上海市初中九年级数学拓展Ⅱ教学参考资料(含练习册答案)讲解学习

合集下载

沪教版(上海)数学九年级第二学期-27.3 (1) 垂径定理 教案

沪教版(上海)数学九年级第二学期-27.3 (1) 垂径定理  教案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯§27.3 (1)垂径定理教学目标:1、经历利用圆的轴对称性对垂径定理的探索和证明过程,掌握垂径定理;并能初步运用垂径定理解决有关的计算和证明问题;2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法;3、让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现。

教学重点:掌握垂径定理,能应用垂径定理进行简单计算或证明。

教学难点:对垂径定理的探索和证明。

教学用具:圆规,三角尺,几何画板课件,圆形纸片教学过程:一、复习引入师:什么是轴对称图形?生:把一个图形沿着某一条直线翻折,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就是它的对称轴。

师:请你判断下列哪些图形是轴对称图形?师:圆是轴对称图形吗?让我们来共同研究一下。

老师拿出事先准备好的圆形纸片,把这个圆形纸片沿着任意一条直径对折,然后观察折叠后的两个半圆有何关系?最后得出什么结论。

生:圆是轴对称图形。

师:你知道它的对称轴是什么吗?生:经过圆心的直线(它的直径)师:哪位同学说的对呢?生:对称轴是直线,而直径是线段,所以我们应该说圆的对称轴是经过圆心的直线,或者是直径所在直线。

结论:圆是轴对称图形,任意一条直径所在的直线都是它的对称轴。

观察并回答:操作:我们在圆形纸片上把刚才的折痕描绘出来,标记为CD。

在此纸片上再任意增加一条直径AB。

师:请问两条直径的位置关系是什么?生:两条直径始终是互相平分的。

师:把直径AB 向下平移,变成非直径的弦,直径CD 是否一定平分弦AB ? 生:不一定二、新课1、猜想:弦AB 在怎样情况下会被直径CD 平分?2、得出猜想:当CD ⊥AB 时,弦AB 会被直径CD 平分。

师:思考:CD 是以点O 为圆心的直径,过直径上任一点E 作弦AB ⊥CD,将圆O 沿CD 对折,比较图中的线段和弧,你能发现有哪些相等的量?(教师用电脑课件演示图中沿直径CD 对折,这条特殊直径两侧的图形能够完全重合。

上海市初中九年级数学拓展Ⅱ教学参考资料(含练习册答案)讲解学习

上海市初中九年级数学拓展Ⅱ教学参考资料(含练习册答案)讲解学习

初中数学拓展Ⅱ课本教学参考材料编者的话《数学课程标准》中安排的初中数学拓展II的内容,是定向拓展内容,提供希望在初中毕业后进入普通高中学习的学生修习。

根据《数学课程标准》编写的“初中数学拓展II”课本(试验本),用于九年级,现正在基地学校进行第一轮教学试验。

为了帮助执教老师理解课本、把握要求和开展实践研究,教材编写人员编写了本册课本的教学参考材料。

这本教学参考材料,没有经过有关部门的审查,不是正式出版的“教学参考书”。

由于编写仓促,成稿匆忙,《材料》内容难免存在错误和不足,只是考虑到新课本进行第一轮教学对参考材料的需要,所以将此很不成熟的《材料》公诸于众。

本《材料》提供执教老师在教学研究中参考使用,同时在使用中开展研究;通过对《材料》的使用和研究,发现并纠正其中的错误,弥补不足,充实内容,为编写正式的“教学参考书”打好基础。

希望这本教学参考材料对执教老师有参考作用,更期待执教老师对此材料提出宝贵意见和修改建议。

初中数学教材编写组2007年8月第一部分课本概述初中数学拓展II课本(以下简称本册课本),含“一元二次方程与二次函数”、“直线与圆”两章内容,还有配合各章内容的练习部分。

本册课本内容的确定,其依据是《上海市中小学数学课程标准(试行本)》;内容的安排,是在“二二分段,九年级分层”的框架下进行的。

初中数学内容的设计,整体上按照六、七年级和八、九年级进行分段,同时在九年级进行必要的分层处理。

在初中阶段,以全体学生必学的数学基本内容为课程内容的核心,着眼于所有学生未来发展的普遍需要,构建共同的数学基础;再以学生定向选学的数学拓展II内容,以及学生按兴趣爱好选学的数学拓展I内容和课外活动材料,适当扩充数学基础,形成具有差别性和层次性的数学,满足不同个性的学生的不同需要。

学生在六年级到九年级所学的数学基本内容中,包括“实数知识基础”、“初等代数知识基础”、“平面几何知识基础与向量代数初步知识”、“初等代数函数的基础与分析初步”、“概率与统计初步知识”。

2022年最新精品解析沪教版(上海)九年级数学第二学期第二十七章圆与正多边形重点解析试题(名师精选)

2022年最新精品解析沪教版(上海)九年级数学第二学期第二十七章圆与正多边形重点解析试题(名师精选)

九年级数学第二学期第二十七章圆与正多边形重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB 是⊙O 的直径,BD 与⊙O 相切于点B ,点C 是⊙O 上一点,连接AC 并延长,交BD 于点D ,连接OC ,BC ,若∠BOC =50°,则∠D 的度数为( )A .50°B .55°C .65°D .75°2、如图,点A ,B ,C 都在⊙O 上,连接CA ,CB ,OA ,OB .若∠AOB =140°,则∠ACB 为( )A .40°B .50°C .70°D .80°3、如图,ABC 中,90ACB ∠=︒,AC BC =,点D 是边AC 上一动点,连接BD ,以CD 为直径的圆交BD 于点E .若AB 长为4,则线段AE 长的最小值为( )A 1B .2C .D 4、如图,在圆内接五边形ABCDE 中,425C CDE E EAB ∠+∠+∠+∠=︒,则CDA ∠的度数为( )A .75︒B .65︒C .55︒D .45︒5、如图,在平面直角坐标系xOy 中,⊙O 的半径为2,与x 轴,y 轴的正半轴分别交于点A ,B ,点C(1,c ),D d ),E (e ,1),P (m ,n )均为AB 上的点(点P 不与点A ,B 重合),若m <n <,则点P 的位置为( )A .在BC 上B .在CD 上C .在DE 上D .在EA 上 6、扇形的半径扩大为原来的3倍,圆心角缩小为原来的19,那么扇形的面积( )A .不变B .面积扩大为原来的3倍C .面积扩大为原来的9倍D .面积缩小为原来的137、如图,菱形ABCD 的顶点B ,C ,D 均在⊙A 上,点E 在弧BD 上,则∠BED 的度数为( )A .90°B .120°C .135°D .150°8、已知O 的半径为5cm ,点P 到圆心O 的距离为4cm ,则点P 和圆的位置关系( )A .点在圆内B .点在圆外C .点在圆上D .无法判断9、如图,ABC 中,50ABC ∠=︒,74ACB ∠=︒,点O 是ABC 的内心.则BOC ∠等于( )A .124°B .118°C .112°D .62°10、某村东西向的废弃小路/两侧分别有一块与l 距离都为20 m 的宋代碑刻A ,B ,在小路l 上有一座亭子P . A ,P 分别位于B 的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A ,B 原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P 到湖岸的最短距离是( )A .20 mB .mC .( - 20)mD .(m第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy 中,半径为1的半圆O 上有一动点B ,点()3,0A ,ABC 为等腰直角三角形,A 为直角顶点,且C 在第一象限,则线段OC 长度的最大值为______.290°的最大扇形(阴影部分),则这个扇形的面积为____,则此扇形的圆心角等于______.3、若一个扇形的半径是18cm,且它的弧长是6cm4、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________5、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径....为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差....为0.25尺),则此斛底面的正方形的边长为________尺.三、解答题(5小题,每小题10分,共计50分)1、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接等腰直角三角形ABC.作法:如图,①作直径AB;②分别以点A, B为圆心,以大于12AB的长为半径作弧,两弧交于M点;③作直线MO交⊙O于点C,D;④连接AC,BC.所以△ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.∴AC= .∵AB 是直径,∴∠ACB = ( ) (填写推理依据) .∴△ABC 是等腰直角三角形.2、如图,在平面直角坐标系中,有抛物线23y ax bx =++,已知OA =OC =3OB ,动点P 在过A ,B ,C 三点的抛物线上.(1)求抛物线的解析式;(2)求过A ,B ,C 三点的圆的半径;(3)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标,若不存在,说明理由;3、如图,以四边形ABCD 的对角线BD 为直径作圆,圆心为O ,点A 、C 在O 上,过点A 作AE CD ⊥的延长线于点E ,已知DA 平分BDE ∠.(1)求证:AE 是O 切线;(2)若4AE =,6CD =,求O 的半径和AD 的长.4、如图1,AB 为圆O 直径,点D 为AB 下方圆上一点,点C 为弧ABD 中点,连结CD ,CA .(1)若70ABD ∠=︒,求BDC ∠的度数;(2)如图2,过点C 作CE AB ⊥于点H ,交AD 于点E ,CAD α∠=,求ACE ∠(用含α的代数式表示);(3)在(2)的条件下,若5OH =,24AD =,求线段DE 的长.5、如图,⊙O 是四边形ABCD 的外接圆,AD 为⊙O 的直径.连结BD ,若AC BD =.(1)求证:∠1=∠2.(2)当AD=BC=4时,求ABD的面积.-参考答案-一、单选题1、C【分析】首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.【详解】解:∵BD是切线,∴BD⊥AB,∴∠ABD=90°,∵∠BOC=50°,∠BOC=25°,∴∠A=12∴∠D=90°﹣∠A=65°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.2、C【分析】根据圆周角的性质求解即可.【详解】解:∵∠AOB =140°,根据同弧所对的圆周角是圆心角的一半,可得,∠ACB =70°,故选:C .【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半.3、D【分析】如图,连接,CE 由CD 为直径,证明E 在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AEAO OE 最小,再利用锐角的正弦与勾股定理分别求解,AO OE ,即可得到答案.【详解】解:如图,连接,CE 由CD 为直径,90,CED BECE 在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AE AO OE 最小,90ACB ∠=︒,AC BC =,4,AB =45,ABC BAC ∴∠=∠=︒sin 4522,2,AC BC AB OB OC OE2222210,AO10 2.AE故选D 【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键. 4、B 【分析】先利用多边的内角和得到540EAB B C CDE E ∠+∠+∠+∠+∠=︒,可计算出115B ∠=︒,然后根据圆内接四边形的性质求出CDA ∠的度数即可. 【详解】解:∵五边形ABCDE 的内角和为()52180540-⨯︒=︒, ∴540EAB B C CDE E ∠+∠+∠+∠+∠=︒, ∵425EAB C CDE E ∠+∠+∠+∠=︒, ∴540425115B ∠=︒-︒=︒,∵四边形ABCD 为O 的内接四边形, ∴180B CDA ∠+∠=︒, ∴18011565CDA ∠=︒-︒=︒.故选:B. 【点睛】本题主要考查了多边形的内角和与圆内接四边形的性质,掌握圆内接四边形的性质是解答本题的关键. 5、B 【分析】先由勾股定理确定出各点坐标,再利用m <n 判断即可. 【详解】点C 、D 、E 、P 都在AB 上,∴由勾股定理得:22212c +=,2222d +=,22212e +=,解得c =d =e故C ,D ),E 1),P (m ,n ),m <n ,且m 在AB 上,点C 的横坐标满足c c y ,点D 纵坐标满足d d x y =,∴从点D 到点C 的弧上的点满足:x y <<,故点P 在CD 上. 故选:B 【点睛】此题考查勾股定理和圆的基本性质,掌握相应的定理和性质是解答此题的关键. 6、A 【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为19n,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为2 360n rπ,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的19,∴变化后的扇形的半径为3r,圆心角为19 n,∴变化后的扇形的面积为221(3)9360360n r n rππ=,∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.7、B【分析】连接AC,根据菱形的性质得到△ABC、△ACD是等边三角形,求出∠BCD=120°,再根据圆周角定理即可求解.【详解】如图,连接AC∴AC=AB=AD∵四边形ABCD是菱形∴AB=BC=AD=CD=AC∴△ABC、△ACD是等边三角形∴∠ACB=∠ACD=60°∴∠BCD=120°∵优弧BD BD∴∠BED=∠BCD=120°故选B.【点睛】此题主要考查圆内角度求解,解题的关键是熟知菱形的性质及圆周角定理.8、A【分析】直接根据点与圆的位置关系进行解答即可.【详解】解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,∴点P在圆内.故选:A.【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.9、B【分析】根据三角形内心的性质得到∠OBC=12∠ABC=25°,∠OCB=12∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.【详解】解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=12∠ABC=12×50°=25°,∠OCB=12∠ACB=12×74°=37°,∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.故选B.【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.10、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O,过点B作BC⊥l,垂足为C,∵A,P分别位于B的西北方向和东北方向,∴∠ABC=∠PBC=∠BOC=∠BPC=45°,∴OC=CB=CP=20,∴OP=40,OB∴最小的距离PE=PO-OE m),故选D.【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.二、填空题1、1+【分析】过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据ABC为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理OE==得出CD =AE3,根据勾股定理COOD =CD 时OC 最大,OC=此时3x =解方程即可.【详解】解:过点C 作CD ⊥x 轴于D ,过B 作BE ⊥x 轴于E ,连结OB ,设OD =x , ∵点A (3,0) ∴AD =x -3,∵ABC 为等腰直角三角形, ∴AB =AC ,∠BAC =90°,∴∠BAE +∠CAD =180°-∠BAC =180°-90°=90°, ∵CD ⊥x 轴, BE ⊥x 轴, ∴∠BEA =∠ADC =90°, ∴∠ACD +∠CAD =90°, ∴∠ACD =∠BAE , 在△BAE 和△ACD 中,BEA ADC BAE ACD BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△ACD (AAS ), ∴BE =AD =x -3,EA =DC ,在Rt△EBO 中,OB =1,BE = x -3,根据勾股定理OE ==∴EA =OE +OA 3,∴CD =AE 3,∴CO当OD =CD 时OC 最大,OC ,此时3x =,∴()()22313x x -=--,∴()2132x -=,∴32x -=±,∴13x =,23x =-,∴线段OC 31⎛=+=+ ⎝⎭故答案为:1+本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键. 2、π 【分析】如图(见解析),连接BC ,先根据圆周角定理可得BC 是圆形纸片的直径,从而可得BC =用勾股定理可求出AB 的长,然后利用扇形的面积公式即可得. 【详解】解:如图,连接BC ,由题意得:,90AB AC BAC =∠=︒,BC ∴是圆形纸片的直径,BC ∴=在Rt ABC 中,BC = 解得2AB =,则这个扇形(阴影部分)的面积为2902360ππ⨯=, 故答案为:π. 【点睛】本题考查了圆周角定理、扇形的面积等知识点,熟练掌握扇形的面积公式是解题关键.【分析】 根据=180n rl π变形为n =180l rπ计算即可. 【详解】∵扇形的半径是18cm ,且它的弧长是6cm π,且=180n rl π ∴n =180l rπ=180618ππ⨯⨯=60°, 故答案为:60°. 【点睛】本题考查了弧长公式,灵活进行弧长公式的变形计算是解题的关键.4、 【分析】122S l r rl =⋅=ππ即可得出圆锥侧面积为.【详解】∵ABC 是一个圆锥在某平面上的正投影 ∴ABC 为等腰三角形 ∵AD ⊥BC ∴122CD BD BC ===在Rt ADC 中有A C =即AC由圆锥侧面积公式有2S rl ==⨯=ππ.故答案为:。

2021-2022学年沪教版(上海)九年级数学第二学期第二十七章圆与正多边形重点解析练习题

2021-2022学年沪教版(上海)九年级数学第二学期第二十七章圆与正多边形重点解析练习题

九年级数学第二学期第二十七章圆与正多边形重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是⊙O的直径,弦CD⊥AB于E,若OA=2,∠B=60°,则CD的长为()A B.C.D.42、直角三角形△PAB一条边为AB,另一顶点P在直线l上,下面是三个学生做直角三角形的过程以及自认为正确的最终结论:甲:过点A作l的垂线,垂足为P1;过点B作l的垂线,垂足为P2;作AP3⊥BP3.故符合题意的点P 有三处;乙:以AB为直径作圆O,⊙O与交l于两点P1、P2,故符合题意的点P有两处;丙:过点A作P1A⊥AB,垂足为A,交l于点P1;过点B作P2B⊥AB,垂足为B,交l于点P2.故符合题意的点P有两处.下列说法正确的是()A .甲的作法和结论均正确B .乙、丙的作法和结论合在一起才正确C .甲、乙、丙的作法和结论合在一起才正确D .丙的作法和结论均正确3、如图,AB 是⊙O 的直径,点C 是⊙O 上一点,若∠BAC =30°,BC =2,则AB 的长为( )A .4B .6C .8D .104、如图,O 的半径为10cm ,AB 是O 的弦,OC AB ⊥于D ,交O 于点C ,且CD =4cm ,弦AB 的长为( )A .16cmB .12cmC .10cmD .8cm5、如图,ABC 内接于⊙O ,110,40ABC BCA ∠=︒∠=︒,BD 为⊙O 的直径,且BD =2,则DC =( )C DA.1 B.126、如图,正方形ABCD内接于⊙O,点P在AB上,则下列角中可确定大小的是()A.∠PCB B.∠PBC C.∠BPC D.∠PBA7、如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为()A.45°B.30°C.20°D.15°8、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此时木板与桌面成30°角,则点A运动到A2时的路径长为()A .10B .4πC .72πD .529、如图,在Rt△ABC 中,90BAC ∠=︒,30B ∠=︒,3AB =,以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A ,D ,则阴影部分的面积为( )A 3πB 3π- C 23π-D .23π10、如图,AB 是⊙O 的直径,弦CD AB ⊥,30CDB ∠=︒,CD =( )A .4πB .2πC .πD .23π 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB 是O 的直径,AC 是O 的切线,切点为A ,BC 交O 于点D ,点E 是AC 的中点.若O 的半径为2,50B ∠=, 4.8AC =,则阴影部分的面积为________.2、如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OAB ∠=︒,3PA =,则AB 的长为______.3、如图,点C 是半圆AB 上一动点,以BC 为边作正方形BCDE (使BC 在正方形内),连OE ,若AB =4cm ,则OE 的最大值为_____cm .4、如图,正方形ABCD 内接于⊙O ,点P 在AB 上,则∠BPC 的度数为_____.5、在△ABC 中,AB = AC ,以AB 为直径的圆O 交BC 边于点D .要使得圆O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > 12AB ;④12AB < DE . 三、解答题(5小题,每小题10分,共计50分)1、如图,将一个直径AB 等于12厘米的半圆绕着点A 逆时针旋转60°后,点B 落到了点C 的位置,半圆扫过部分的图形如阴影部分所示.(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π) 2、综合与实践“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则EB ,EO 就把MEN ∠三等分了. 为了说明这一方法的正确性,需要对其进行证明.独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.已知:如图2,点A ,B ,O ,C 在同一直线上,EB AC ⊥,垂足为点B ,________,EN 切半圆O 于F .求证:________________.探究解决:(2)请完成证明过程.应用实践:(3)若半圆O 的直径为12cm ,45MEN ︒∠=,求BE 的长度.3、如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,F 是AD 延长线上一点,连接CD ,CF ,且:CF 是⊙O 的切线.(1)求证:∠DCF =∠CAD .(2)探究线段CF ,FD ,FA 的数量关系并说明理由; (3)若cos B 35=,AD =2,求FD 的长.4、在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于r (r 为常数),到点O 的距离等于r 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,C D .求证:AD =C D .5、如图,在Rt ABC △中,90ACB ∠=︒,O 为AC 上一点,以点O 为圆心,OC 为半径的圆恰好与AB 相切,切点为D ,O 与AC 的另一个交点为E .(1)求证:BO 平分ABC ∠;(2)若30A ∠=︒,1AE =,求BO 的长.-参考答案-一、单选题 1、B 【分析】先证明OCB 是等边三角形,再证明,CE DE =求解sin 603,CE CO 从而可得答案.【详解】解:2,60,OA OB OC B OCB ∴是等边三角形,60,BOC,AB CD ∴⊥3,sin 6023,CE DE CE CO22 3.CD CE故选B 【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明OCD 是等边三角形是解本题的关键. 2、B 【分析】根据三个学生的作法作出图形即可判断 【详解】解:甲的作图如下,12,ABP ABP 不是直角三角形,故甲的不正确乙:如图,根据直径所对的圆周角是直角可知,乙的作法正确,但不完整, 丙的作法如下,丙的作法也正确,但不完整, 乙、丙的作法和结论合在一起才正确 故选B 【点睛】本题考查了直角三角形的判定,直径所对的圆周角是直角,根据题意作出图形是解题的关键. 3、A 【分析】根据直径所对的圆角为直角,可得90C ∠=︒ ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解. 【详解】解:∵AB 是⊙O 的直径,∴90C ∠=︒ ,∵∠BAC =30°,BC =2,∴24AB BC ==.故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.4、A【分析】如图所示,连接OA ,由垂径定理得到AB =2AD ,先求出6cm OD OC CD =-=,即可利用勾股定理求出8cm AD ,即可得到答案.【详解】解:如图所示,连接OA ,∵半径OC ⊥AB ,∴AB =2AD ,∠ODA =90°,∵4cm CD =,∴6cm OD OC CD =-=,∴8cm AD ==,∴216cm AB AD ==,故选:A .【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键.5、C【分析】根据三角形内角和定理求得A ∠,根据同弧所对的圆周角相等可得30D A ∠=∠=︒,根据直径所对的圆周角是直角,含30度角的直角三角形的性质,勾股定理即可求得DC 的长【详解】 解:110,40ABC BCA ∠=︒∠=︒30A ∴∠=︒BC BC =∴30D A ∠=∠=︒ BD 为⊙O 的直径,90BCD ∴∠=︒在Rt BCD ,30D ∠=︒, BD =2, ∴12BC BD ==1DC ∴故选C【点睛】本题考查了三角形内角和定理,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,含30度角的直角三角形的性质,求得30D A ∠=∠=︒是解题的关键.6、C【分析】由题意根据正方形的性质得到BC 弧所对的圆心角为90°,则∠BOC =90°,然后根据圆周角定理进行分析求解.【详解】解:连接OB 、OC ,如图,∵正方形ABCD 内接于⊙O ,∴BC 所对的圆心角为90°,∴∠BOC =90°,∴∠BPC =12∠BOC =45°.故选:C .【点睛】本题考查圆周角定理和正方形的性质,确定BC 弧所对的圆心角为90°是解题的关键.7、B【分析】连接O 1O 2,AO 2,O 1B ,可得△AO 2O 1是等边三角形,再根据圆周角定理即可解答.解:连接O 1O 2,AO 2,O 1B ,∵O 1B = O 1A ∴112112O AB O BA AO O ∠=∠=∠∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO 2O 1是等边三角形,∴∠AO 2O 1=60°,∴∠O 1AB =12∠AO 2O 11602=⨯︒ =30°. 故选:B .【点睛】此题主要考查了相交两圆的性质以及等边三角形的判定与性质,得出△AO 2O 1是等边三角形是解题关键.8、C【分析】根据题意可得:第一次转动的路径是以点B 为圆心,AB 长为半径的弧长,此时圆心角190ABA ∠=︒ ,第二次转动的路径是以点C 为圆心,A 1C 长为半径的弧长,此时圆心角21903060A CA ∠=︒-︒=︒ ,再由弧长公式,即可求解.【详解】根据题意得:15AB A B === ,123AC A C == , 第一次转动的路径是以点B 为圆心,AB 长为半径的弧长,此时圆心角190ABA ∠=︒ , ∴190551802AA l ππ⨯== , 第二次转动的路径是以点C 为圆心,A 1C 长为半径的弧长,此时圆心角21903060A CA ∠=︒-︒=︒ , ∴21603180A A l ππ⨯== , ∴点A 运动到A 2时的路径长为1215722AA A A l l πππ+=+= . 故选:C【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长公式是解题的关键.9、A【分析】连结OC ,根据切线长性质DC =AC ,OC 平分∠ACD ,求出∠OCD =∠OCA =12ACD ∠=30°,利用在Rt△ABC中,AC =AB tan B =Rt△AOC 中,∠ACO =30°,AO =AC 1=,利用三角形面积公式求出12AOC S OA AC ∆=⋅=,12DOC S OD DC ∆=⋅=212011==3603OAD S ππ⨯扇形,利用割补法求即可.解:连结OC ,∵以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A , D ,∴DC =AC ,OC 平分∠ACD ,∵90BAC ∠=︒,30B ∠=︒,∴∠ACD =90°-∠B =60°,∴∠OCD =∠OCA =12ACD ∠=30°,在Rt△ABC 中,AC =AB tan B =在Rt△AOC 中,∠ACO =30°,AO =AC 1=,∴OD =OA =1,DC =AC∴11122AOC S OA AC ∆=⋅=⨯=11122DOC S OD DC ∆=⋅=⨯= ∵∠DOC =360°-∠OAC -∠ACD -∠ODC =360°-90°-90°-60°=120°, ∴212011==3603OAD S ππ⨯扇形,S 阴影=1133AOC DOC OAD S S S ππ∆∆+-扇形. 故选择A .本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.10、D【分析】根据垂径定理求得CE =ED COE =60°.然后通过解直角三角形求得线段OC ,然后证明△OCE ≌△BDE ,得到=DEB CEO S S △△求出扇形COB 面积,即可得出答案.【详解】解:设AB 与CD 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,CD∴CE =12CD CEO =∠DEB =90°,∵∠CDB =30°,∴∠COB =2∠CDB =60°,∴∠OCE =30°, ∴12OE OC =, ∴1122BE OE OB OC ===,又∵222OC CE OE =+,即22134OC OC =+ ∴2OC =,在△OCE 和△BDE 中,OCE BDE CEO DEB OE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△BDE (AAS ),∴=DEB CEO S S △△∴阴影部分的面积S =S 扇形COB =260223603ππ⨯=, 故选D .【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB 的面积是解此题的关键.二、填空题1、241059π- 【分析】根据题意先得出△AOE ≌△DOE ,进而计算出∠AOD =2∠B =100°,利用四边形ODEA 的面积减去扇形的面积计算图中阴影部分的面积.【详解】解:连接EO 、DO ,∵点E 是AC 的中点,O 点为AB 的中点,∴OE ∥BC ,∴∠AOE =∠B ,∠EOD =∠BDO ,∵OB =OD ,∴∠B =∠BDO ,∴∠AOE =∠EOD ,在△AOE 和△DOE 中OA OD AOE DOE OE OE =⎧⎪∠=∠⎨⎪=⎩, ∴△AOE ≌△DOE ,∵点E 是AC 的中点,∴AE =12AC =2.4,∵∠AOD =2∠B =2×50°=100°, ∴图中阴影部分的面积=2•12×2×2.4-21002360π⋅⋅=241059π-. 故答案为:241059π-. 【点睛】本题考查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系. 2、3【分析】由切线长定理和30OAB ∠=︒,可得PAB ∆为等边三角形,则AB PA =.【详解】解:连接,OA OP ,如下图:PA ,PB 分别为O 的切线,PA PB ∴=,PAB ∴为等腰三角形,30OAB ∠=︒,60PAB ∴∠=︒,PAB ∴∆为等边三角形,AB PA ∴=,3PA =,3AB ∴=.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.3、2)【分析】如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM ,通过△OCD ≌△OBE (SAS ),可得OE =OD ,通过旋转观察如图可知当DO ⊥AB 时,DO 最长,此时OE 最长,设DO 与⊙O 交于点M ,连接CM ,先证明△MED ≌△MEB ,得MD =BM .再利用勾股定理计算即可.【详解】解:如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM ,∵四边形BCDE 是正方形,∴∠BCD =∠CBE =90°,CD =BC =BE =DE ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠BCD +∠OCB =∠CBE +∠OBC ,即∠OCD =∠OBE ,∴△OCD ≌△OBE (SAS ),∴OE =OD ,根据旋转的性质,观察图形可知当DO ⊥AB 时,DO 最长,即OE 最长,∵∠MCB =12∠MOB =12×90°=45°,∴∠DCM =∠BCM =45°,∵四边形BCDE 是正方形,∴C 、M 、E 共线,∠DEM =∠BEM ,在△EMD 和△EMB 中,DE BC MED MEB WE WEE =⎧⎪∠=∠⎨⎪=⎩,∴△MED≌△MEB(SAS),∴DM=BM=cm),∴OD的最大值=,即OE的最大值=+2;故答案为:()cm.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.4、45°度【分析】连接OB、OC,根据正方形的性质得到∠BOC的度数,利用圆周角与圆心角的关系得到答案.【详解】解:连接OB、OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC =1452BOC ∠=︒,故答案为:45°.【点睛】此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键.5、②④【分析】将所给四个条件逐一判断即可得出结论.【详解】解:在ΔABC 中,AB AC =①当∠BAC > 60°时,若90BAC ∠=︒时,点E 与点A 重合,不符合题意,故①不满足;②当∠ABC 45≤︒时,点E 与点A 重合,不符合题意,当∠ABC 60>︒时,点E 与点O 不关于AD 对称,当4560ABC ︒<∠≤︒时,点E 关于直线AD 的对称点在线段OA 上,所以,当45° < ∠ABC < 60°时,点E 关于直线AD 的对称点在线段OA 上,故②满足条件;③当12AB BD AB ≤<时,点E 关于直线AD 的对称点在线段OA 上,故③不满足条件;④当12AB < DE 时,点E 关于直线AD 的对称点在线段OA 上,故④满足条件; 所以,要使得O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或12AB < DE 故答案为②④【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.三、解答题1、(1)16π(2)24π【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC 的长,利用弧长公式可求解;(2)由面积的和差关系可求解.(1) 解:阴影部分的周长=2×12×2π×6+6012180π⨯=16π; (2)解:∵阴影部分的面积=S 半圆+S 扇形BAC ﹣S 半圆=S 扇形BAC , ∴阴影部分的面积=60144360π⨯⨯=24π. 答:阴影部分的周长为16π,阴影部分的面积为24π.【点睛】本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n °,扇形的半径为r ,则扇形的弧长l 的计算公式为:180n r l π=,扇形的面积公式:2360n r S π=扇.2、(1)AB BO =,EB ,EO 将MEN ∠三等分;(2)见解析;(3)(12+【分析】(1)根据题意即可得;(2)先证明ABE ∆与OBE ∆全等,然后根据全等的性质可得12∠=∠,再由圆的切线的性质可得23∠∠=,可得三个角相等,即可证明结论;(3)连OF ,延长BC 与EN 相交于点H ,由(2)结论可得12315︒∠=∠=∠=,再由切线的性质60︒∠=DHO ,30FOH ︒∠=,然后利用勾股定理及线段间的数量关系可得(6cm =+BH ,最后利用相似三角形的判定和性质求解即可得.【详解】解:(1)AB BO =,EB ,EO 将MEN ∠三等分,故答案为:AB BO =;EB ,EO 将MEN ∠三等分,(2)证明:在ABE ∆与OBE ∆中,90AB OB BE BE ABE OBE =⎧⎪=⎨⎪∠=∠=︒⎩, ()ABE OBE SAS ∴∆∆≌,12∠∠∴=.BE OB ⊥,BE ∴是O 的切线. BE 、EN 都是O 的切线,23∴∠=∠,123∴∠=∠=∠,EB ∴,EO 将MEN ∠三等分.(3)如图,连OF ,延长BC 与EN 相交于点H ,由(2),知12315︒∠=∠=∠=. EH 是O 的切线,90HFO ︒∴∠=,60DHO ︒=∴∠,30FOH ︒∠=.∵半径6cm OF =,∴由勾股定理得,在Rt FOH ∆中,FH =,OH =,(6cm BH BO OH ∴=+=+. ∵BHE FHO ∠=∠,90EBH HFO ∠=∠=︒,∴∆∆∽BEH FOH ,BE BH FO FH ∴=,即6BE =(12BE ∴=+.【点睛】题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.3、(1)见解析;(2)2·FC FD FA =,见解析;(3)187【分析】(1)连接OC ,根据直径所对的圆周角为直角及切线的性质和各角之间的等量关系即可证明;(2)根据相似三角形的判定定理可得ΔΔΔΔ~ΔΔΔΔ,依据相似三角形的性质:对应边成比例即可得出;(3)根据同弧所对的圆周角相等可得:B ADC ∠=∠,3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,利用锐角三角函数可得65CD =,由勾股定理确定85AC =,由此得出34CD AC =,即为(2)中的相似比,设3FD x =,则4FC x =,32AF x =+,将其代入(2)中结论求解即可.【详解】解:(1)连接OC ,如图所示:∵AD 为O 直径,∴90ACD ∠=︒,90CAD ADC ∠+∠=︒,∵CF 为O 的切线,∴90OCF ∠=︒,即90OCD DCF ∠+∠=︒,∵OC OD =,∴OCD ADC ∠=∠,∴DCF CAD ∠=∠;(2)在ΔΔΔΔ与AFC ∆中,∵DCF CAD ∠=∠,F F ∠=∠,∴ΔΔΔΔ~ΔΔΔΔ, ∴FC FD AF FC=,∴2·FC AF FD =;(3)∵B ADC ∠=∠, ∴3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,2AD =,3cos 5CD ADC AD ∠==, ∴6·cos 5CD AD ADC =∠=,∴85AC ==, ∴34CD AC =, 由(2)结论可得:ΔΔΔΔ~ΔΔΔΔ, ∴34FC FD CD AF FC AC ===, 设3FD x =,则4FC x =,32AF x =+,将其代入结论(2)可得:()()24332x x x =+, 解得:67x =或0x =(舍去), ∴1837FD x ==. 【点睛】题目主要考查圆周角定理、相似三角形的判定和性质、锐角三角函数解三角形、勾股定理等,理解题意,综合运用这些知识点是解题关键.4、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:∵BD 是圆周角ABC 的角平分线,∴∠ABD =∠CBD ,∴AD CD =,∴AD =CD .【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.5、(1)见解析;(2)2【分析】(1)连接OD ,由O 与AB 相切得90ODB ∠=︒,由HL 定理证明Rt BDO Rt BCO ≅由全等三角形的性质得DBO CBO ∠=∠,即可得证;(2)设O 的半径为x ,则OD OE OC x ===,在Rt ADO 中,得出关系式求出x ,可得出AC 的长,在Rt ACB 中,由正切值求出BC ,在Rt BCO △中,由勾股定理求出BO 即可.【详解】(1)如图,连接OD ,∵O 与AB 相切,∴90ODB ∠=︒,在Rt BDO △与Rt BCO △中,DO CO BO BO =⎧⎨=⎩, ∴()Rt BDO Rt BCO HL ≅,∴DBO CBO ∠=∠,∴BO 平分ABC ∠;(2)设O 的半径为x ,则OD OE OC x ===, 在Rt ADO 中,30A ∠=︒,1AE =,∴21x x =+,解得:1x =,∴1113AC =++=,在Rt ACB 中,tan BC A AC =,即tan 303BC AC =⋅︒==在Rt BCO △中,2BO ===.【点睛】本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.。

2022年精品解析沪教版(上海)九年级数学第二学期第二十八章统计初步重点解析练习题(含详解)

2022年精品解析沪教版(上海)九年级数学第二学期第二十八章统计初步重点解析练习题(含详解)

九年级数学第二学期第二十八章统计初步重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是92分,方差分别是20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,则这5次测试成绩最稳定的是( )A .甲B .乙C .丙D .丁2、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行了初步测试,测试成绩如表:如果将学历、经验和工作态度三项得分依次按30%,30%,40%的比例确定各人的最终得分,那么最终得分最高的是( )A.甲B.乙C.丙D.丁3、下列说法中正确的是()A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本C.为了了解全市中学生的睡眠情况,应该采用普查的方式D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是2004、下列调查中,最适合采用全面调查(普查)方式的是()A.检测生产的鞋底能承受的弯折次数B.了解某批扫地机器人平均使用时长C.选出短跑最快的学生参加全市比赛D.了解某省初一学生周体育锻炼时长5、下列说法中正确的个数是()个.①a表示负数;②若|x|=x,则x为正数;③单项式229xyπ-的系数是29-;④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;⑤了解全市中小学生每天的零花钱适合抽样调查;⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.A.1 B.2 C.3 D.4 6、下列命题正确的是()A.数轴上的每一个点都表示一个有理数B .甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则乙的成绩更稳定C .三角形的一个外角大于任意一个内角D .在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称7、下列调查中,最适合采用全面调查(普查)方式的是( )A .对渝北区初中学生对防护新冠肺炎知识的了解程度的调查B .对“神州十三号”飞船零部件安全性的检查C .对某品牌手机电池待机时间的调查D .对中央电视台2021年春节联欢晚会满意度的调查8、小颖同学参加学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为86分、90分、80分,若这三项依次按照50%,40%,10%的百分比确定成绩,则她的成绩为( )A .84分B .85分C .86分D .87分9、下列调查中,最适合采用抽样调查的是( )A .调查一批防疫口罩的质量B .调查某校九年级学生的视力C .对乘坐某班次飞机的乘客进行安检D .国务院于2020年11月1日开展的第七次全国人口调查10、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )A.3,3 B.3,7 C.2,7 D.7,3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从2022年起长沙市学校体育中考增加素质类选测项目:立定跳远和1分钟跳绳.小熙选择了1分钟跳绳项目,她10次跳绳训练的成绩为140,155,142,155,166,167,166,170,180,176,这组数据的中位数是________.2、小明某学期的数学平时成绩80分,期中考试90分,期末考试86分,若计算学期总评成绩的方法如,则小明总评成绩是________分.下:平时:期中:期末2:3:53、若多项式5x2+17x﹣12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a,b,c的中位数是_____4、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.5、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:(1)全班同学最感兴趣的课外活动项目是______;(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.三、解答题(5小题,每小题10分,共计50分)1、为了了解我校学生对英语单词掌握的情况,现对全校学生进行英语百词测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;(3)若我校学生有1800人,请你估计此次测试中,全校达标的学生有多少人?2、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为,图中的a值为;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?3、由重庆市教育委员会主办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,补全条形统计图;(2)各组得分的中位数是分,众数是分;(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?4、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表:填空:a=,b=,c=;(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.5、某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表:(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为______分、_______分.(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的最后成绩,若按此成绩在甲、乙两人中录用高分的一个,谁将被录用?-参考答案-一、单选题1、D【分析】根据方差越大,则数据的离散程度越大,稳定性也越小;反之,则数据的离散程度越小,稳定性越好,进而分析即可.解:∵20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,∴S 丁2<S 丙2<S 乙2<S 甲2,∴成绩最稳定的是丁.故选:D .【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.2、A【分析】根据图表数据利用计算加权平均数的方法直接求出甲、乙、丙、丁四名应聘者的加权平均数,两者进行比较即可得出答案.【详解】解:甲的最终得分:8×30%+6×30%+7×40%=7,乙的最终得分:9×30%+4×30%+7×40%=6.7,丙的最终得分:7×30%+8×30%+6×40%=6.9,丁的最终得分:6×30%+8×30%+5×40%=6.2,∴甲>丙>乙>丁,故选A .【点睛】本题考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.3、D根据全面调查、抽样调查、样本和样本容量判断即可.【详解】A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A 错误;B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;C、∵全市中学生人数太多,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,故D正确;故选:D【点睛】本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.4、C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、B【分析】直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.【详解】解:①a表示一个正数、0或者负数,故原说法不正确;②若|x|=x,则x为正数或0,故原说法不正确;③单项式﹣229xyπ的系数是﹣29π,故原说法不正确;④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.正确的个数为2个,故选:B.【点睛】本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.6、D【分析】根据数轴上的点与实数一一对应即可判断A ;根据平均数相同的情形下,方差越小,成绩越稳定即可判断B ;根据三角形的外角与内角的关系即可判断C ;根据关于x 轴对称的点的坐标特征即可判断D【详解】A. 数轴上的每一个点都表示一个实数,故该选项不正确,不符合题意;B. 甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则甲的成绩更稳定,故该选项不正确,不符合题意;C. 三角形的一个外角不一定大于任意一个内角,故该选项不正确,不符合题意;D. 在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称,故该选项正确,符合题意;故选D【点睛】本题考查了实数与数轴,方差的意义,三角形的外角的性质,关于x 轴对称的点的坐标特征,掌握以上知识是解题的关键.7、B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A 、对渝北区初中学生对防护新冠肺炎知识的了解程度的调查,适合采用抽样调查方式,故本选项不符合题意;B 、对“神州十三号”飞船零部件安全性的检查,适合采用全面调查(普查)方式,故本选项符合题意;C 、对某品牌手机电池待机时间的调查,适合采用抽样调查方式,故本选项不符合题意;D 、对中央电视台2021年春节联欢晚会满意度的调查,适合采用抽样调查方式,故本选项不符合题意;故选:B【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:根据题意得:86×50%+90×40%+80×10%=43+36+8=87(分).故选:D.【点睛】本题考查的是加权平均数的求法,本题易出现的错误是求86,90,80这三个数的算术平均数,对平均数的理解不正确.9、A【分析】根据抽样调查和普查的定义进行求解即可.【详解】解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、A【分析】根据众数、中位数的定义解答.【详解】解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,故选:A.【点睛】此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.二、填空题1、166【分析】把10个数据按从小到大的顺序排列后,取中间两数的平均数即可.【详解】把10个数据按从小到大的顺序排列为:140,142,155, 155,166,166,167,170,176,180,故这组数据的中位数是1661661662+=, 故答案为:166【点睛】 此题考查了中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、86【分析】利用加权平均数计算即可.【详解】 总评成绩23580908686101010=⨯+⨯+⨯=(分) 故答案为:86.【点睛】本题考查加权平均数,掌握加权平均数的定义是解答本题的关键.3、4【分析】首先利用十字交乘法将5x 2+17x -12因式分解,继而求得a ,b ,c 的值.【详解】利用十字交乘法将5x 2+17x -12因式分解,可得:5x 2+17x -12=(x +4)(5x -3)=(x +a )(bx +c ).∴4,5,3a b c ===-,∵453-、、的中位数是4∴a,b,c的中位数是4故答案为:4.【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键.4、乙【分析】分别求出两人的成绩的加权平均数,即可求解.【详解】解:甲候选人的最终成绩为:329085883232⨯+⨯=++,乙候选人的最终成绩为:329580893232⨯+⨯=++,∵8889<,∴乙将被录取.故答案为:乙【点睛】本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.5、体育运动 10 20%【分析】(1)从统计表中直接通过比较即可得到.(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.【详解】解:从统计表分析人数可得到结论.由表可得:(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=20%.故答案为:(1)体育运动;(2)10,20%【点睛】本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.三、解答题1、(1)120,统计图补充见详解;(2)96;(3)1440人.【分析】(1)用不合格人数24除以占比20%即可求出抽取人数未120人,用1减去优秀占比和不合格占比即可求出一般占比,用120乘以优秀占比50%即可求出优秀人数,再补充两幅统计图即可;(2)用120乘以优秀与一般占比之和,即可求出抽取学生中达标人数;(3)用1800乘以优秀与一般占比之和,即可估算出全校达标学生数.【详解】解:(1)24÷20%=120(人),1-50%-20%=30%,120×50%=60(人),故答案为:120,统计图补充如图:;(2)120×(50%+30%)=96(人),故答案为:96;(3)1800×(50%+30%)=1440(人),答:此次测试中,全校达标的人数约为1440人.【点睛】本题考查了扇形统计图与条形统计图,用样本估计总体等知识,根据两幅统计图提供的公共信息得到样本容量是解题关键.2、(1)100,18;(2)见解析;(3)1.5,1.5,1.32(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为18%,400乘以18%即可求得.【详解】÷=(人);(1)总人数为:3030%10018⨯=100%18%100故答案为:100,18---=(人)(2)每天平均课外阅读时间为1.5小时的人数为:10012301840补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为()10.512130 1.540182 1.32100⨯⨯+⨯+⨯+⨯=; (4)40018%72⨯=(人)∴估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有72人【点睛】本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.3、(1)25,图见详解;(2)6.5;6;(3)12【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】解:(1)1050%20÷=(组),2023105---=(组),=⨯=5%100%25%20m ,统计图如下:(2)∵8分这一组的组数为5, ∴各组得分的中位数是()176 6.52⨯+=,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,21201220⨯=(组), ∴该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.4、(1)7,7.5,1.2;(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.【详解】解:(1)由频数直方图可得:甲的成绩如下:5,6,6,7,7,7,7,8,8,9,其中7环出现了4次,所以众数是7a =环,7x =甲环()()()()()222221572674772879710c ⎡⎤∴=-+⨯-+⨯-+⨯-+-⎣⎦ 1=12=1.2.10⨯ 由折线统计图可得:按从小到大排序为:3,4,6,7,7,8,8,8,9,10,所以中位数为:7+8=7.52b =. 故答案为:7,7.5,1.2;(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.5、(1)84;85;(2)甲将被录用.【分析】(1)由题意根据平均数的计算公式分别进行计算即可;(2)由题意根据加权平均数的计算公式分别进行解答即可.【详解】解:(1)甲的平均成绩为(93+86+73)÷3=84(分),乙的平均成绩为(95+81+79)÷3=85(分).(2)依题意,得:甲的成绩为:93386573285.5352⨯+⨯+⨯=++(分), 乙的成绩为:95381579284.8352⨯+⨯+⨯=++(分), ∵85.5>84.8,∴甲将被录用.【点睛】本题考查加权平均数和算术平均数的知识,注意掌握利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。

2023上海16区九年级二模数学函数应用及答案

2023上海16区九年级二模数学函数应用及答案

第1页共16页如果函数12y x m =+的图像经过第一、三、四象限,那么m 的取值范围是()(A)0m >;(B)0m ≥;(C)0m <;(D)0m ≤.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B对应的实数分别是a 、b ,下列结论一定成立的是()(A)0a b +<;(B)0b a -<;(C)22a b ->-;(D)a b >.第3题图一次函数b kx y +=(k ≠0)的图像经过第一、二、三象限,它的解析式可以是()(A)1+=x y ;(B)1y x =-;(C)1y x =-+;(D)1y x =--.下列函数图像中,可能是反比例函数xy 6=的图像的是()(A)(B)(C)(D)已知正比例函数(3)y a x =-的图像经过第二、四象限,那么a 的取值范围是()A.3a >;B.3a <;C.3a >-;D.3a <-.一次函数23y x =-+的图像不经过...()(A)第一象限;(B)第二象限;(C)第三象限;(D)第四象限.页已知函数kxy=(0≠k,k为常数)的函数值y随x值的增大而减小,那么这个函数图像可能经过的点是().(A)(0.5,1);(B)(2,1);(C)(2-,4);(D)(2-,2-).如果点1(2,)y-、2(1,)y-、3(2,)y在反比例函数(0)ky kx=<的图像上,那么()(A)123y y y>>;(B)213y y y>>;(C)312y y y>>;(D)321y y y>>.下列函数中,y的值随自变量x的值增大而增大的是()(A)2xy=;(B)2xy=-;(C)2yx=;(D)2yx=-.某种型号油电混合动力汽车计划从甲地开往乙地,如果纯用电行驶,则电费为25元,如果纯燃油行驶,则燃油费为75元.已知每行驶1千米,纯燃油费用比纯用电费用多0.6元.如果设每行驶1千米纯用电的费用为x元,那么下列方程正确的是()(A)75250.6x x=-;(B)75250.6x x=-;(C)75250.6x x=+;(D)75250.6x x=+.在研究反比例函数的图像时,小明想通过列表、描点的方法画出反比例函数的图像,但是在作图时,小明发现计算有错误,四个点中有一个不在该函数图像上,那么这个点是()x (2)1212...y...-14-2-1...(A)(-2,-1);(B)(-12,4);(C)(1,-2);(D)(2,-1).在平面直角坐标系中,如果把抛物线22=xy向下平移3个单位得到一条新抛物线,那么下列关于这两条抛物线的描述中不正确的是()(A)开口方向相同;(B)对称轴相同;第2页共16(C)顶点的横坐标相同;(D)顶点的纵坐标相同.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x=-,其图像经过()(A)第一、二象限;(B)第三、四象限;(C)第一、三象限;(D)第二、四象限.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(﹣2,2);乙:函数图像经过第四象限;丙:当x>0时,y随x的增大而增大.则这个函数表达式可能是()(A)y x=-(B)4y x=+(C)212y x=(D)4yx=-已知抛物线)0(2≠++=acbxaxy经过点),2(tA,),3(tB,)2,4(C,那么cba++的值是().(A)2;(B)3;(C)4;(D)t.冬季某日中午12时的气温是3℃,经过10小时后气温下降8℃,那么该时刻的气温是℃.根据电影发行方的数据,电影《满江红》截至2023年3月17日,以4535000000元的票房高居春节档前列,数据4535000000用科学记数法表示为________.已知1纳米000000001.0=米,那么5.2纳米用科学记数法表示为米.如果一个二次函数的图像顶点是原点,且它经过平移后能与221y x x=-+-的图像重合,那么这个二次函数的解析式是.已知抛物线2y x bx c=++的对称轴为直线4x=,点A(1,y1)、B(3,y2)都在该抛物线上,那么y1y2.(填“”或“”或“”).如图2,已知点A(-1,2),联结OA,将线段OA绕点O顺时针旋转90°得到线段OB,如果点B在反比例函数(0)ky xx=>的图像上,那么k的值是.第3页共16页第4页共16页图2AO Byx如果正比例函数kx y =(k 是常数,k ≠0)的图像经过点(4,-1),那么y的值随x的增大而.(填“增大”或“减小”)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度的近视眼镜镜片的焦距为0.25米,那么眼镜度数y关于镜片焦距x的函数解析式是.如果反比例函数xa y 1-=的图像经过点),(21-,那么这个反比例函数的解析式为.点A (2-,5)在反比例函数kyx=的图像上,那么k=.如果抛物线32-=axy的顶点是它的最高点,那么a的取值范围是.在平面直角坐标系中,如果点),3(xx A-在第二象限,那么x的取值范围是.抛物线22y x =-在y 轴的左侧部分,y 的值随着x的值增大而.(填“增大”或“减小”)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.如果函数k x y +=2的图像向左平移2个单位后经过原点,那么=k .页抛物线1212+-=xy在y轴的右侧呈趋势(填“上升”或者“下降”).已知一个反比例函数图像经过点P(2,3)-,则该反比例函数的图像在各自的象限内,函数值y随自变量x的值逐渐增大而.(填“增大”或“减小”)已知某反比例函数的图像在其所在的每个象限内,y的值随x 的值增大而增大,那么这个反比例函数可以是.(只需写出一个)已知点),(11yxA和点),(22yxB在反比例函数1yx=的图像上,那么当210xx<<时,1y2y.(填“>”、“=”、“<”)将抛物线2=y x向左平移1个单位,所得新抛物线的表达式为.已知一次函数的图像经过点(1,3),且与直线26y x=+平行,那么这个一次函数的解析式是.已知一次函数3y=x+m的图像经过点(-1,1),那么m=.已知点(1,2)M-和点N都在抛物线22y x x c=-+上,如果MN//x轴,那么点N的坐标为.已知点),4(mA-在反比例函数xky=的图像上,点A关于y轴的对称点1A恰好在直线xy21=上,那么k的值为.某地长途汽车客运公司规定:旅客可免费随身携带一定重量的行李,如果行李超过规定重量,则需要购买行李票.行李票费用y(元)是行李重量x(千克)的一次函数,其像如图1所示,那么旅客最多可免费携带行李千克.第5页共16页某企业今年第一季度各月份产值占这个季度总产值的百分比如图3所示,已知二月份产值是36万元,那么该企业第一季度月产值的平均数是万元.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:111=´亿万万,1兆=111创万万亿,那么2兆=.(用科学记数法表示)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,那么可列方程为.小明和小亮的家分别位于新华书店东、西两边,他们相约同时从家出发到新华书店购书,小明骑车、小亮步行,小明、小亮离新华书店的距离1y(米)、2y(米)与时间x(分钟)之间的关系如图所示,在途中,当小明、小亮离书店的距离相同时,那么他们所用的时间是分钟.第6页共16第7页共16页(第15题图)如图1,图中反映轿车剩余油量q (升)与行驶路径s (千米)的函数关系,那么q 与s 的函数解析式为.某公司产品的销售收入1y 元与销售量x 吨的函数关系记为1()y f x =,销售成本2y 与销售量x 的函数关系记为2()y g x =,两个函数的图像如图所示.当销售收入与销售成本相等时,销售量x 为吨.在直角坐标平面内,已知点A (1,-3),B (4,-1),将线段AB 平移得到线段11A B (点A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是(-2,0),那么点1B 的坐标是.一辆客车从甲地驶往乙地,同时一辆私家车从乙地驶往甲地.两车之间的距离s (千米)与行驶的时间x (小时)之间的函数关系如图3所示.已知私家车的速度是90千米/时,客车的速度是60千米/时,那么点A 的坐标是.第8页共16页CD Bs (千米)AOx(小时)(图3)600如图,在平面直角坐标系xOy 中,点A 在直线y =2x 上,点A的横坐标为1,点P 是x 轴正半轴上一点,点B 在反比例函数(0)ky x x=>图像上,联结AP、PB和OB .如果四边形OAPB 是矩形,那么k 的值是.如图4,某电信公司提供了A、B 两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系.如果通讯费用为60元,那么A方案与B 方案的通话时间相差分钟.中国古代数学著作《四元玉鉴》记载了“买椽多少”问题:“六贯二一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.大意是:现请人代买一批椽(椽,装于屋顶以支持屋顶盖材料的木杆),这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽有x株,那么可列出的方程是.“新定义:函数图像上任意一点),(yxP,xy-称为该点的“坐标差”,函数图像上所有点的“坐标差”的最大值称为该函数的“特征值”.一次函数)12(32≤≤-+=xxy的“特征值”是.如图,抛物线C1:223y x x=+-与抛物线C2:2y ax bx c=++组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A、B(点B在点A右侧),与y轴的交点分别为C、D.如果BD=CD,那么抛物线C2的表达式是.在疫情防控常态化的背景下,某学校为了定期做好专用教室的消毒工作,计划购买甲、乙两种类型的消毒剂,预计购进乙种类型消毒剂的数量y(瓶)与甲种类型消毒剂的数量x(瓶)之间的函数关系如图所示.(1)求y关于x的函数解析式(不必写出自变量x的取值范围);(2)该学校用2100元选购了甲种类型的消毒剂,用2400元选购了乙种类型的消毒剂,甲种消毒剂的单价比乙种消毒剂的单价贵30元,求选购的甲、乙消毒剂的数量.第9页共16页页已知一次函数y kx b=+的图像与反比例函数4yx=的图像相交于点A(1,m),B(n,2).(1)求一次函数的解析式;(2)过点A作直线AC,交y轴于点D,交第三象限内的反比例函数图像于点C,联结BC,如果CD=2AD,求线段BC的长.O xy12-3-412345-1-2-3-1-2-4第21题图3第10页共16页某商店以20元/千克的单价进货了一批商品,经调查发现,每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图7中线段AB所示.(1)求y关于x的函数解析式(不需要写定义域);(2)要使每天的销售利润达到800元,销售单价应定为每千克多少元?如图6,在平面直角坐标系xOy中,直线l上有一点A(3,2),将点A先向左平移3个单位,再向下平移4个单位得到点B,点B恰好在直线l上.(1)写出点B的坐标,并求出直线l的表达式;(2)如果点C在y轴上,且∠ABC=∠ACB,求点C的坐标.O xy11图6A(3,2)第11页共16页小丽与妈妈去商场购物,商场正在进行打折促销,规则如下:优惠活动一:任选两件商品,第二件半价(两件商品价格不同时,低价商品享受折扣);优惠活动二:所有商品打八折.(两种优惠活动不能同享)(1)如果小丽的妈妈看中一件价格600元的衣服和一双500元的鞋子,那么她选择哪个优惠活动会更划算?请通过计算说明;(2)如果小丽的妈妈想将之前看中的鞋子换成一条裤子,当裤子价格(裤子价格低于衣服价格)低于多少元时,小丽会推荐妈妈选择优惠活动二?为什么?BA、两城间的铁路路程为1800千米.为了缩短从A城到B城的行驶时间,列车实施提速,提速后速度比提速前速度每小时增加20千米.(1)如果列车提速前速度是每小时80千米,提速后从A城到B城的行驶时间减少t小时,求t的值;(2)如果提速后从A城到B城的行驶时间减少3小时,又这条铁路规定:列车安全行驶速度不超过每小时140千米.问列车提速后速度是否符合规定?请说明理由.第12页共16页已知小明家、街心公园、超市依次在同一直线上,小明家与街心公园相距900米,小明家与超市相距1200米.小明和妈妈从家里出发,匀速步行了20分钟到达街心公园;两人在公园停留20分钟后,妈妈按原来相同的速度匀速步行返回家,小明则匀速步行5分钟到达超市购买文具用品,停留10分钟后,匀速骑自行车返回家,发现妈妈比他早到家10分钟.如图反映了这个过程中小明离开家的距离y(米)与离开家的时间x(分钟)的对应关系,请根据相关信息,解答下列问题:(1)小明从家到街心公园的速度为(米/分);(2)小明从街心公园到超市的速度为(米/分);(3)小明从超市骑车返回家时,求他离开家的距离y(米)与离开家的时间x(分钟)的函数解析式,并写出x的取值范围.900x/分钟O201200404555y/米第22题图第13页共16页某市全面实施居民“阶梯水价”.当累计水量超过年度阶梯水量分档基数临界点后,即开始实施阶梯价格计价,分档水量和单价见下表:(1)如果小叶家全年用水量是220立方米,那么她家全年应缴纳水费多少元?(2)居民应缴纳水费y(元)关于户年用水量x(立方米)的函数关系如图7所示,求第二阶梯(线段AB)的表达式;(3)如果小明家全年缴纳的水费共计1181元,那么他家全年用水量是多少立方米?By(元)Ax(立方米)O(图7)2203001355第14页共16页小明家的花洒的实景图及其侧面示意图分别如图1、图2所示,花洒安装在离地面高度160厘米的A处,花洒AD的长度为20厘米.(1)已知花洒与墙面所成的角∠BAD=︒120,求当花洒喷射出的水流CD与花洒AD成︒90的角时,水流喷射到地面的位置点C与墙面的距离.(结果保留根号)(2)某店铺代理销售这种花洒,上个月的销售额为2400元,这个月由于店铺举行促销活动,每个花洒的价格比上个月便宜20元,因此比上个月多卖出8个的同时销售额也上涨了400元,求这个此款花洒的原价是多少元?第22题图1第22题图2第15页共16页已知点),2(mA-在双曲线xy4-=上,将点A向右平移5个单位得到点B.(1)当点B在直线bxy+-=2上时,求直线bxy+-=2的表达式;(2)当线段AB被直线bxy+-=2分成两部分,且这两部分长度的比为2:3时,求b的值.第16页共16第1页共26页如果函数12y x m =+的图像经过第一、三、四象限,那么m 的取值范围是()(A)0m >;(B)0m ≥;(C)0m <;(D)0m ≤.C如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B对应的实数分别是a 、b ,下列结论一定成立的是()(A)0a b +<;(B)0b a -<;(C)22a b ->-;(D)a b >.第3题图C一次函数b kx y +=(k ≠0)的图像经过第一、二、三象限,它的解析式可以是()(A)1+=x y ;(B)1y x =-;(C)1y x =-+;(D)1y x =--.A下列函数图像中,可能是反比例函数xy 6=的图像的是()(A)(B)(C)(D)C已知正比例函数(3)y a x =-的图像经过第二、四象限,那么a 的取值范围是()第2页共26页A.3a >;B.3a <;C.3a >-;D.3a <-.B一次函数23y x =-+的图像不经过...()(A)第一象限;(B)第二象限;(C)第三象限;(D)第四象限.C已知函数kx y =(0≠k ,k 为常数)的函数值y 随x 值的增大而减小,那么这个函数图像可能经过的点是().(A)(0.5,1);(B)(2,1);(C)(2-,4);(D)(2-,2-).函数(0,y kx k k =≠为常数)的函数值y 工x 值的增大而减小,0k ∴<,∴正比例函数(0,y kx k k =≠为常数)的图象经过第二、四象限,∴这个函数图象可能经过的点是()2,4-.故选:C.如果点1(2,)y -、2(1,)y -、3(2,)y 在反比例函数(0)ky k x=<的图像上,那么()(A)123y y y >>;(B)213y y y >>;(C)312y y y >>;(D)321y y y >>.B0k <∴ 反比例函数(0)ky k x=<的图象在二、四象限,在每个象限内y 随x 的增大而增大,∴点()()122,1,y y --、在第二象限,()2130;2,y y y >>在第四象限32130.y y y y ∴><>下列函数中,y 的值随自变量x 的值增大而增大的是()(A)2xy =;(B)2x y =-;(C)2y x=;(D)2y x=-.A第3页共26页在函数2xy =中,y 随x 的增大而增大,故选项A 符合题意;在函数2xy =-中,y 随x 的增大而减小,故选项B 不符合题意;在函数2y x =中,在每个象限内,y 随x 的增大而减小,故选项C 不符合题意;在函数2y x=-中,在每个象限内,y 随x 的增大而增大,故选项B 不符合题意;故选:A.某种型号油电混合动力汽车计划从甲地开往乙地,如果纯用电行驶,则电费为25元,如果纯燃油行驶,则燃油费为75元.已知每行驶1千米,纯燃油费用比纯用电费用多0.6元.如果设每行驶1千米纯用电的费用为x 元,那么下列方程正确的是()(A)75250.6x x =-;(B)75250.6x x =-;(C)75250.6x x =+;(D)75250.6x x=+.D在研究反比例函数的图像时,小明想通过列表、描点的方法画出反比例函数的图像,但是在作图时,小明发现计算有错误,四个点中有一个不在该函数图像上,那么这个点是()x ...-2-1212...y...-14-2-1...(A)(-2,-1);(B)(-12,4);(C)(1,-2);(D)(2,-1).A()()()()()121412212,1.2-⨯-≠-⨯=⨯-=⨯-∴-- 这个点是∴这个点是()2,1--.故选:A .页在平面直角坐标系中,如果把抛物线22=xy向下平移3个单位得到一条新抛物线,那么下列关于这两条抛物线的描述中不正确的是()(A)开口方向相同;(B)对称轴相同;(C)顶点的横坐标相同;(D)顶点的纵坐标相同.D把抛物线22y x=向下平移3个单位得到新的二次函数解析式为223y x=-,∴这两条抛物线的开口方向都是向上,对称轴都为直线0x=,顶点的横坐标都为0,顶点的纵坐标一个为0,一个为-3;“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x=-,其图像经过()(A)第一、二象限;(B)第三、四象限;(C)第一、三象限;(D)第二、四象限.D当0x<时,0y>;此时点在二象限;当0x>时,0y<;此时点在四象限;故选:D.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(﹣2,2);乙:函数图像经过第四象限;丙:当x>0时,y随x的增大而增大.则这个函数表达式可能是()(A)y x=-(B)4y x=+(C)212y x=(D)4yx=-D把点()1,1-分别代入四个选项中的函数表达式,可得,选项B不符合题意;又函数过第四象限,而2y x=只经过第一、二象限,故选项C不符合题意;对于函数y x=-,当0x>时,y随x的增大而减小,与丙给出的特征不符合,故选项C不符合题意.故选:D.第4页共26页已知抛物线)0(2≠++=acbxaxy经过点),2(tA,),3(tB,)2,4(C,那么cba++的值是().(A)2;(B)3;(C)4;(D)t.A抛物线)0(2≠++=acbxaxy过点),2(tA,),3(tB,)2,4(C,()235=524225242,b b a a ac c aaa b c a a a A+∴-==-⨯+∴=+∴++=-++=即,将点C代入得216+4故选冬季某日中午12时的气温是3℃,经过10小时后气温下降8℃,那么该时刻的气温是℃.-5根据电影发行方的数据,电影《满江红》截至2023年3月17日,以4535000000元的票房高居春节档前列,数据4535000000用科学记数法表示为________.910535.4⨯已知1纳米000000001.0=米,那么5.2纳米用科学记数法表示为米.9105.2-⨯如果一个二次函数的图像顶点是原点,且它经过平移后能与221y x x=-+-的图像重合,那么这个二次函数的解析式是.22y x=-设二次函数的解析式为2y ax=,因为平移后能与221y x x=-+-的图像重合,所以2a=-,所以解析式为22y x=-.故答案为22y x=-已知抛物线2y x bx c=++的对称轴为直线4x=,点A(1,y1)、B(3,y2)都在该抛物线上,那么y1y2.(填“”或“”或“”).第5页共26第6页共26页>因为10a =>,所以开口向上,又因为对称轴为直线4x =,所以当4x <时,y随x 的增大而减小,因为1<3,所以y1<y2,.故答案为>如图2,已知点A (-1,2),联结OA ,将线段OA 绕点O 顺时针旋转90°得到线段OB ,如果点B 在反比例函数(0)ky x x=>的图像上,那么k 的值是.图2AOBy x2如图,过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,则9018090ACO ODB OAC AOC ACO ∠=∠=∴∠+∠=-∠= 由旋转的性质得,90OB AO AOB =∠= ,18090BOD AOC AOB BOD OAC∴∠+∠=-∠=∴∠=∠ 在BOD ∆和OAC ∆中,(),,ODB ACO BOD OAC BOD OAC AAS OD AC BD OC OB AO ∠=∠⎧⎪∠=∠∴∆≅∆∴==⎨⎪=⎩,()()1,22,1A B -∴ 点B 在反比例函数ky x=的图象上,122k ∴=⨯=.故答案为:2.如果正比例函数kx y =(k 是常数,k ≠0)的图像经过点(4,-1),那么y 的值随x 的增大而.(填“增大”或“减小”)减小第7页共26页函数kx y =经过点(4,-1),所以11404k k -==-<即,所以y 随x 的增大而减小,故答案减小近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度的近视眼镜镜片的焦距为0.25米,那么眼镜度数y 关于镜片焦距x 的函数解析式是.100y x=设ky x=,400 度近视眼镜镜片的焦距为0.25m ,0.25400100k ∴=⨯=,100y x ∴=.故答案为:100y x=如果反比例函数xa y 1-=的图像经过点),(21-,那么这个反比例函数的解析式为.xy 2-=把()1,2-代入1a y x-=得()1122a -=⨯-=-,∴这个反比例函数的解析式为2y x =-.故答案为:2y x=-.点A (2-,5)在反比例函数ky x=的图像上,那么k =.10- 点()2,5-在反比例函数k y x =的图象上,52k∴=-,解得10k =-如果抛物线32-=ax y 的顶点是它的最高点,那么a 的取值范围是.a< 顶点是抛物线23y ax =-的最高点,0a ∴<在平面直角坐标系中,如果点),3(x x A -在第二象限,那么x的取值范围是.第8页共26页30<<x 在平面直角坐标系中,第二象限内点坐标符号:横坐标为负,纵坐标为正,则30x x -<>⎧⎨⎩,解得03x <<,故答安为:03x <<.抛物线22y x =-在y 轴的左侧部分,y 的值随着x 的值增大而.(填“增大”或“减小”)减小第一季度的总产值是()()36145%25%120,÷--=万元则该企业第一季度月产值的平均值是()1120403⨯=万元。

沪教版九年级数学第二学期27.1圆的确定练习题(含答案)

沪教版九年级数学第二学期27.1圆的确定练习题(含答案)

沪教版九年级数学第二学期27.1圆的确定一、单选题1.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1CD 12.木杆AB 斜靠在墙壁上,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆的底端B 也随之沿着射线OM 方向滑动.下列图中用虚线画出木杆中点P 随之下落的路线,其中正确的是( )A .B .C .D .3.下列说法中,不正确的是( )A .圆既是轴对称图形又是旋转对称图形B .一个圆的直径的长是它半径的2倍C .圆的每一条直径都是它的对称轴D .直径是圆的弦,但半径不是弦4.如图,△ABC 为直角三角形,∠C=90°,AC=6,BC=8,以点C 为圆心,以CA 为半径作⊙C ,则△ABC 斜边的中点D 与⊙C 的位置关系是( )A .点D 在⊙C 上B .点D 在⊙C 内 C .点D 在⊙C 外 D .不能确定5.如图,一块直径为a +b 的圆形钢板,从中挖去直径分别为a 与b 的两个圆,则剩余阴影部分面积为( )A .2abB .()24a b π- C .2abπ D .4abπ6.半径为R 、r 的两个同心圆如图所示,已知半径为r 的圆周长为a ,且1R r -=,则半径为R 的圆周长为( )A .1a +B .2a +C .a π+D .2a π+7.如右图,正方形ABCD 的边长为2,点E 是BC 边上一点,以AB 为直径在正方形内作半圆O ,将△DCE 沿DE 翻折,点C 刚好落在半圆O 的点F 处,则CE 的长为( )A .23B .35C .34D .478.如图,正方形OABC 的一个顶点O 是平面直角坐标系的原点,顶点A ,C 分别在y 轴和x 轴上,P 为边OC 上的一个动点,且PQ ⊥BP ,PQ=BP ,当点P 从点C 运动到点O 时,可知点Q 始终在某函数图象上运动,则其函数图象是( )A.线段B.圆弧C.双曲线的一部分D.抛物线的一部分二、填空题9.如图,在△ABC 中,∠ACB=90°,AC=12,BC=5,P 是边AB 上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B'CP,连接B'A,B'A 长度的最小值是m,B'A 长度的最大值是n,则m+n 的值等于______.10.如图,∠MON=45°,一直角三角尺△ABC的两个顶点C、A分别在OM,ON上移动,若AC=6,则点O到AC距离的最大值为_____.11.已知正三角形的边长为2,那么该三角形的半径长为_____.12.如图,P是⊙O的直径BA延长线上一点,PD交⊙O于点C,且PC=OD,如果∠P=24°,则∠DOB=________.13.圆的半径扩大到原来的3倍,周长扩大到原来的____倍.面积扩大到原来的_______倍.14.在Rt ABC V 中,90C ∠=︒,6AC =,8BC =,则其外接圆的半径为__________.15.如图,在Rt ABC V 中,90C ∠=︒,30A ∠=︒,2BC =,以B 为圆心,BC 长为半径的圆弧交AB 于点D .若B 、C 、D 三点中只有一点以A 为圆心的A e 内,则A e 的半径r 的取值范围是____.16.平面直角坐标系内,A (-1,0),B (1,0),C (4,﹣3),P 在以 C 为圆心 1 为 半径的圆上运动,连接 P A ,PB ,则22 PA PB +的最小值是_______ .三、解答题17.附加题:如图,AC 是Rt OAB V 斜边上的高,到点O 的距离等于OA 的所有点组成的图形记为G ,图形G 与OB 交于点D ,连接AD .(1)依题意补全图形,并求证:AD 平分BAC ∠;(2)如果6AC =,3tan 4B =,求BD 的长.18.如图, OA=OB ,AB 交⊙O 于点C 、D ,AC 与BD 是否相等.为什么.19.如图,在等腰△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,S △ABC =32,BC =8.(1)求出⊙O 的半径r .(2)求S △ABO .20.如图,CD 是O e 的直径,O 是圆心,E 是圆上一点,且81EOD ∠=o ,A 是 DC 延长线上一点,AE 与圆交于另一点B ,且AB OC =.(1)求证:2E EAD ∠=∠;(2)求EAD ∠的度数.21.如图,△ABC 是⊙O 的内接三角形,BC=4,∠A=30°,求⊙O 的直径.22.如图,在平面内。

九下上海数学书拓展二总结

九下上海数学书拓展二总结

九下上海数学书拓展二总结
《九年级上海数学书拓展二》是一本适用于九年级学生的数学拓展教材。

本教材内容丰富,包含了多个不同的数学领域,如代数、几何、概率与统计等,帮助学生进一步提高数学综合能力。

首先,本书在代数方面进行了深入的拓展。

学生将进一步学习到多项式的运算、因式分解、整式的乘法和除法等内容。

同时,本书也涉及了一些常见的代数应用问题,如线性方程组和二元一次方程等。

这些内容能够帮助学生更好地理解代数知识,并能够应用于实际问题中。

其次,在几何方面,本书进一步探讨了三角形的性质和计算方法。

学生将学习到三角形的面积、角平分线和垂直平分线等概念,并且能够应用这些概念解决实际问题。

此外,本书还介绍了几何图形的相似性和全等性,帮助学生进一步理解几何学的基本原理。

此外,本书还包含了概率与统计的内容。

学生将学习到事件的概率计算方法和统计数据的分析方法。

通过学习概率和统计的基本知识,学生将能够更好地理解和应用统计数据。

总的来说,《九年级上海数学书拓展二》是一本非常有价值的数学教材。

通过学习本书,学生能够进一步提高数学综合能力,扩大数学知识面,更好地应对数学学习和应用问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学拓展Ⅱ课本教学参考材料编者的话《数学课程标准》中安排的初中数学拓展II的内容,是定向拓展内容,提供希望在初中毕业后进入普通高中学习的学生修习。

根据《数学课程标准》编写的“初中数学拓展II”课本(试验本),用于九年级,现正在基地学校进行第一轮教学试验。

为了帮助执教老师理解课本、把握要求和开展实践研究,教材编写人员编写了本册课本的教学参考材料。

这本教学参考材料,没有经过有关部门的审查,不是正式出版的“教学参考书”。

由于编写仓促,成稿匆忙,《材料》内容难免存在错误和不足,只是考虑到新课本进行第一轮教学对参考材料的需要,所以将此很不成熟的《材料》公诸于众。

本《材料》提供执教老师在教学研究中参考使用,同时在使用中开展研究;通过对《材料》的使用和研究,发现并纠正其中的错误,弥补不足,充实内容,为编写正式的“教学参考书”打好基础。

希望这本教学参考材料对执教老师有参考作用,更期待执教老师对此材料提出宝贵意见和修改建议。

初中数学教材编写组2007年8月第一部分课本概述初中数学拓展II课本(以下简称本册课本),含“一元二次方程与二次函数”、“直线与圆”两章内容,还有配合各章内容的练习部分。

本册课本内容的确定,其依据是《上海市中小学数学课程标准(试行本)》;内容的安排,是在“二二分段,九年级分层”的框架下进行的。

初中数学内容的设计,整体上按照六、七年级和八、九年级进行分段,同时在九年级进行必要的分层处理。

在初中阶段,以全体学生必学的数学基本内容为课程内容的核心,着眼于所有学生未来发展的普遍需要,构建共同的数学基础;再以学生定向选学的数学拓展II内容,以及学生按兴趣爱好选学的数学拓展I内容和课外活动材料,适当扩充数学基础,形成具有差别性和层次性的数学,满足不同个性的学生的不同需要。

学生在六年级到九年级所学的数学基本内容中,包括“实数知识基础”、“初等代数知识基础”、“平面几何知识基础与向量代数初步知识”、“初等代数函数的基础与分析初步”、“概率与统计初步知识”。

这些知识内容,是学生进一步学习和参与社会生活必备的数学基础;但是,对于将要进入普通高中学习的学生,其数学知识基础的准备还存在不足。

例如在高中数学中,关于一元二次不等式解法的探讨,需要运用二次函数的图像与x轴的位置关系特征;关于函数解析性质的研究和理解,需要借助于二次函数的直观性质;关于集合与命题的讨论、正弦定理以及在直角坐标平面上深入进行关于圆的研究等,还需要更多的有关圆的知识。

因此,安排拓展II的内容并采用自主选择的方式,组织希望在初中毕业后进入普通高中的学生修习,有助于这些学生充实数学基础知识,改善初、高中数学的衔接。

本册课本的编写,注重于初中数学基础知识的充实和内容结构的完善,关注学生进入普通高中学习数学基本内容的需要。

同时,重视与初中数学必学课本中有关内容建立紧密的联系,体现内容的整体性;注意保持初中数学必学课本的编写特点,注意把握有关内容的基础性要求,注意改善内容呈现的方式和体现数学学习的过程。

本册课本第一章是“一元一次方程与二次函数”。

在必学课本中讨论一元二次方程与二次函数的基础上,本章着重研究一元二次方程的根与系数的关系、二次函数的图像相对于x轴的位置与一元二次方程的根的判别式之间的关系、二次函数解析式的确定、求二次函数的图像与x轴的交点坐标,以及它们的简单运用。

同时,通过建立二次函数与一元二次方程之间的联系,促进学生多角度地理解这两部分知识内容和形成整体性的认知结构,领悟数学的思想和方法。

本章对一元二次方程的根与系数关系进行探究,既有理论意义(一元n次方程的根与系数关系定理是方程基本理论中的重要内容),又有运用价值(可直接用于研究和解决相关问题);而观察、发现、证明一元二次方程的根与系数关系定理的过程,也是对学生探究学习的引导。

建立二次函数与一元二次方程的联系,让学生运用函数的思想理解方程,运用一元二次方程的知识研究二次函数的图像,不仅有助于提升学生的数学观点,同时使学生对二次函数的图像与x轴的位置关系获得理性的认识。

关于二次函数解析式的确定,在必学内容中只涉及已知条件是函数的三组对应值(即图像上的三点坐标)的情况,这里扩展为已知条件与函数图像特征或性质有关,既突出了待定系数法的运用,又有利于学生对有关基本内容的理解。

第二章“直线与圆”是在必学课本中讨论直线、圆的基本知识以及直线与圆的位置关系的基础上编写的。

本章着重研究圆的切线的判定定理和性质定理,切线长定理;两圆的公切线及公切线的长;圆周角和圆周角定理,弦切角和弦切角定理;相交弦定理,割线定理,切割线定理;还有四点共圆等。

这些内容,把直线与圆的位置关系从数量关系特征讨论转到定性研究,从一条直线与圆的位置关系讨论扩展到两条直线与圆的位置关系研究;还把“不共线的三点确定一个圆”引到“四点共圆”的研究。

本章确立了一系列关于直线与圆的关系定理,学生通过本章的学习,可以获得关于圆的基础知识的必要补充,同时进一步得到演绎推理、分类讨论、化归等思想方法的演练。

本章内容的处理,特别强调基础性和教育性;有关定理的运用,一般限为直接用于解决问题,对综合运用的难度有严格控制。

本册内容的呈现,主要采用“过程模式”,通过“问题——活动”的安排,引导学生探索求知。

课本中保持有“问题”、“思考”、“操作”、“想一想”、“议一议”等栏目,有边款点拨、方框解说等版式,以指导学生开展数学活动,帮助学生把握重点和释疑解难,促进学生生动、活泼、主动地学习,深入地思考。

在两章的末尾,分别配备了“探究活动”和“阅读材料”。

关于“公路隧道设计的可行性分析”活动,旨在加强数学应用活动和引导学生探究学习;关于“圆的幂和两圆的等幂轴”的材料,是对课本中“圆幂定理”的解说和扩展。

数学练习部分中的习题安排,重视基本训练,也有层次性。

“试一试”栏目下的题目,一般有较高的难度,这样的题目不要求所有学生都去做,主要提供给有学习兴趣的学生进行研究和讨论,进一步培养学生的探究意识和钻研精神,满足不同学生的学习需要。

数学拓展II的教学课时,含在《上海市中小学课程方案(试行本)》所规定的九年级数学课时中,一般控制为每周2节。

本册课本内容设计的教学课时数为29节,具体的教学计划和进度,由教师根据学校和学生的实际情况进行制定。

各章教学的课时数建议如下:第一章一元二次方程与二次函数13课时(11+2)第二章直线与圆16课时(14+2)第二部分各章说明第一章一元二次方程和二次函数一、 全章综述1.教学目标 ⑴经历对于一元二次方程的根与系数关系的观察、分析和发现过程,理解一元二次方程的根与系数是紧密联系的.掌握一元二次方程的根与系数关系的证明以及它的基本运用. ⑵经历确定二次函数解析式所需独立条件个数的探索过程.知道二次函数解析式的三种基本形式,会用待定系数法求二次函数解析式. 掌握待定系数法的基本运用.⑶建立起二次函数与一元二次方程之间的联系,能以函数的观点来理解一元二次方程,能根据相应的一元二次方程的根的判别式分析二次函数的图像特征.⑷通过二次函数解决简单实际问题的举例,体会二次函数的基本应用.2.课时安排本章教学共13课时,建议分配如下:1.1 一元二次方程的根与系数的关系 3课时1.2 二次函数与一元二次方程 3课时1.3 二次函数解析式的确定 5课时复习小结 2课时3.设计说明本章内容是在学生已学一元二次方程与二次函数基本内容的基础上,对一元二次方程与二次函数的基础知识进行必要的扩充,并把一元二次方程与二次函数相互联系起来.本章首先是对一元二次方程根与系数的关系进行探究,得到一元二次方程的根与系数关系的定理;在知道了这一知识的直接应用后,又介绍了利用整体代入方法求代数式的值,以及利用一元二次方程根与系数的关系建立新方程或者求已知两数和与积的两个未知数的值.其次是建立了一元二次方程与二次函数之间的联系,由图像上发现:如果二次函数)0(2≠++=a c bx ax y 的图像与x 轴有公共点,那么公共点的纵坐标为0.由y =0,得到相应的一元二次方程)0(02≠=++a c bx ax ,则这个方程的实数根就是函数图像与x 轴的公共点的横坐标. 在学生能够利用这一知识直接求二次函数)0(2≠++=a c bx ax y 的图像与x 轴的公共点坐标的基础上,进一步发现抛物线)0(2≠++=a c bx ax y 与x 轴公共点的个数与一元二次方程根的判别式之间的联系,从而不需画出二次函数的图像就能利用相应的一元二次方程根的判别式的符号来判断这抛物线与x 轴公共点的个数.最后介绍了确定二次函数解析式的三种方法.在九年级第一学期数学课本中,已讲述了由已知二次函数图像经过直角坐标平面上三点的条件确定其解析式的方法。

现在,先将这一方法进行复习巩固,再讲述由已知二次函数图像的顶点坐标或图像与x 轴两交点坐标加上其他一个条件,确定其解析式的方法。

这样,关于确定二次函数解析式的方法就比较多样了,可按已知条件中含“三点”或“顶点”、“两根”,选取二次函数解析式的适当形式,运用待定系数法来确定这个解析式.课本中关于二次函数的应用主要体现在两个方面,一是与几何知识的综合应用,二是在实际生活中的初步应用,从而帮助学生加深理解二次函数的基础知识,把握知识之间的联系,扩展知识的基本应用;帮助学生学习将实际问题转化为数学问题,体验数学建模,在解决实际问题的过程中,感受数学知识“源于实践,又用于实践”.本章内容是中学数学中数形结合教学重要载体之一,应充分发挥其功能.根与系数的关系定理(韦达定理)是方程理论中的重要内容之一,在高中数学中也有较多的应用.关于二次函数及其性质,进入高中后还要从解析的角度进一步研究;初中阶段所学的二次函数内容,是高中阶段继续学习函数内容的不可或缺的基础.因此,课程标准特别指出,本章内容是希望进入普通高中的学生所必须修习的.在本章的学习中,重点是掌握一元二次方程与二次函数之间的联系;难点是如何发现一元二次方程与二次函数之间的联系.教学中要充分展示知识发生的过程,让学生从形、数两方面真正理解一元二次方程与二次函数之间的内在联系,融会贯通有关知识.4.教学建议⑴重视学生的探索学习过程.要在激发学生产生探究一元二次方程根与系数的关系、一元二次方程与二次函数之间的联系等新知识的欲望方面多下功夫,让学生积极参与探索活动和进行数学思考,真正感受知识发生的过程.⑵注意运用类比、数形结合和化归的数学思想. 在新知识的教学过程中,可以利用图形的直观性,帮助学生建立新旧知识之间的联系,促进已学知识向新知识的过渡和发展. 如课本中指出:“二次函数)0(2≠++=a c bx ax y 的图像与x 轴有公共点,那么公共点的纵坐标为0.由y =0,得相应的一元二次方程)0(02≠=++a c bx ax ,则这个方程的实数根就是函数图像与x 轴的公共点的横坐标”;“抛物线)0(2≠++=a c bx ax y 与x 轴的公共点的个数,由相应的一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆确定;反过来,由抛物线与x 轴的公共点的个数,也可以确定判别式的值的符号”。

相关文档
最新文档