物理材料力学弯曲剪应力
材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
材料力学弯曲剪应力

,max
S
* z ,max
Izd
FS,max
Iz S*
z ,max
d
75103 N 47.73 102m 12.5 103m
12.6 106 Pa 12.6 MPa
第15页/共68页
例题 4-13
2. 求ta ta
其中:
FS
,max
S
* za
Izd
S
* za
166
mm
21
mm
560 mm 2
思考题: 试通过分析说明,图a中
所示上、下翼缘左半部分 和右半部分横截面上与腹 板横截面上的切应力指向 是正确的,即它们构成了 “切应力流”。
第12页/共68页
例题 4-13
由56a号工字钢制成的简支梁如图a所示,试求
梁的横截面上的最大切应力tmax和同一横截面上腹 板上a点处(图b)的切应力t a 。不计梁的自重。
3 2
FS bh
第4页/共68页
2. 工字形截面梁 (1) 腹板上的切应力
t
FS
S
* z
Izd
其中
Sz*
b
h 2
2
h 2
y d
h 2
y
y
2
b
2
h
d 2
h 2
2
y
2
第5页/共68页
可见腹板上的切应力在与中性轴z垂直的方向 按二次抛物线规律变化。
第6页/共68页
(2) 在腹板与翼缘交界处:
第10页/共68页
F* N2
自由边 t1 t1
A* F* dx
N1
u
根据 d FS t可1 得d x出
材料力学第五章弯曲应力

式中 : M 横截面上的弯矩
Iz
横截面对中性轴的惯性矩
y
求应力的点到中性轴的距离
I z A y2dA
m 惯性矩是面积与距离平方的乘积,恒为正值,单位为 4
My
IZ
讨论
应用公式时,一般将 M,y 以绝对值代入。根据梁变 形的情况直接判断 的正,负号。 以中性轴为界,梁 变形后凸出边的应力为拉应力( 为正号)。凹入边 的应力为压应力,( 为负号)。
max M (x) WZ
RA
P
A
C
5m 10m
RB B
a
12.5
z
166
例题1 :图示简支梁由 56 a 工字钢制成 ,其横截面见图 p = 150kN。求 (1) 梁上的最大正应力 max
(2) 同一截面上翼缘与腹板交界处 a 点的应力
解:
C 截面为危险截面。最大弯矩
+
M max 375KN.m
查型钢表,56 a 工字钢
I z 65586 cm6
W z 2342cm2
(1) 梁的最大正应力 +
σ max
M max WZ
160MPa
(2) a点的正应力
a点到中性轴的距离为
ya
560 2
21
所以 a 点的正应力为
σ a M max ya 145MPa IZ
12.5
My
IZ
最大正应力发生在横截面上离中性轴最远的点处 当 中性轴为对称轴时 ,ymax 表示最大应力点到中性轴 的距离,横截面上的最大正应力为
max M ymax Iz
WZ
IZ ymax
材料力学第五章 弯曲应力分析

B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
材料力学:弯曲切应力

n
F
* N2
m
F F dFs 0
* N2 * N1
1 dA
dA
m
n
dM * dFs F F Sz Iz
* N2 * N1
dM * dFs F F Sz Iz
* N2 * N1
z
y x
3
求纵截面 AB1 上的切应力 ’
dFs 1 dM * Sz b dx bI z dx
B
A
h/2
b
y
m
n
dA bdy
1
Fs S z
*
I
z
b
2 b h 2 * SZ ( y ) 2 4
Fs h 2 τ ( y2 ) 2I z 4
可见 ,切应力沿 截面高度按抛物线规律变化。
Fs h 2 τ ( y2 ) 2I z 4
h y 处,(即在横截面上距中性轴最远处),切应力等于零 2
z
* z
上式为 矩形截面梁 对称弯曲时横截面上任一点处的
切应力计算公式。
Fs S bI
z
* z
A
*
Z
Iz — 整个横截面对中性轴的惯性矩 b— 矩型截面的宽度 Sz* — 过求切应力的点做与中性轴平 行的直线,该线任一边的横截面面积 对中性轴的静矩
y
A
*
y
b
— 其方向与剪力 Fs 的方向一致
τ 0
y = 0 处,( 即在中性轴上各点处) ,切应力达到最大值
max
Fs h 2 Fs h 2 3 Fs 3 Fs 3 bh 8I z 2 bh 2 A 8 12
材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学第七章弯曲剪应力

对于标准工字钢梁:
t max
*
F SS zmax Izb
FS
b
Iz
/
S* Z max
在翼板上:
FN I
A* sⅠdA
My dA
I A* z
FN
M Iz
ydA
A*
M Iz
Sz*
FN II
A* (s Ⅱ)dA
(M dM )
即:M
dM Iz
S
* z
M Iz
S
* z
tbdx
t
S
* z
dM
Izb dx
结论:
t
FS
S
* z
Izb
§5.7 梁的切应力
3.切应力分布规律
t
FS
S
* z
FS
h2 (
y2)
I zb 2I z 4
6FS bh3
h 2 4
y2
S* z
A*
y* C
b
h
y
y
h 2
y
2
2
b 2
h2 4
y2
用剪应力为[τ],求螺栓的最小直径?
解:叠梁承载时,每
F
梁都有自己的中性层
L
FS
F
-FL
M
h 2
1.梁的最大正应力:
h 2
b
s max
1 2
M
max
W
其中:
W
b( h )2 2
bh2
6 24
s max
M max 2W
12FL bh2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图a所示:认为离中性轴z为
任意距离y的水平直线kk'上各
点处的切应力均汇交于k点和
k'点处切线的交点O ',且这些
切应力沿y方向的分量ty相等。
因此可先利用公式
ty
FS Sz* I z bkk
求出kk'上各点的切应
力竖向分量ty ,然后求出各点处各自的切应力。
圆截面梁横截面上的
最大切应力tmax在中性轴z
处,其计算公式为
t max
FS
S
* z
Izd
FS
1 2
πd 4
2
πd 4 d
2d
3π
64
4FS 4FS
3
π 4
d
2
3A
II. 梁的切应力强度条件
图a所示受满布均布荷 载的简支梁,其最大弯矩 所在跨中截面上、下边缘 上的C点和D点处于单轴应 力状态(state of uniaxial stress) (图d及图e),故根 据这些点对该梁进行强度 计算时其强度条件就是按 单轴应力状态建立的正应 力强度条件
A
y2 z2 d A
y2 d A
A
z2 d A
A
Iz Iy 2Iz
得出:
Iz
1 2
Ip
π
r03
从而有
t max
FS
S
* z
Iz 2
FS 2r02 π r03 2
FS 2 FS
r0 π
A
式中, A=2pr0 为整个环形截面的面积。
(4) 圆截面梁 圆截面梁在竖直平面内弯曲
时,其横截面上切应力的特征
§7-3 弯曲剪应力和强度校核
一.矩形截面截面梁的剪应力
b
My
Iz
mn
h
Oz y
zM
y
tt
M+dM
FS
FS
y
1 m dx n
2
假设
在hb的情况下
1.t的方向都与 FS 平行 2.t 沿宽度均布。
t
t
y
FNⅠ
FNII
z
y
A*
y
y A*
dFS
FNⅠ
y A*
FNII
FNI A* ⅠdA
A*
M y1 dA Iz
M Iz
A*
y1 dA
M Iz
Sz*
FNⅡ A* ( Ⅱ)dA
A*
(M
dM ) y1 dA Iz
M
dM Iz
A*
y1 dA
M
dM Iz
S* z
FN II FN I t bdx
即:M
dM Iz
S
* z
M Iz
S
* z
tbdx
t
S
* z
dM
Izb dx
结论:
t
规律变化的。
思考题: 试通过分析说明,图a中
所示上、下翼缘左半部分 和右半部分横截面上与腹 板横截面上的切应力指向 是正确的,即它们构成了 “切应力流”。
例题 4-13
由56a号工字钢制成的简支梁如图a所示,试求
梁的横截面上的最大切应力tmax和同一横截面上腹 板上a点处(图b)的切应力t a 。不计梁的自重。
FS
S
* z
Izb
§5.7 梁的切应力
3.切应力分布规律
t
FS
S
* z
FS ( h 2 y 2 )
I zb 2I z 4
6FS bh3
h 2 4
y2
S* z
A*
y* C
b
h
y
y
h 2
y
2
2
b 2
h2 4
y2
Iz
bh3 12
b
F
S
h y
t
y
z
t max
t
t max
3 2
FS bh
例题 4-13
解: 1. 求tmax
梁的剪力图如图c所示,由图可见FS,max=75kN。 由型钢表查得56a号工字钢截面的尺寸如图b所示,
Iz=65 586 cm4和Iz/S * z,max=47.73cm。d=12.5mm
例题 4-13
tmax
FS
,max
S
* z ,max
Izd
FS,max
FS
S
* z ,max
Izd
FS Izd
b
2
h
d 2
h 2
2
对于轧制的工字钢,上式中的 Iz就是型钢表 中给出的比值 ,此I值x 已把工字钢截S面z*,ma的x 翼缘厚 度变化和圆角等考虑S在x 内。
(3) 翼缘上的切应力
翼缘横截面上平行于 剪力FS的切应力在其上、 下边缘处为零(因为翼缘的 上、下表面无切应力),可 见翼缘横截面上其它各处 平行于FS的切应力不可能 大,故不予考虑。分析表 明,工字形截面梁的腹板 承担了整个横截面上剪力 FS的90%以上。
F* N2
自由边 t1 t1
A* F* dx
N1
u
但是,如果从长为dx的梁段 中用铅垂的纵截面在翼缘上截取如 图所示包含翼缘自由边在内的分离 体就会发现,由于横力弯曲情况下 梁的相邻横截面上的弯矩不相等, 故所示分离体前后两个同样大小的 部分横截面上弯曲正应力构成的合 力FN*1 FN*2
和 不相等,因而铅垂的纵截
面上必有由切d F应S 力 Ft1N*′2构成FN的*1 合力。
F* N2
自由边 t1 t1
A* F* dx
N1
u
根据 d FS t可1 得d x出
t1
FS
S
* z
I z
FS
I z
u
h 2
2
FS uh
2Iz
从而由切应力互等定理可
知,翼缘横截面上距自由边为u
处有平行于翼缘横截面边长的
切应力t1,而且它是随u按线性
力t 的大小和方向沿壁厚 无变
化; (2) 由于梁的内、外壁上无切
应力,故根据切应力互等定理 知,横截面上切应力的方向与 圆周相切;
(3) 根据与y轴的对称关系 可知:
(a) 横截面上与y轴相交的 各点处切应力为零;
(b) y轴两侧各点处的切应 力其大小及指向均与y轴对 称。
薄壁环形截面梁横截面上的最大切应力tmax
Iz S*
z ,max
d
75103 N 47.73 102m 12.5 103m
12.6 106 Pa 12.6 MPa
例题 4-13
2. 求ta ta
其中:
FS
,max
S
* za
Izd
S
* za
166
mm
21
mm
560 mm 2
21
mm 2
940 103 mm3
于是有:
ta
在中性轴z上,半个环形截面的面积A*=pr0,其
形心离中性轴的距离(图b)为2r0 ,故求tmax时有
S
* z
π
r0
2r0 π
π
2r02
整个环形截面对于中性 轴z的惯性矩Iz可利用整个截 面对于圆心O的极惯性矩得 到,如下:
Ip
2
A
d
2π
r0
r02
2π
r03
及
Ip
2d A
A
75 103 N 940 106 m3 65586 108 m4 12.5 103 m
8.6106 Pa 8.6 MPa
例题 4-13
腹板上切应力沿高度的变化规律如图所示。
tmax
3. 薄壁环形截面梁 薄壁环形截面梁在竖直平面
内弯曲时,其横截面上切应力 的特征如图a所示:
(1) 由于d <<r0,故认为切应
2. 工字形截面梁 (1) 腹板上的切应力
t
FS
S
* z
Izd
其中
Sz*
b
h 2
2
h 2
y d
h 2
y
y
2
b
2
h
d 2
h 2
2
y
2
可见腹板上的切应力在与中性轴z垂直的方向 按二次抛物线规律变化。
(2) 在腹板与翼缘交界处:
t min
FS Izd
b
2
h
在中性轴处:
t max