如图1.4所示, M为物体的质量,K为弹簧系数, B为阻尼器,f为外加的力,y为受力后物体的位移,v为物体的运动 速度。试写出该机械系统的状态方程
ɺ ɺ x2 = v 根据牛顿第二定律可写出该系统的运动方程
dv f − Bv − Ky = M dt K B 1 ɺ2 = − x x1 − x2 + u M M M

β i = bn −i − a n −1 β i −1 − a n − 2 β i − 2 − ⋯ − a n −i β 0

n 令上式中u的系数为 β,则:
β n −1 = b1 − a n −1 β n − 2 − a n − 2 β n −3 − ⋯ − a1 β 0
x1 y = [0 1] x2
(2)取两个状态变量 x1 = i, x2 = i (t ) dt , 则可得
1 dx1 + Rx1 + x 2 = u L dt C dx 2 = x 1 dt 1 y = uc = x2 C
R 1 1 ɺ x2 + u x1 = − x1 − L LC L x 2 = x1 ɺ 1 y = uc = x2 C
1 1 R 1 R 1 R ɺ x1 = x1 − x2 + (u − x1 ) = ( − ) x1 − x2 + u RC RC L RC L RC L x = 1 x − 1 x ɺ 2 RC 1 RC 2 y = x2
1 1 uc , ∫ i(t )dt + Ri(t ), x2 = C ∫ i(t )dt = 则可得 C
c = [1 0 0 ⋯ 0]
例1.7 已知系统的输入输出微分方程为
ɺyɺ + 6 ɺɺ + 11 y + 6 y = 3u ɺ ɺ y
试列写其状态空间表达式。 解:取状态变量 x1
ɺ = y, x2 = y, x3 = ɺɺ y
可得
ɺ ɺ x1 = y = x2 ɺ x2 = ɺɺ = x3 y ɺ ɺ x3 = ɺyɺ = −6 x1 − 11x2 − 6 x3 + 3u y = x1
图1.4弹簧质量阻尼器系统
1.3从微分方程模型推导状态空间表达式 从微分方程模型推导状态空间表达式
1.3.1由微分方程求状态空间表达式 由微分方程求状态空间表达式 1)没有输入变量导数项的情形 ) 单输入单输出(SISO)线性定常连续系统微分方程的一般形式为
ɺ y ( n ) + a n −1 y ( n −1) + ⋯ + a1 y + a 0 y = β 0 u
ɺ ɺ x n = y ( n ) − β 0 u ( n ) − β 1u ( n −1) − ⋯ − β n −1u
将 y ( n ) = −an−1 y ( n−1) − an−2 y ( n−2) ⋯ − a1 y − a0 y ɺ 代入
ɺ + bn u ( n ) + bn −1u ( n −1) + ⋯ + b1u + b0 u
+ (b0 − a n −1 β n −1 − a n − 2 β n − 2 − ⋯ − a1 β 1 − a 0 β 0 )u
选择β 0 , β 1 , ⋯ , β n −1 ,使得上式中u的各阶导数项的系数 都等于0,即可解得:
β 0 = bn β 1 = bn −1 − a n −1 β 0 β 2 = bn − 2 − a n −1 β1 − a n − 2 β 0 β 3 = bn −3 − a n −1 β 2 − a n − 2 β1 − a n −3 β 0
R 1 − − ɺ x1 RC L x = 1 ɺ2 RC x y = [0 1] 1 x2
1 x1 R RC + u 1 x2 L 0 − RC −
1.2.2 力学系统状态空间描述的列写示例
6.输出方程 y ⇔ x ⇒ 代数方程 输出方程: 输出方程 u
y (t ) = g[ x(t ), u (t ), t ]
7.状态空间表达式 状态空间表达式(动态方程): {A,B,C,D} {A, 状态空间表达式
1.2线性系统的状态空间描述 线性系统的状态空间描述 实际物理系统状态空间描述建立的原则( 实际物理系统状态空间描述建立的原则 机 理分析法) 理分析法
写成矩阵形式
ɺ x1 0 x = 0 ɺ 2 x3 − 6 ɺ y = [1 0 1 0 x1 0 0 1 x 2 + 0 u − 11 − 6 x 3 3 x1 0] x 2 x3
(1). 根据具体系统结构及其研究目的,选择一定的物 ). 根据具体系统结构及其研究目的, 理量作为系统的状态变量和输出变量; 理量作为系统的状态变量和输出变量; (2). 根据对象或环节所遵循的物理或化学定律,列写 ). 根据对象或环节所遵循的物理或化学定律, 出描述变化过程的原始方程 原始方程, 出描述变化过程的原始方程,最终建立系统的状 态空间模型。 态空间模型。 1.2.1 电路系统状态空间描述的列写示例
ɺ ɺ x n = y ( n ) − β 0 u ( n ) − β 1u ( n −1) − ⋯ − β n −1u
得:y ( n ) = − a n −1 x n − a n − 2 x n −1 − ⋯ − a1 x 2 − a 0 x1
− a n −1 ( β 0 u ( n −1) + β 1u ( n − 2) + ⋯ + β n −1u )
R 1 1 ɺ x1 = − x1 − x 2 + u L L L x = 1 x ɺ 2 C 1 y = x2
R ɺ1 − L x x = 1 ɺ2 C
1 − x 1 L 1 + u L 0 x2 0
2)系统输入量中含有导数项 系统输入量中含有导数项
如果单输入—单输出系统的微分方程为:
ɺ y ( n) + an−1 y ( n−1) + ⋯+ a1 y + a0 y =
ɺ bnu ( n ) + bn −1u ( n −1) + ⋯ + b1u + b0u
一般输入量中导数项的次数小于或等于系统的次数n。为了 避免在状态方程中出现u的导数项,可以选择如下的一组状态变 量。 设 b ≠ 0 ,选取:

R ɺ x1 − L x = 1 ɺ2 C

1 1 LC x1 + u L x2 0 0
1 x1 y = 0 C x2
(3)设两个状态变量分别为 x1 =
ɺɺ = x3 + β 0 u + β 1u + β 2 u ɺɺ ɺ y ⋮
x n = y ( n −1) − β 0 u ( n −1) − β1u ( n − 2) − ⋯ − β n −1u


y ( n −1) = x n + β 0 u ( n −1) + β 1u ( n − 2 ) + ⋯ + f ,则有
相关文档
最新文档