高等数学试题库完整
高等数学试题及答案完整版

高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
高等数学试题及参考答案

高等数学试题及参考答案一、选择题(每题4分,共20分)1. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值。
A. 0B. 1C. 2D. \(\infty\)答案:B3. 以下哪个级数是收敛的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{2^n}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:A4. 函数 \(y = e^x\) 的导数是?A. \(e^x\)B. \(-e^x\)C. \(\ln(e)\)D. \(\frac{1}{e^x}\)答案:A5. 计算定积分 \(\int_0^1 x^2 dx\) 的值。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A二、填空题(每题6分,共30分)1. 函数 \(y = \ln(x)\) 的反函数是 \(y = \boxed{e^x}\)。
2. 函数 \(y = x^2 + 2x + 1\) 的最小值是 \(\boxed{0}\)。
3. 函数 \(y = \sin(x)\) 的周期是 \(\boxed{2\pi}\)。
4. 函数 \(y = \frac{1}{x}\) 的不定积分是 \(\boxed{\ln|x| + C}\)。
5. 函数 \(y = \cos(x)\) 的导数是 \(\boxed{-\sin(x)}\)。
完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学试题库及答案doc

高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。
答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。
答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。
解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。
解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。
证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。
由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。
因此,函数 f(x) 是严格单调递增的。
五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。
求物体在前 3 秒内的位移。
解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。
六、论述题1. 论述微积分在物理学中的应用。
答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。
微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。
高等数学试题(含答案)

高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。
答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。
证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。
设在点x=c处取得最大值M(即f(c)=M)。
根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。
由于f(x)在(a,b)可导,故f'(c)存在。
那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。
又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。
同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。
将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。
由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。
高等数学试题及答案大全

高等数学试题及答案大全一、选择题1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2在区间[-5, 2]上的最大值是()。
A. 0B. 3C. 4D. 5二、填空题1. 若函数f(x) = 2x - 3在x = 1处的导数为5,则原函数在x = 1处的值为______。
2. 曲线y = x^3 - 2x^2 + x在x = 2处的切线斜率为______。
三、解答题1. 求函数f(x) = ln(x) + 1的导数,并说明其在x = e处的导数值。
2. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其极值点。
四、证明题1. 证明函数f(x) = x^3在R上的单调性。
2. 证明等差数列的前n项和公式S_n = n(a_1 + a_n)/2。
五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 3x + 200,销售价格为P(x) = 50 - 0.05x,其中x表示产品数量。
求该工厂的盈利函数,并求出其盈利最大时的产品数量。
2. 一个圆的半径为r,求其面积与周长的比值。
答案:一、选择题1. C解析:函数y = e^x不是周期函数,其他选项都是周期函数。
2. D解析:函数f(x) = x^2 + 3x - 2的导数为f'(x) = 2x + 3,令其等于0,解得x = -3/2,但x = -3/2不在区间[-5, 2]内。
检查区间端点,f(-5) = -8,f(2) = 5,因此最大值为5。
二、填空题1. -1解析:由f'(x) = 2,且f'(1) = 5,可得f(1) = f'(1) * (1 - 0) + f(0) = 5 + f(0),又因为f(0) = -3,所以f(1) = 5 - 3 = 2。
2. -4解析:由y' = 3x^2 - 4x + 1,代入x = 2,得y' = 3 * 2^2 - 4 * 2 + 1 = 12 - 8 + 1 = 5。
(完整)高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
入学考试题库(共180题)1.函数、极限和连续(53题)函数(8题) 函数定义域 1.函数lgarcsin 23x xy x =+-的定义域是( )。
A A. [3,0)(2,3]-U ; B. [3,3]-; C. [3,0)(1,3]-U ; D. [2,0)(1,2)-U .2.如果函数()f x 的定义域是1[2,]3-,则1()f x的定义域是( )。
DA. 1[,3]2-; B. 1[,0)[3,)2-⋃+∞; C. 1[,0)(0,3]2-⋃; D. 1(,][3,)2-∞-⋃+∞.3. 如果函数()f x 的定义域是[2,2]-,则2(log )f x 的定义域是( )。
B A. 1[,0)(0,4]4-U ; B. 1[,4]4; C. 1[,0)(0,2]2-U ; D. 1[,2]2. 4.如果函数()f x 的定义域是[2,2]-,则3(log )f x 的定义域是( ).DA. 1[,0)(0,3]3-⋃;B. 1[,3]3;C. 1[,0)(0,9]9-⋃ ;D. 1[,9]9.5.如果)(x f 的定义域是[0,1],则(arcsin )f x 的定义域是( )。
CA. [0,1];B. 1[0,]2; C. [0,]2π ; D. [0,]π. 函数关系6.设()()22221,1x f x x x xϕϕ+⎡⎤==⎣⎦-,则()f x =( ).A A .211x x +-; B. 211x x -+; C. 121x x -+; D. 121x x +-. 7.函数331xx y =+的反函数y =( )。
BA .3log ()1x x +; B. 3log ()1x x -; C. 3log ()1x x -; D. 31log ()x x-.8.如果2sin (cos )cos 2xf x x=,则()f x =( ).CA .22121x x +-; B. 22121x x -+; C. 22121x x --; D. 22121x x ++.极限(37题) 数列的极限9.极限123lim ()2n n nn →+∞++++-=L ( ).BA .1; B. 12; C. 13; D. ∞.10.极限2123lim 2n nn→∞++++=L ( ).A A .14; B. 14-; C. 15; D. 15-11.极限111lim 1223(1)n n n →∞⎛⎫+++=⎪⋅⋅+⎝⎭L ( ).C A .-1; B. 0; C. 1; D. ∞.12.极限221111(1)222lim1111333n nn n→+∞-+++-=++++L L ( ).A A .49; B. 49-; C. 94; D. 94-函数的极限13.极限limx x→∞=( ).C A .12; B. 12-; C. 1; D. 1-. 14.极限0x →=( ).A A .12; B. 12-; C. 2; D. 2-. 15.极限0x →=( ).BA. 32-; B. 32 ; C. 12- ; D. 12. 16.极限1x →=( ).CA. -2 ;B. 0 ;C. 1 ;D. 2 .17.极限4x →=( ).BA .43-; B. 43; C. 34-; D. 34. 18.极限x →∞= ( ).DA .∞; B. 2; C. 1; D. 0.19.极限2256lim2x x x x →-+=- ( ).D A .∞; B. 0; C. 1; D. -1.20.极限3221lim 53x x x x →-=-+ ( ).A A .73-; B. 73; C. 13; D. 13-. 21.极限2231lim 254x x x x →∞-=-+ ( ).C A .∞; B.23; C. 32; D. 34. 22.极限sin limx xx→∞=( ).BA .1-; B. 0; C. 1; D. 2.23.极限01lim sinx x x→=( ).B A .1-; B. 0; C. 1; D. 2.24.极限02sin 1limxx tdt t x →-=⎰( ).BA .12; B. 12-; C. 13; D. 13-.25.若232lim 43x x x kx →-+=-,则k =( ).AA .3-; B. 3; C. 13-; D. 13. 26.极限2323lim 31x x x x →∞++=- ( ).B A .∞; B. 0; C. 1; D. -1.无穷小量与无穷大量27.当0x →时,2ln(12)x +与2x 比较是( )。
DA .较高阶的无穷小; B. 较低阶的无穷小; C. 等价无穷小; D. 同阶无穷小。
28.1x是( ).A A. 0x →时的无穷大; B. 0x →时的无穷小;C. x →∞时的无穷大;D. 100110x →时的无穷大.29.12x -是( ).DA. 0x →时的无穷大;B. 0x →时的无穷小;C. x →∞时的无穷大;D. 2x →时的无穷大.30.当0x →时,若2kx 与2sin 3x 是等价无穷小,则k =( ).CA .12; B. 12-; C. 13; D. 13-. 两个重要极限 31.极限1lim sinx x x→∞=( ).C A .1-; B. 0; C. 1; D. 2.32.极限0sin 2limx xx→=( ).DA .1-; B. 0; C. 1; D. 2.33.极限0sin 3lim4x xx→=( ).AA.34; B. 1;C. 43; D. ∞. 34.极限0sin 2limsin 3x xx→=( ).C A .32; B. 32-; C. 23; D. 23-. 35.极限0tan limx xx→=( ).C A .1-; B. 0; C. 1; D. 2.36.极限201cos limx xx→-=( ).A A .12; B. 12-; C. 13; D. 13-. 37.下列极限计算正确的是( ).DA. 01lim(1)x x e x→+=; B. 0lim(1)x x x e →+=;C. 1lim(1)xx x e →∞+=; D. 1lim(1)xx e x→∞+=.38.极限21lim(1)xx x→∞-=( ).B A .2e ; B. 2e -; C. e ; D. 1e -.39.极限1lim(1)3xx x→∞-=( ).D A .3e ; B. 3e -; C. 13e ; D. 13e-.40.极限1lim()1xx x x →∞+=-( ).A A .2e ; B. 2e -; C. e ; D. 1e -.41.极限2lim()2xx x x →∞+=-( ).D A. 4e -; B. 2e -;C. 1;D. 4e . 42.极限5lim(1)xx x→∞+( ).BA .5e -; B. 5e ; C. 15e ; D. 15e-.43.极限1lim(13)xx x →+( ).AA .3e ; B. 3e -; C. 13e ; D. 13e-.44.极限5lim()1xx x x→∞=+( ).A A .5e -; B. 5e ; C. e ; D. 1e -.45.极限0ln(12)limx x x→+=( ).D A .1-; B. 0; C. 1; D. 2.函数的连续性(8题) 函数连续的概念46.如果函数sin 3(1),1()14, 1x x f x x x k x -⎧≤⎪=-⎨⎪+>⎩处处连续,则k = ( ).B A .1;B. -1;C. 2;D. -2.47.如果函数sin (1),1()1arcsin , 1x x f x x x k x π-⎧<⎪=-⎨⎪+≥⎩处处连续,则k = ( ).D A .2π-;B.2π;C. 2π-;D. 2π.48.如果函数1sin1,1()23,1x xx f x e k x π-⎧+≤⎪=⎨⎪+>⎩处处连续,则k = ( ).A A .-1;B. 1;C. -2;D. 2.49.如果函数sin 1,12()5ln ,11x x f x x k x x π⎧+≤⎪⎪=⎨⎪+>⎪-⎩处处连续,则k = ( ).BA .3;B. -3;C. 2;D. -2.50.如果函数1 , 02()ln(1),03x e x f x x k x x⎧+≤⎪⎪=⎨+⎪+>⎪⎩处处连续,则k = ( ).CA .67;B. 67-;C. 76;D. 76-. 51.如果sin 2,0()1,0ln(1),0axx x f x x x b x x⎧+<⎪⎪==⎨⎪+⎪+>⎩在0=x 处连续,则常数a ,b 分别为( ).DA .0,1; B. 1,0; C. 0,-1; D. -1,0.函数的间断点及分类 52.设2,0()2,0x x f x x x -≤⎧=⎨+>⎩,则0=x 是)(x f 的( ).DA. 连续点;B. 可去间断点;C. 无穷间断点;D. 跳跃间断点 .53.设ln ,0() 1, 0x x x f x x >⎧=⎨≤⎩,则0=x 是)(x f 的( ).BA. 连续点;B. 可去间断点;C. 无穷间断点;D. 跳跃间断点 .2.一元函数微分学(39题)导数与微分(27题) 导数的概念及几何意义54.如果函数)(x f y =在点0x 连续,则在点0x 函数)(x f y =( ).BA. 一定可导;B. 不一定可导;C.一定不可导;D. 前三种说法都不对.55.如果函数)(x f y =在点0x 可导,则在点0x 函数)(x f y =( ).CA. 一定不连续;B. 不一定连续;C.一定连续;D. 前三种说法都不正确.56.若000(2)()lim1x f x x f x x ∆→+∆-=∆,则=')(0x f ( ).A A .12; B. 12-; C. 2; D. 2-. 57.如果2(2)3f '=,则0(23)(2)lim x f x f x →--=( ).B A. -3 ; B. -2 ; C. 2 ; D. 3 .58.如果(2)3f '=,则0(2)(2)limx f x f x x→+--=( )。
DA. -6 ;B. -3 ;C. 3 ;D. 6 . 59.如果函数)(x f 在0x =可导,且(0)2f '=,则0(2)(0)limx f x f x→--=( ).C A .-2; B. 2; C. -4; D. 4.60.如果(6)10f '=,则0(6)(6)lim5x f f x x→--=( ).BA. -2 ;B. 2 ;C. -10 ;D. 10 .61.如果(3)6f '=,则0(3)(3)lim2x f x f x→--=( ).BA. -6 ;B. -3 ;C. 3 ;D. 6 .62.曲线31y x x =-+在点(1,1)处的切线方程为( ).CA. 210x y ++=;B. 210x y -+=;C. 210x y --=;D. 210x y +-=.63.曲线21y x =在点1(2,)4处的切线方程为( ).A A. 1144y x =-+; B. 1144y x =-;C. 1144y x =--;D. 1144y x =+.64.曲线1y x =在点1(3,)3处的切线方程为( ).BA. 1293y x =--;B. 1293y x =-+;C. 1293y x =-;D. 1293y x =+.65.过曲线22y x x =+-上的一点M 做切线,如果切线与直线41y x =-平行,则切点坐标为( ).CA. (1,0);B. (0,1);C. 37(,)24;D. 73(,)42.函数的求导 66.如果sin 1cos x xy x=+,则y '= ( ).BA.sin 1cos x x x -+; B. sin 1cos x x x ++; C. sin 1cos x x x -+; D. sin 1cos x xx+-.67.如果x y cos ln =,则y '= ( ).AA. tan x -;B. tan x ;C. cot x -;D. cot x .68.如果lnsin y x =,则y '= ( ).DA. tan x -;B. tan x ;C. cot x -;D. cot x .69.如果1arctan 1xy x-=+,则y '= ( ).AA. 211x -+; B. 211x +;C. 211x --;D. 211x -. 70.如果)3sin(2x y =,则y '= ( ).CA. 2cos(3)x ; B. 2cos(3)x -;C. 26cos(3)x x ; D. 26cos(3)x x -.71.如果(ln )df x x dx=,则()f x '= ( ).D A. 2x -; B. 2x ;C. 2xe-; D. 2xe .72.如果yxxy e e +=,则y '= ( ).DA. y x e x e y +-;B. y x e x e y -+;C. x y e y e x +-;D. x y e y e x-+.73.如果arctanln yx=,则y '= ( ).A A.x y x y +-; B. x y x y -+; C. y x y x +-; D. y xy x-+. 74.如果,则y '= ( ). BA. sin cos ln()1(1)x x x x x x +++;B. sin sin [cos ln()]1(1)1xx x x x x x x x ⎛⎫+ ⎪+++⎝⎭;C. sin sin [ln()]1(1)1xx x x x x x x ⎛⎫+ ⎪+++⎝⎭; D. sin 1[cos ln()]111xx x x x x x ⎛⎫+ ⎪+++⎝⎭.75.如果,则y ''= ( ).AA.C. ;微分76.如果函数)(x f y =在点0x 处可微,则下列结论中正确的是( ).CA. )(x f y =在点0x 处没有定义;B. )(x f y =在点0x 处不连续;C. 极限00lim ()()x x f x f x →=; D. )(x f y =在点0x 处不可导.77.如果函数)(x f y =在点0x 处可微,则下列结论中不正确的是( ).AA. 极限0lim ()x x f x →不存在 . B. )(x f y =在点0x 处连续;C. )(x f y =在点0x 处可导;D. )(x f y =在点0x 处有定义.78.如果2ln(sin )y x =,则dy = ( ).CA. 2tan xdx ;B. tan xdx ;C. 2cot xdx ;D. cot xdx .79.如果ln 50yxe y -+=,则dy = ( ).BA. 1y y ye dx xye -;B. 1y y ye dx xye --;C. 1y y ye dx xye +;D. 1yyye dx xye -+. 80.如果xy x =,则dy = ( ). AA. (ln 1)xx x dx -; B. (ln 1)xx x dx +; C. (ln 1)x dx -; D. (ln 1)x dx +.导数的应用(12题) 罗必塔法则81.极限2ln()2lim tan x x x ππ+→-= ( ).C A .1; B. -1; C. 0; D. ∞.82.极限30limsin x x x x→=- ( ).A A .6; B. -6; C. 0; D. 1.83.极限1lim (1)xx x e →+∞-= ( ).BA .-2; B. -1; C. 0; D. ∞.84.极限011lim()sin x x x→-= ( ).C A .-2; B. -1; C. 0; D. ∞.85.极限sin 0lim xx x +→= ( ).BA .0; B. 1; C. e ; D. ∞.86.极限tan 0lim xx x +→= ( ).AA .1; B. 0; C. e ; D. 1e -.87.极限tan 01lim xx x +→⎛⎫= ⎪⎝⎭( ).BA . 0; B. 1; C. e ; D. 1e -.函数单调性的判定法88.函数3264y x x =-+的单调增加区间为( ).BA .(,0]-∞和[4,)+∞; B. (,0)-∞和(4,)+∞; C. (0,4); D. [0,4].89.函数3231y x x =-+的单调减少区间为( ).CA .(,0)-∞; B. (4,)+∞; C. )2,0(; D. [0,2].90.函数的单调增加区间为( ).AA .(,1]-∞; B. (,0]-∞; C. [1,)+∞; D. [0,)+∞.函数的极值 91.函数2xy xe-=( ).AA .在12x =处取得极大值112e -; B. 在12x =处取得极小值112e -; C. 在1x =处取得极大值2e -; D. 在1x =处取得极小值2e -.92.函数32()9153f x x x x =-++( ).BA .在1x =处取得极小值10,在5x =处取得极大值22-;B. 在1x =处取得极大值10,在5x =处取得极小值22-;C. 在1x =处取得极大值22-,在5x =处取得极小值10;D. 在1x =处取得极小值22-,在5x =处取得极大值10.3.一元函数积分学(56题)不定积分(38题)不定积分的概念及基本积分公式93.如果x x f 2)(=,则)(x f 的一个原函数为( ).AA. 2x ; B.212x ;C. 2x x +;D. 2122x x +. 94.如果x x f sin )(=,则)(x f 的一个原函数为 ( ).C A. cot x -; B. tan x ;C. cos x -;D. cos x .95.如果cos x 是)(x f 在区间I 的一个原函数,则()f x = ( ).B A. sin x ; B. sin x -;C. sin x C +;D. sin x C -+.96.如果()2arctan(2)f x dx x c =+⎰,则)(x f =( ).CA.2114x +; B. 2214x +; C. 2414x +; D. 2814x +. 97.积分2sin 2x dx =⎰ ( ).D A. 11sin 22x x C -++;B. 11sin 22x x C --+;C. 11sin 22x x C ++;D. 11sin 22x x C -+.98.积分cos 2cos sin xdx x x=-⎰ ( ).AA. sin cos x x C -+;B. sin cos x x C -++;C. sin cos x x C ++;D. sin cos x x C --+.99.积分22cos 2sin cos xdx x x =⎰ ( ).BA. cot tan x x C ++;B. cot tan x x C --+;C. cot tan x x C -+;D. cot tan x x C -++.100.积分2tan xdx =⎰( ).CA. tan x x C ++;B. tan x x C --+;C. tan x x C -+;D. tan x x C -++.换元积分法101.如果)(x F 是)(x f 的一个原函数,则()x x f e e dx --=⎰( ).BA .()xF e C -+ B .()xF e C --+ C .()xF e C + D .()xF e C -+102.如果,(ln )f x dx x '=⎰( ).CA.1c x -+;B.x c -+;C.c x+1;D.x c +.103.如果()xf x e =,(ln )f x dx x'=⎰( ).DA.1c x -+;B.x c -+;C.c x+1;D.x c +.104.如果()xf x e -=,则(2ln )2f x dx x'=⎰( ).AA.214c x +;B. 21c x+;C.24x c +;D.2x c +. 105.如果()sin f x x =,'=( ).BA. 2x c +;B. x c +;C. sin x c +;D.cos x c +.106.积分sin 3xdx =⎰( ).DA. 3cos3x C -+;B. 1cos33x C +;C. cos3x C -+;D. 1cos33x C -+.107.积分121x e dx x=⎰( ).BA. 1x e C +;B. 1xe C -+;C. 11x e C x +;D. 11x e C x-+.108.积分tan xdx =⎰( ).AA. ln cos x C -+;B. ln cos x C +;C. ln sin x C -+;D. ln sin x C +.109.积分2dxx =-⎰ ( ).DA. 2(2)x C -+; B. 2(2)x C --+;C. ln 2x C --+;D. ln 2x C -+.110.积分11cos dx x =+⎰ ( ).CA. cot csc x x C -+;B. cot csc x x C ++;C. cot csc x x C -++;D. cot csc x x C --+.111.积分⎰-dx x cos 11= ( ).DA. cot csc x x C -+;B. cot csc x x C ++;C. cot csc x x C -++;D. cot csc x x C --+.112.积分11sin dx x =+⎰ ( ).BA. tan sec x x C ++;B. tan sec x x C -+;C. tan sec x x C -++;D. tan sec x x C --+.113.积分sin 1sin xdx x =+⎰ ( ).DA. sec tan x x x c +++;B. sec tan x x x c +-+;C. sec tan x x x c --+;D. sec tan x x x c -++.114.积分11sin dx x =-⎰ ( ).AA. tan sec x x C ++;B. tan sec x x C -+;C. tan sec x x C -++;D. tan sec x x C --+.115.积分ln dxx x =⎰ ( ).AA. ln ln x C +;B. ln ln x C -+;C. 2ln x C +; D. 1ln x x C --+.116.积分= ( ).CA.arctan C ;B.C ;C. 2arctanC ; D. C .117.积分1xxe dx e=+⎰ ( ).B A. ln(1)xe C -++; B. ln(1)xe C ++;C. ln(1)xx e C +++; D. ln(1)xx e C -++.118.积分2cos xdx =⎰( ).CA.11sin 224x x C -+; B. 11sin 224x x C -++;C. 11sin 224x x C ++;D. 11sin 224x x C --+.119.积分3cos xdx =⎰( ).AA. 31sin sin 3x x C -+;B. 31sin sin 3x x C -++;C. 31sin sin 3x x C ++;D. 31sin sin 3x x C --+.120.积分=( ).AA. C + ;B. 2(C + ;C. C + ;D. 2(arctan C + .分部积分法 121.如果sin xx是()f x 的一个原函数,则()xf x dx '=⎰( ).D A. sin cos x x C x ++ ; B. sin cos xx C x -+ ; C. 2sin cos x x C x ++ ; D. 2sin cos xx C x-+ . 122.如果arccos x 是()f x 的一个原函数,则()xf x dx '=⎰( ).Barcsin x c + ;arccos x c -+ ;arcsin x c + ;arccos x c ++ .123.如果arcsin x 是()f x 的一个原函数,则='⎰dx x f x )(( ).Aarcsin x c + ;arcsin x c ++ ;arcsin x c + ;arcsin x c ++ .124.如果arctan x 是()f x 的一个原函数,则='⎰dx x f x )(( ).BA. 2arctan 1x x c x +++;B. 2arctan 1xx c x -++ ;C.2arctan 1x x c x --++ ; D. 2arcsin 1xx c x -+++ .125.如果()ln 3xf x =,(3)x xf e dx e -'=⎰( ).C A. 3x C + ; B. 3x C -+ ;C.13x C + ; D. 13x C -+ . 126.积分x xe dx =⎰( ).BA. x x xe e C -++ ;B. x xxe e C -+ ; C. xxxe e C --+ ; D. xxxe e C ++ .简单有理函数的积分 127.积分221(1)dx x x =+⎰ ( ).CA. 1arctan x C x -++ ;B. 1arctan x C x-+ ; C. 1arctan x C x --+ ; D. 1arctan x C x++ . 128.积分421x dx x=+⎰( ).A A. 31arctan 3x x x C -++ ; B. 31arctan 3x x x C +++ ; C.31arctan 3x x x C --+ ; D. 31arctan 3x x x C +-+ . 129.积分2125dx x x =++⎰( ).B A. 1arctan2x C ++ ; B. 11arctan 22x C ++ ; C. arctan(1)x C ++ ; D.1arctan(1)2x C ++ .130.积分2123dx x x =+-⎰( ).DA.11ln 43x C x ++- ; B. 13ln 41x C x -++ ; C.13ln 41x C x ++- ; D. 11ln 43x C x -++ . 定积分(18题) 定积分的概念及性质 131.变上限积分⎰xadt t f )(是( ).CA. ()f x '的所有原函数;B. ()f x '的一个原函数;C. ()f x 的一个原函数;D. ()f x 的所有原函数 .132.如果0()sin(2)xx t dt Φ=⎰,则()x 'Φ=( ).CA. cos(2)x ;B. 2cos(2)x ;C. sin(2)x ;D. 2sin(2)x .133.如果()x Φ=,则()x 'Φ=( ).D;;. 134.设()sin xaF x tdt =⎰,则()F x '=( ).BA. sin t ;B. sin x ;C. cos t ;D. cos x .135.如果()ln cos xf t dt x =⎰,则()f x '=( ).BA. 2sec x ;B. 2sec x -;C. 2csc x ;D. 2csc x -.136.如果30()sin xf t dt x x =+⎰,则()f x '=( ).AA. sin 6x x -+;B. sin 6x x +;C. 2cos 3x x +;D. 2cos 3x x -+.137.积分121dx x--=⎰( ).B A. ln 2 ; B. ln 2- ;C. ln 3 ; D. ln 3- .138.下列定积分为零的是( ).CA .121cos x xdx -⎰B .11sin x xdx -⎰ C .11(sin )x x dx -+⎰ D .11(cos )x x dx -+⎰139.若)(x f 在],[a a -上连续,则[()()]cos aaf x f x xdx ---=⎰( ).AA. 0 ;B. 1 ;C. 2 ;D. 3 .140.下列定积分为零的是( ).CA .121cos x xdx -⎰B .11sin x xdx -⎰ C .11(sin )x x dx -+⎰ D .11(cos )x x dx -+⎰141.如果)(x f 在],[a a -上连续,则[()()]cos aaf x f x xdx ---=⎰( ).DA.2π;B. 2()f a ;C. 2()cos f a a ;D. 0. 定积分的计算142.积分2111dx x -=+( ).D A. 12π;B. 6π;C. 3π;D. 712π.143.积分cos x xdx π=⎰( ).AA. -2;B. 2;C. -1;D. 0.144.积分91=⎰( ).BA. 2ln2- ;B. 2ln 2 ;C. ln 2- ;D. ln 2 .145.积分01x x dx e e -=+⎰( ).DA. 3π ;B. 4π ;C. 6π; D. 12π .146.积分1=⎰( ).C; B. ;; D.无穷区间的广义积分147.如果广义积分20110k dx x π+∞=+⎰,则k =( ).C A.13;B. 14;C. 15;D. 16.148.广义积分20x xe dx +∞-=⎰( ).BA.13;B. 14;C. 15;D. 16. 4.多元函数微分学(20题)偏导数与全微分(18题) 多元函数的概念149.函数22arcsin 4x y z +=+的定义域为( ).C A. 22{(,)14}x y x y ≤+≤;B. 22{(,)4}x y x y +≤; C. 22{(,)14}x y x y <+≤;D. 22{(,)1}x y x y +>.150.如果(,)()yf x y x y x x+=+,则(,)f x y =( ).DA. 21yx +;B. 21y x +;C. 21x y +;D. 21x y +.151.如果22(,)f x y xy x y +=+,则(,)f x y =( ).AA. 22x y -;B. 22x y +;C. 22y x -;D. 22y x +.偏导数与全微分152.如果z =2zx y∂=∂∂( ).A A. 2222()xy x y -+; B. 2222()xyx y +; C. 22222()y x x y -+; D. 22222()x y x y -+ .153.设arctan yz x=,则2z x y ∂=∂∂( ).C A. 2222()xy x y -+; B. 2222()xyx y +; C. 22222()y x x y -+; D. 22222()x y x y -+ . 154.设22,y f x y y x x ⎛⎫+=- ⎪⎝⎭,则(,)f x y x∂=∂( ).AA.2(1)1x y y -+; B. 2(1)1x y y +-; C. 2(1)1y x x -+; D. 2(1)1y x x+- .155.如果yx z =,则2zx y∂=∂∂( ).A A. 1(1ln )y x y x -+; B. 1(1ln )y x y x --; C. 1(1ln )y xx y -+; D. 1(1ln )y x x y -- .156.如果arctanxz y=,则dz =( ).D A.2222x y dx dy x y x y -+++; B. 2222x ydx dy x y x y -+++; C.2222y x dx dy x y x y -+++; D.2222y xdx dy x y x y -+++ . 157.如果arctanyz x=,则dz =( ).C A.2222x y dx dy x y x y -+++; B. 2222x ydx dy x y x y -+++; C.2222y x dx dy x y x y -+++; D.2222y xdx dy x y x y -+++ . 158.如果2ln(2)z x y =+,则dz =( ).CA. 222222x dz dx dy x y x y =+++; B.222222x dz dx dy x y x y =+++; C. 222222y dz dx dy x y x y=+++; D. 222222y dz dx dy x y x y =+++ . 159.如果yx z =,则dz =( ).BA. 1ln yy x xdx yx dy -+; B. 1ln y y yx dx x xdy -+;C. 1y y yxdx x dy -+; D. 1y y x dx yx dy -+ .160.如果xz y =,则dz =( ).AA. 1ln x x xydx y ydy -+; B. 1ln x x y ydx xy dy -+;C. 1ln y y yx dx x xdy -+;D. 1ln y y x xdx yx dy -+ .161.如果arctan yx z e =,则z x∂=∂( ).B A. arctan 22y x ye x y +; B. arctan 22yx ye x y -+; C. arctan 22yx xe x y +; D. arctan 22yxxe x y-+ . 隐函数的导数与偏导数 162.如果0=+-xy e e xy ,则dy dx =( ).A A. x y e y e x -+; B. x y e y e x+-; C. x y e x e y -+; D. x y e x e y +- . 163.如果,则z z x y∂∂∂∂-=( ).B A. 13; B. 13-; C. 12; D. 12- . 164.如果ln y z z x=,则z z x y x y ∂∂∂∂+=( ).C A. x ; B. y ; C. z ; D. xyz .165.如果z y x e xyz e =++,则dz =( ).D A. x y x y z z e xz e yz dx dy e xy e xy ++--+++; B. x y x y z z e yz e xz dx dy e xy e xy++--+++; C. x y x y z z e xz e yz dx dy e xy e xy +++++--; D. x y x y z z e yz e xz dx dy e xy e xy+++++-- . 166.如果22lnz y z x +=,则dz =( ).C A. 222(21)21z yz dx dy x z z -+--; B. 222(21)21z yz dx dy x z z +--; C. 222(21)21z yz dx dy x z z ----; D. 222(21)21z yz dx dy x z z --- . 多元函数的极值(2题)167.二元函数33(,)6f x y x y xy =+-的( ).DA. 极小值为(0,0)0f =,极大值为(2,2)8f =-;B. 极大值为(0,0)0f =,极小值为(2,2)8f =-;C. 极小值为(2,2)8f =-;D. 极大值为(2,2)8f =- .168.二元函数22(,)36f x y x xy y x y =++--的( ).CA. 极小值为(0,0)0f =;B. 极大值为(0,0)0f =;C. 极小值为(0,3)9f =-;D. 极大值为(0,3)9f =- . 5.概率论初步(12题)事件的概率(7题)169.任选一个不大于40正整数,则选出的数正好可以被7整除的概率为( ).D A. 13; B. 15; C. 17; D. 18. 170.从5个男生和4个女生中选出3个代表,求选出全是女生的概率( ).A A.121; B. 2021; C. 514; D. 914 . 171.一盒子内有10只球,其中4只是白球,6只是红球,从中取三只球,则取的球都是白球的概率为( ).B A. 120; B. 130; C. 25; D. 35 . 172.一盒子内有10只球,其中6只是白球,4只是红球,从中取2只球,则取出产品中至少有一个是白球的概率为( ).C A. 35; B. 115; C. 1415; D. 25. 173.设A 与B 互不相容,且p A P =)(,q B P =)(,则()P A B =U ( ).DA. 1q -;B. 1pq -;C. pq ;D. 1p q -- .174.设A 与B 相互独立,且p A P =)(,q B P =)(,则()P A B =U ( ).CA. 1q -;B. 1pq -;C. (1)(1)p q --;D. 1p q -- .175.甲、乙二人同时向一目标射击,甲、乙二人击中目标的概率分别为和,则甲、乙二人都击中目标的概率为( ).BA. ;B. ;C. ;D. .随机变量及其概率分布(2题)176.设随机变量的分布列为则k =( ).DA. ;B. ;C. ;D. . 177.设随机变量X 的分布列为则{0.52}P X -≤<=( ).C A. ; B. ; C. ; D. .离散型随机变量的数字特征(3题)178.设离散型随机变量ξ的分布列为则ξ的数学期望A. 715; B. 715-; C. 1715; D. 1715- . 179.设随机变量X 满足()3E X =,(3)18D X =,则2()E X =( ).BA. 18;B. 11;C. 9;D. 3 .180.设随机变量X 满足2()8E X =,()4D X =,则()E X =( ).CA. 4;B. 3;C. 2;D. 1 .。