人工智能第三章遗传算法、蚁群算法、粒子群算法
蚁群算法与粒子群算法优缺点个人精华篇

蚁群算法与粒子群算法优缺点蚁群算法(ACO)是受自然界中蚂蚁搜索食物行为的启发,是一种群智能优化算法。
它基于对自然界真实蚁群的集体觅食行为的研究,模拟真实的蚁群协作过程。
算法由若干个蚂蚁共同构造解路径,通过在解路径上遗留并交换信息素提高解的质量,进而达到优化的目的。
蚁群算法作为通用随机优化方法,已经成功的应用于TSP等一系列组合优化问题中,并取得了较好的结果。
但由于该算法是典型的概率算法,算法中的参数设定通常由实验方法确定,导致方法的优化性能与人的经验密切相关,很难使算法性能最优化。
蚁群算法中每只蚂蚁要选择下一步所要走的地方,在选路过程中,蚂蚁依据概率函数选择将要去的地方,这个概率取决于地点间距离和信息素的强度。
(t+n)=(t)+Δ(t+n)上述方程表示信息素的保留率,1-表示信息素的挥发率,为了防止信息的无限积累,取值范围限定在0~1。
Δij表示蚂蚁k在时间段t到(t+n)的过程中,在i到j的路径上留下的残留信息浓度。
在上述概率方程中,参数α和β:是通过实验确定的。
它们对算法性能同样有很大的影响。
α值的大小表明留在每个节点上信息量受重视的程度,其值越大,蚂蚁选择被选过的地点的可能性越大。
β值的大小表明启发式信息受重视的程度。
这两个参数对蚁群算法性能的影响和作用是相互配合,密切相关的。
但是这两个参数只能依靠经验或重复调试来选择。
在采用蚁群-粒子群混合算法时,我们可以利用PSO对蚁群系统参数α和β的进行训练。
具体训练过程:假设有n个粒子组成一个群落,其中第i个粒子表示为一个二维的向量xi=(xi1,xi2),i=1,2,⋯,n,即第i个粒子在搜索空间的中的位置是xi。
换言之,每个粒子的位置就是一个潜在的解。
将xi带入反馈到蚁群系统并按目标函数就可以计算出其适应值,根据适应值的大小衡量解的优劣。
蚁群算法的优点:蚁群算法与其他启发式算法相比,在求解性能上,具有很强的鲁棒性(对基本蚁群算法模型稍加修改,便可以应用于其他问题)和搜索较好解的能力。
智能优化技术

神经网络优化的基本原理
01
神经网络是一种模拟人脑神经系统工作方式的计算模型,由大量神经元相互连接而成。
02
神经网络优化的基本原理是通过调整神经元的连接权值和偏置项,使神经网络的输出尽可能接近目标输出。
确定神经网络的结构
计算损失
反向传播
迭代更新
前向传播
初始化神经网络的权值和偏置项
神经网络优化的实现过程
重复执行前向传播、计算损失和反向传播步骤,直到损失函数值收敛或达到预设的最大迭代次数。
神经网络优化的应用实例
利用神经网络对图像进行分类或目标检测。
图像识别
语音识别
自然语言处理
控制领域
利用神经网络对语音信号进行识别和转写。
利用神经网络对文本进行分析、理解和生成。
利用神经网络对系统进行建模、预测和控制。
03
对于需要解决非线性优化、多峰值函数优化问题的问题,可选择神经网络优化算法、梯度下降算法等。
未来智能优化技术的展望
THANK YOU.
谢谢您的观看
组合优化
03
在组合优化问题中,蚁群算法可以解决如旅行商问题、作业排程问题等经典NP难问题。通过模拟蚂蚁搜索最优解的过程,蚁群算法能够在较短的时间内找到近似最优解。
粒子群算法
04
粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群、鱼群等群体的社会行为,利用群体中的个体之间的协作和竞争来实现全局最优解的搜索。
模拟退火算法
06
基于固体退火过程的类比
引入随机性
充分混合与冷却
模拟退火算法的基本原理
模拟退火算法的实现过程
设定初始温度、初始解、降温计划等参数。
初始化
在给定温度下,通过一定的搜索策略,寻找当前最优解,并记录最优解。
智能仿生算法及其网络优化中的应用研究进展

智能仿生算法及其网络优化中的应用研究进展在当今数字化的时代,网络已经成为人们生活和工作中不可或缺的一部分。
随着网络规模的不断扩大和应用需求的日益复杂,如何优化网络性能、提高资源利用率和保障服务质量成为了亟待解决的关键问题。
智能仿生算法作为一种新兴的优化技术,为网络优化领域带来了新的思路和方法,并取得了显著的研究进展。
智能仿生算法是一类受生物系统启发而产生的计算方法,它们模拟了生物的智能行为和进化机制,具有自适应性、自组织性和全局搜索能力等优点。
常见的智能仿生算法包括遗传算法、蚁群算法、粒子群优化算法、模拟退火算法等。
这些算法在解决复杂优化问题方面表现出了强大的能力,逐渐在网络优化领域得到了广泛的应用。
遗传算法是一种基于自然选择和遗传变异原理的优化算法。
在网络优化中,遗传算法可以用于网络拓扑结构的设计、路由选择、资源分配等问题。
例如,在网络拓扑设计中,通过对节点的连接方式进行编码,利用遗传算法的选择、交叉和变异操作,可以搜索到最优的拓扑结构,以降低网络成本、提高网络可靠性。
在路由选择问题中,遗传算法可以根据网络的流量分布和链路状态,找到最优的路由路径,从而减少网络拥塞和延迟。
蚁群算法是受蚂蚁觅食行为启发而产生的一种算法。
蚂蚁在寻找食物的过程中,会通过释放信息素来引导其他蚂蚁的行动,从而形成最优的路径。
在网络优化中,蚁群算法可以应用于路由优化、任务调度等方面。
例如,在路由优化中,将网络中的节点和链路看作蚂蚁行走的路径,通过蚂蚁在路径上释放和感知信息素,可以找到最优的路由路径。
在任务调度问题中,蚁群算法可以根据任务的优先级和资源需求,合理分配计算资源,提高系统的性能。
粒子群优化算法是一种基于鸟群觅食行为的优化算法。
粒子在搜索空间中根据自身的经验和群体的最优位置来调整自己的速度和位置,从而实现全局最优解的搜索。
在网络优化中,粒子群优化算法可以用于网络参数的调整、带宽分配等问题。
例如,在网络参数调整中,通过将网络参数作为粒子的位置,利用粒子群优化算法的更新机制,可以找到最优的参数配置,以提高网络的性能。
人工智能第三章遗传算法、蚁群算法、粒子群算法

寻求一种能产生可行解的启发式规则,以找到一个最优解或近似 最优解。该方法的求解效率虽然比较高,但对每—个需要求解的 问题都必须找出其特有的启发式规则,这个启发式规则无通用性, 不适合于其他问题。
2021/4/17
9
(3)搜索算法。寻求一种搜索算法,该算法在可行解集合的一个 子集内进行搜索操作,以找到问题的最优解或近似最优解。该方 法虽然保证不了一定能够得到问题的最优解,但若适当地利用一 些启发知识,就可在近似解的质量和求解效率上达到—种较好的 平衡。
染色休X也称为个体X。
对于每一个个体X,要按照一定的规则确定出其适应度;个体 的适应度与其对应的个体表现型X的目标函数值相关联,X越 接近于目标函数的最优点,其适应度越大;反之,其适应度越 小。
遗传算法中,决策变量X组成了问题的解空间。对问题最优解 的搜索是通过对染色体X的搜索过程来进行的,从而由所有的 染色体X就组成了问题的搜索空间。
遗传算法属于一种自适应概率搜索技术,其选择、交叉、变异 等运算都是以一种概率的方式来进行的,从而增加了其搜索过 程的灵活性。
虽然这种概率特性也会使群体中产生—些适应度不高的个体,但 随着进化过程的进行,新的群体中总会更多地产生出许多优良的 个体,实践和理论都已证明了在—定条件下遗传算法总是以概率 1收敛于问题的最优解。
2021/4/17
8
求最优解或近似最优解的方法
(1)枚举法。
枚举出可行解集合内的所有可行解,以求出精确最优解。对于连 续函数,该方法要求先对其进行离散化处理,这样就有可能产生 离散误差而永远达不到最优解。另外,当枚举空间比较大时,该 方法的求解效率比较低,有时甚至在目前最先进的计算工具上都 无法求解。
当然,交叉概率和变异概率等参数也会影响算法的搜索效果和 搜索效率,所以如何选择遗传算法的参数在其应用中是一个比 较重要的问题。而另一方面,与其他一些算法相比遗传算法的 鲁20棒21/性4/17又会使得参数对其搜索效果的影响会尽可能地低。 20
人工智能第三章遗传算法、蚁群算法、粒子群算法-课件

寻求一种能产生可行解的启发式规则,以找到一个最优解或近似 最优解。该方法的求解效率虽然比较高,但对每—个需要求解的 问题都必须找出其特有的启发式规则,这个启发式规则无通用性, 不适合于其他问题。
21.12.2020
9
(3)搜索算法。寻求一种搜索算法,该算法在可行解集合的一个 子集内进行搜索操作,以找到问题的最优解或近似最优解。该方 法虽然保证不了一定能够得到问题的最优解,但若适当地利用一 些启发知识,就可在近似解的质量和求解效率上达到—种较好的 平衡。
21.12.2020
4
遗传算法是模拟生物在自然环境力的遗传和进化过程而形成的 一种自适应全局优化概率搜索算法。
它最早由美国密执安大学的Holland教授提出,起源于60年代对 自然和人工自适应系统的研究。
70年代De Jong基于遗传算法的思想在计算机上进行了大量的纯 数值函数优化计算实验。
在—系列研究工作的基础上,80年代由Goldberg进行归纳总结, 形成了遗传算法的基本框架。
21.12.2020
5
一、遗传算法概要
对于一个求函数最大值的优化问题(求函数最小值也类同),— 般可描述为下述数学规划模型:
max
s.t .
f (X) XR RU
式中,X x1 x2 xnT为决策变量,f(X)为目标函数,后两个
式子为约束条件,U是基本空间,R是U的一个子集。
满足约束条件的解X称为可行解,集合R表示由所有满足约束条 件的解所组成的一个集合,叫做可行解集合。它们之间的关系 如图所示。
21.12.2020
16
三、遗传算法的特点
(1)遗传算法以决策变量的编码作为运算对象。
传统的优化算法往往直接利用决策变量的实际值本身来进行优 化计算,但遗传算法不是直接以决策变量的值,而是以决策变 量的某种形式的编码为运算对象。
人工智能优化算法

人工智能优化算法引言人工智能(Artificial Intelligence,简称AI)已经取得了许多令人瞩目的进展,而优化算法作为AI领域的一个重要分支,在解决实际问题上发挥着重要作用。
本文将重点介绍人工智能优化算法的概念、分类以及在实际应用中的一些典型算法。
优化算法的概念优化算法是一类通过计算机模拟和人工智能方法,寻找目标函数的最优解或次优解的算法。
优化算法的目标是在给定的约束条件下,通过不断调整输入参数来寻找最佳参数组合,以实现最优或近似最优的解决方案。
优化算法的分类根据使用的优化策略和方法,优化算法可以分为多种类型。
以下是一些常见的优化算法分类:梯度下降法梯度下降法是一种常用的数值优化方法,通过计算目标函数的梯度来寻找最小化的方向,并在每一步沿着负梯度方向更新参数。
梯度下降法适用于连续可微、凸函数的优化问题。
遗传算法遗传算法是基于生物进化原理的一种优化算法。
通过模拟基因的交叉、变异和选择过程,遗传算法能够在解空间中搜索最优解。
遗传算法适用于解空间复杂、非线性的优化问题。
粒子群优化算法粒子群优化算法是通过模拟鸟群或鱼群的行为来进行优化的一种群体智能算法。
每个个体代表问题解空间中的一个候选解,通过学习和交流来不断调整自身位置,并寻找最优解。
粒子群优化算法适用于连续优化问题。
蚁群算法蚁群算法是模拟蚂蚁觅食行为而提出的一种算法。
通过模拟蚁群中蚂蚁释放信息素的行为,蚁群算法能够找到问题解空间中的优化路径。
蚁群算法适用于离散优化问题。
典型的人工智能优化算法深度学习深度学习是一种基于神经网络的机器学习方法,通过模拟人脑的神经网络结构来实现对大规模数据的分析和学习。
深度学习在计算机视觉、自然语言处理等领域中取得了许多重大突破。
模拟退火算法模拟退火算法是一种基于物理退火原理的优化算法。
通过模拟金属的退火过程,模拟退火算法可以在解空间中搜索全局最优解。
模拟退火算法适用于连续和离散的优化问题。
粒子群优化算法粒子群优化算法是一种通过模拟粒子群的行为寻找最优解的算法。
人工智能第三章遗传算法、蚁群算法、粒子群算法PPT

对于每一个个体X,要按照一定的规则确定出其适应度;个体 的适应度与其对应的个体表现型X的目标函数值相关联,X越 接近于目标函数的最优点,其适应度越大;反之,其适应度越 小。
遗传算法中,决策变量X组成了问题的解空间。对问题最优解 的搜索是通过对染色体X的搜索过程来进行的,从而由所有的 染色体X就组成了问题的搜索空间。
根据不同的情况,这里的等位基因可以是一组整数,也可以是 某一范围内的实数值,或者是纯粹的一个记号。
最简单的等位基因是由0和l这两个整数组成的。相应的染色体 就可表示为一个二进制符号串。
14.10.2020
11
这种编码所形成的排列形式X是个体的基因型,与它对应的x值是 个体的表现型。
通常个体的表现型和其基因型是一一对应的,但有时也允许基因 型和表现型是多对一的关系。
14.10.2020
6
14.10.2020
可行解
X R
ห้องสมุดไป่ตู้
基本空间 U
可行解集合
7
对于上述最优化问题,目标函数和约束条件种类繁多,有的是线 性的,有的是非线性的;有的是连续的,有的是离散的;有的是 单峰值的,有的是多峰值的。
随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全 精确地求出其最优解既不可能,也不现实,因而求出其近似最 优解或满意解是人们的主要着眼点之—。
14.10.2020
8
求最优解或近似最优解的方法
(1)枚举法。
枚举出可行解集合内的所有可行解,以求出精确最优解。对于连 续函数,该方法要求先对其进行离散化处理,这样就有可能产生 离散误差而永远达不到最优解。另外,当枚举空间比较大时,该 方法的求解效率比较低,有时甚至在目前最先进的计算工具上都 无法求解。
遗传算法,粒子群算法和蚁群算法的异同点

遗传算法,粒子群算法和蚁群算法的异同点
遗传算法、粒子群算法和蚁群算法是三种不同的优化算法,它们的异同点如下:
1. 原理不同:
遗传算法是一种模拟自然进化过程的优化算法,主要利用遗传和交叉等运算来产生下一代候选解,通过适应度函数来评价每个候选解的好坏,最终选出最优解。
粒子群算法基于对群体智能的理解和研究,模拟了鸟群或鱼群等动物群体的行为,将每个解看作一个粒子,粒子通过跟踪历史最佳解的方式来更新自己的位置与速度,直到达到最佳解。
蚁群算法是基于模拟蚂蚁在食物和家之间寻找最短路径的行为,将每个解看作一只蚂蚁,通过随机选择路径并留下信息素来搜索最优解。
2. 适用场景不同:
遗传算法适用于具有较大搜索空间、多个可行解且无法枚举的问题,如旅行商问题、无序机器调度问题等。
粒子群算法适用于具有连续参数、寻求全局最优解的问题,如函数优化、神经网络训练等。
蚁群算法适用于具有连续、离散或混合型参数的优化问题,如
路径规划、图像分割等。
3. 参数设置不同:
遗传算法的参数包括个体数、交叉概率、变异概率等。
粒子群算法的参数包括粒子数、权重因子、学习因子等。
蚁群算法的参数包括蚂蚁数量、信息素挥发率、信息素初始值等。
4. 收敛速度不同:
遗传算法需要较多的迭代次数才能得到较优解,但一旦找到最优解,一般能够较好地保持其稳定性,不太容易陷入局部最优。
粒子群算法的收敛速度较快,但对参数设置较为敏感,可能会陷入局部最优。
蚁群算法的收敛速度中等,能够较好地避免局部最优,但也容易出现算法早熟和陷入局部最优的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
件的解所组成的一个集合,叫做可行解集合。它们之间的关系
如图所示。 2020/10/6
6
可行解
X R
Hale Waihona Puke 基本空间 U2020/10/6
可行解集合
7
对于上述最优化问题,目标函数和约束条件种类繁多,有的是线 性的,有的是非线性的;有的是连续的,有的是离散的;有的是 单峰值的,有的是多峰值的。
随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全 精确地求出其最优解既不可能,也不现实,因而求出其近似最 优解或满意解是人们的主要着眼点之—。
生物的进化是以集团为主体的。与此相对应,遗传算法的运算对 象是由M个个体所组成的集合,称为群体。
与生物一代一代的自然进化过程相类似,遗传算法的运算过程也 是一个反复迭代的过程,第t代群体记做P(t),经过一代遗传和进 化后,得到第t+l代群体,它们也是由多个个体组成的集合,记做 P(t+1)。
这个群体不断地经过遗传和进化操作,并且每次都按照优胜劣 汰的规则将适应度较高的个体更多地遗传到下一代,这样最终 在群体中将会得到一个优良的个体X,它所对应的表现型X将达 到或接近于问题的最优解X*。
遗传算法是模拟生物在自然环境力的遗传和进化过程而形成的 一种自适应全局优化概率搜索算法。
它最早由美国密执安大学的Holland教授提出,起源于60年代 对自然和人工自适应系统的研究。
70年代De Jong基于遗传算法的思想在计算机上进行了大量的 纯数值函数优化计算实验。
在—系列研究工作的基础上,80年代由Goldberg进行归纳总结, 形成了遗传算法的基本框架。
2020/10/6
8
求最优解或近似最优解的方法
(1)枚举法。
枚举出可行解集合内的所有可行解,以求出精确最优解。对于连 续函数,该方法要求先对其进行离散化处理,这样就有可能产生 离散误差而永远达不到最优解。另外,当枚举空间比较大时,该 方法的求解效率比较低,有时甚至在目前最先进的计算工具上都 无法求解。
第三章
遗传算法、蚁群算法与 粒子群算法
2020/10/6
1
3.1 遗传算法
2020/10/6
2
生物在自然界中的生存繁衍,显示出了其对自然环境的优异自 适应能力。受其启发,人们致力于对生物各种生存特性的机理 研究和行为模拟,为人工自适应系统的设计和开发提供了广阔 的前景。
遗传算法(Genetic Algorithm,简称GA)就是这种生物行为的计 算机模拟中令人瞩目的重要成果。
(1)生物的所有遗传信息都包含在其染色休中,染色体决定了生 物的性状。
(2)染色体是由基因及其有规律的排列所构成的,遗传和进化过 程发生在染色体上。
(3)生物的繁殖过程是由其基因的复制过程来完成的:
(4)通过同源染色体之间的交叉或染色体的变异会产生新的物种, 使生物呈现新的性状。
(5)对环境适应性好的基因或染色体经常比适应性差的基因或染 色体有更多的2机020会/10遗/6 传到下一代。 4
(2)启发式算法。
寻求一种能产生可行解的启发式规则,以找到一个最优解或近似
最优解。该方法的求解效率虽然比较高,但对每—个需要求解的
问题都必须找出其特有的启发式规则,这个启发式规则无通用性,
不适合于其他问202题0/10。/6
9
(3)搜索算法。寻求一种搜索算法,该算法在可行解集合的一个 子集内进行搜索操作,以找到问题的最优解或近似最优解。该方 法虽然保证不了一定能够得到问题的最优解,但若适当地利用一 些启发知识,就可在近似解的质量和求解效率上达到—种较好的 平衡。
2020/10/6
5
一、遗传算法概要
对于一个求函数最大值的优化问题(求函数最小值也类同),— 般可描述为下述数学规划模型:
max
s.t.
f (X) XR RU
式中,X x1 x2 xn T 为决策变量,f(X)为目标函数,后两个
式子为约束条件,U是基本空间,R是U的一个子集。
满足约束条件的解X称为可行解,集合R表示由所有满足约束条
—般情况下,染色体的长度n是固定的,但对一些问题n也可以 是变化的。
根据不同的情况,这里的等位基因可以是一组整数,也可以是 某一范围内的实数值,或者是纯粹的一个记号。
最简单的等位基因是由0和l这两个整数组成的。相应的染色体
就可表示为一2个020二/10进/6 制符号串。
11
这种编码所形成的排列形式X是个体的基因型,与它对应的x值是 个体的表现型。
生物的进化过程主要是通过染色体之间的交叉和变异来完成的, 遗传算法中最优解的搜索过程也模仿生物的这个进化过程,使用 所谓的遗传算子(genetic operators)作用于群体P(t)中,进行下 述遗传操作,从202而0/1得0/6 到新一代群体P(t+113)。
选择(selection):根据各个个体的适应度,按照一定的规则或方 法,从第t代群体P(t)中选择出一些优良的个体遗传到下一代群体 P(t+1)中。
基于对生物遗传和进化过程的计算机模拟,遗传算法使得各种 人工系统具有优良的自适应能力和优化能力。
遗传算法所借鉴的生物学基础就是生物的遗传和进化。
2020/10/6
3
虽然人们还未完全揭开遗传与进化的奥秘,既没有完全掌握其机 制,也不完全清楚染色体编码和译码过程的细节,更不完全了解 其控制方式,但遗传与进化的以下几个特点却为人们所共识:
通常个体的表现型和其基因型是一一对应的,但有时也允许基因 型和表现型是多对一的关系。
染色休X也称为个体X。
对于每一个个体X,要按照一定的规则确定出其适应度;个体 的适应度与其对应的个体表现型X的目标函数值相关联,X越接 近于目标函数的最优点,其适应度越大;反之,其适应度越小。
遗传算法中,决策变量X组成了问题的解空间。对问题最优解 的搜索是通过对染色体X的搜索过程来进行的,从而由所有的 染色体X就组成202了0/10问/6 题的搜索空间。 12
而遗传算法为解决这类问题提供了一个有效的途径和通用框架, 开创了一种新的全局优化搜索算法。
2020/10/6
10
遗传算法中,将n维决策向量 X x1 x2 xn T
Xi (n=l,2,,n)所组成的符号串X来表示:
用n个记号
X X1X 2 X n X x1 x2 xn T
把每一个Xi看作一个遗传基因,它的所有可能取值称为等位基因, 这样,X就可看做是由n个遗传基因所组成的一个染色体。