鸽巢问题教学反思

合集下载

人教版小学数学六年级下册《鸽巢问题》教学反思

人教版小学数学六年级下册《鸽巢问题》教学反思

人教版小学数学六年级下册《鸽巢问题》教学反思鸽巢问题又称抽屉原理,是人教版六年级下册组合数学中最简单也是最基本的原理之一。

教材通过展示几个具体的例子,借助实际操作,向学生介绍“鸽巢问题”,学生在理解这一数学方法的基础上,会对一些简单的实际问题建立鸽巢模型,促进学生逻辑能力的发展,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发现抽象能力、推理能力和应用能力。

本节课我试着融入现代教学理论,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。

根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用启发诱导式教学方法,以提出问题、操作演示、汇报交流、提出发现、总结归纳为主线,根据维果斯基的教育理论,始终在学生知识的“最近发展区”设置问题。

《课程标准》指出:“人人学有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”,在实施教学时,要以学生为主体,发挥好教师的主导作用。

问题的设计遵循“跳一跳,摘桃子”的原则,问题难度层层递进,要让大部分学生经过独立思考,都能找到问题的方向或答案。

比如问题“同学们能不能像老师表演魔术一样,用“至少”来总结你的发现?”“为什么要进行平均分,平均分的目的是什么?”“可以用算式揭示平均分吗?”等,每一个问题指向性明确,目的是为了突出本节课的主线,让学生明确本节课是为了解决什么,他们需要做些什么。

由于学生的认知、心理、年龄特征,小学阶段的学习与具体的实践活动分不开的,新课标要求教师教学以学生主动探索发现、获取知识为目的,以发挥师生互动作用为保证,强调学生主动探索新知,辅之以教师适时地引导和点拨。

本节课教学重点是让学生经历鸽巢原理的探究过程,理解“总有”和“至少”的意义,初步理解鸽巢原理,会用鸽巢原理解释生活中的简单问题。

但是为了让学生能够通过自主探究建立鸽巢原理模型,我大胆的改变了教材的呈现方式。

鸽巢问题教研活动反思(3篇)

鸽巢问题教研活动反思(3篇)

第1篇一、活动背景鸽巢问题,又称抽屉原理,是数学中的一个基本原理。

它源于一个简单的实际问题:如果有n个鸽巢和n+1只鸽子,那么至少有一个鸽巢里会有两只鸽子。

这一原理在日常生活、科学研究以及工程技术中都有着广泛的应用。

为了提高教师对鸽巢问题的认识,探索有效的教学策略,我们学校近期组织了一次关于鸽巢问题的教研活动。

以下是本次教研活动的反思。

二、活动过程1. 专题讲座教研活动伊始,我们邀请了数学教育专家进行了专题讲座。

专家详细介绍了鸽巢问题的起源、基本原理及其在各个领域的应用。

讲座中,专家还结合实例,深入浅出地阐述了鸽巢问题的解题方法。

2. 课堂观摩随后,我们组织了观摩课,邀请优秀教师展示了一堂精彩的鸽巢问题教学课。

教师通过精心设计的教学环节,引导学生积极参与课堂讨论,培养学生的逻辑思维能力和解决实际问题的能力。

3. 交流研讨观摩课后,教师们展开了热烈的交流研讨。

大家围绕以下几个方面进行了深入探讨:(1)如何将鸽巢问题与学生的生活实际相结合,提高学生的学习兴趣?(2)如何引导学生运用鸽巢原理解决实际问题?(3)如何在教学中培养学生的逻辑思维能力?4. 总结经验教研活动最后,我们总结了以下经验:(1)加强教师对鸽巢问题的认识,提高教师的教学水平。

(2)注重培养学生的逻辑思维能力,提高学生的综合素质。

(3)关注学生的实际需求,将鸽巢问题与学生的生活实际相结合。

三、活动反思1. 鸽巢问题的重要性通过本次教研活动,我们深刻认识到鸽巢问题在数学教育中的重要性。

鸽巢原理不仅有助于学生掌握数学知识,还能培养学生的逻辑思维能力,提高学生的综合素质。

2. 教学策略的改进在教研活动中,我们发现教师在教学中存在以下问题:(1)对鸽巢问题的认识不足,导致教学过程中无法深入挖掘其内涵。

(2)教学方式单一,难以激发学生的学习兴趣。

针对这些问题,我们提出以下改进措施:(1)加强教师培训,提高教师对鸽巢问题的认识。

(2)丰富教学手段,运用多媒体、游戏等多种方式激发学生的学习兴趣。

数学人教版六年级下册《鸽巢问题》课后反思

数学人教版六年级下册《鸽巢问题》课后反思

《鸽巢问题》课后反思本节课是数学广角p68、P69内容,“鸽巢原理”实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。

让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是新课标的重要要求。

一、教材例题分析例1:本例描述“鸽巢原理”的最简单的情况。

着重探讨为什么这样的结论是成立的。

教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,为了让学生更好的理解鸽巢问题,我把4只笔放进三个笔筒里,改成了4只鸽子飞进3个鸽巢里,利用鸽巢和鸽子的学具,引发学生的兴趣。

通过学具摆一摆,找到有四种飞法,并找到这四种飞法的共同点。

为了更迅速的发现这个规律,找到利用平均分更快的得到结论。

紧接着出示三道习题,让学生轻松的找到鸽子数比鸽巢数多一时,总有一个鸽巢里至少飞进2只鸽子。

通过本例的教学,使学生感知这类问题的基本结构,掌握两种思考的方法──枚举和假设,理解问题中关键词语“总有”和“至少”的含义,形成对“鸽巢原理”的初步认识。

例2:本例描述“鸽巢原理”更为一般的形式,通过小组交流讨论7只鸽子飞进3个鸽巢里,引出利用算式慢慢得到结论。

鸽子数比鸽巢数不只多1时,至少数=商+1(有余数)和至少数=商(无余数)。

二、教学反思1、确立教学目标和重难点经过教材分析确立了教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1(有余数)”和“至少数=商数(无余数)”。

并注重在观察、实验、猜想、验证等活动中,发展学生合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。

2、从学生喜欢的“游戏”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

“鸽巢”问题教学反思

“鸽巢”问题教学反思

“鸽巢”问题教学反思
•相关推荐
“鸽巢”问题教学反思
“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识。

例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的',是抽屉原理的一个逆向的应用。

本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。

让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。

兴趣是学习最好的老师。

所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。

叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。

借机引入本节课的重点“总有……至少……”。

这样设计使学生在生动、活泼的数学活动中主动参与。

鸽巢问题教学设计及反思

鸽巢问题教学设计及反思

鸽巢问题教学设计及反思老师给出一个例子,有5个鸽巢,有6只鸽子,问是否一定有两只鸽子在同一个鸽巢里?请同学们讨论一下。

二)引导探究:通过上述例子,引导学生思考“鸽巢问题”的规律,即“如果有n个鸽巢,有m只鸽子,且m>n,那么一定有至少两只鸽子在同一个鸽巢里”。

三)小组讨论:老师让学生分组,让学生自己设计一个实验,验证鸽巢问题的规律。

四)实验验证:学生们进行实验,记录实验结果,并进行数据分析。

老师引导学生总结规律。

三、归纳总结一)引导思考:老师让学生回忆实验过程,引导学生总结规律。

二)总结规律:学生们结合实验结果,总结出“鸽巢问题”的规律。

三)应用练:老师出一些实际问题,让学生运用“鸽巢问题”的规律解决问题。

四、拓展延伸一)应用拓展:老师出一些更复杂的实际问题,让学生运用“鸽巢问题”的规律解决问题。

二)思考拓展:老师引导学生思考“鸽巢问题”的逆用,即如何通过已知的鸽巢数量和不同类别的物品数量,推算出每个鸽巢中至少有多少个物品。

五、作业布置请学生完成课堂上未完成的练题,并思考如何将“鸽巢问题”应用到生活中。

有3支铅笔和2个笔筒,如何把铅笔放进笔筒里?有多少种不同的放法?请一位学生上台试一试。

学生上台演示实物。

有两种情况:一种是把3支铅笔都放在一个笔筒里,另一种是把2支铅笔放在一个笔筒里,另外1支放在另一个笔筒里。

老师根据学生回答在黑板上画图和数的分解两种方法表示两种结果:(3,)、(2,1)。

然后问问题:“不管怎么放,总有一个笔筒里至少有2支铅笔”,这句话正确吗?学生回答后,老师引导他们理解这句话的意思。

得出结论:无论如何放置,总有一个笔筒至少放进2支铅笔。

如果现在有4支铅笔和3个笔筒,是否还会出现这样的结论呢?学生们进行小组合作:1)画出所有情况;(2)找出每种情况中最多的一个笔筒放了几支铅笔;(3)总结出结论。

学生汇报后,得出结论:总有一个笔筒至少放进2支铅笔。

通过“画图”和“数的分解”两种方法列举出所有情况验证了结论,这种方法叫“列举法”。

人教版数学六年级下册鸽巢问题教案与反思(推荐3篇)

人教版数学六年级下册鸽巢问题教案与反思(推荐3篇)

人教版数学六年级下册鸽巢问题教案与反思(推荐3篇) 人教版数学六年级下册鸽巢问题教案与反思【第1篇】鸽巢问题教学设计《鸽巢问题》教学设计【教学内容】(人教版)数学六年级下册第68页例1,69页例2。

【教学目标】1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

【教学难点】:通过操作发展学生的类推能力,形成比较抽象的数学思维。

【教学准备】:多媒体课件、铅笔、文具盒等。

【教学过程】一、创设情境,导入新知老师组织学生做“抢凳子的游戏”。

请3位同学上来,摆开2张凳子。

老师宣布游戏规则:3位同学听到老师说,“走时”围着椅子转圈,当老师说“请坐”的时候,三个人每个人都必须坐在椅子上。

教师背对着游戏的学生。

师:都坐下了吗老师不用看,也知道肯定有一张椅子上至少坐着2位同学。

老师说得对吗师:老师为什么说得这么肯定呢其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。

二、自主操作,探究新知1、观察猜测多媒体出示例1:4枝铅笔,3个文具盒。

师:4个人坐3张凳子,不管怎么坐,总有一张凳子至少坐两个同学。

4枝铅笔放进3个文具盒中呢【不管怎么放,总有一个文具盒中至少放进2枝铅笔。

】师:真的是这样吗为什么会这样呢你能给大家解释这一现象吗2、自主思考(1)独立思考:怎样解释这一现象(2)小组合作,拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况3、交流讨论学生汇报是用什么办法来解释这一现象的。

【学情预设:第一种:用实物摆一摆,把所有的摆放结果都罗列出来。

学生展示把4枝铅笔放进3个盒子里的几种不同摆放情况。

课件再演示四种摆法。

请学生观察不同的放法,能发现什么引导学生发现:每一种摆放情况,都一定有一个文具盒中至少有2枝铅笔。

鸽巢问题教学反思

鸽巢问题教学反思

《鸽巢问题》教学反思《鸽巢问题》是人教版小学数学六年级下册的内容,是数与代数领域的重要知识点。

我教学的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决问题。

通过教学,感受颇深,下面就教学中的得失与大家分享。

可取之处:1、教学思路简洁清晰。

全课紧紧围绕“鸽巢问题”是什么?为什么?怎么用?组织教学。

在游戏激趣导入后开门见山揭示课题,让学生明白学什么?接着通过合作学习、展示交流、点评讲解,让学生探究为什么“总有一个笔筒里至少有2支笔?”建立模型。

最后结合生活中的实例运用模型解决问题。

2、充分运用鸿合白板功能辅助教学,交互体验感强。

a、“翻翻卡”游戏在白板中制作快捷,触屏体验完美,学生兴趣浓厚,很快将学生带入课程学习中。

b、蒙层配合五指檫出功能出示图片、展示总结,使课堂生动有趣,学生注意力高度集中。

C、单指拖动“铅笔”、“鸽子”、“书”等操作,互动体验感爆棚,同学们都跃跃欲试。

d、一键开启、关闭展台,方便快捷。

3、注重对比优化教学中实时指导学生要运用“有序思考”进行枚举,同时对比枚举法与假设法、反正法的优劣,引导学生明白“至少有2支”就是≥2,也就是≠1,从而理解平均分配的优势,当余数大于1时还要继续进行“分散”,找到最不利的情况,建立模型。

遗憾之处:1、练习处理较粗糙。

处理练习时只是简单的运用建立的模型--除法计算求至少数,学生照抄照搬,没有要求学生对照模型指出谁相当于“鸽子”谁相当于“鸽笼”。

2、不敢大胆放手,教师带得太多。

3、合作学习不太规范,效果较差。

鸽巢问题教学反思(7篇)

鸽巢问题教学反思(7篇)

鸽巢问题教学反思(7篇)鸽巢问题教学反思篇一本节课是通过几个直观例子,借助实际操作,引导学生探究“鸽巢原理”,初步经受“数学证明“的过程,并有意识的培育学生的“模型思想。

1、借助直观操作,经受探究过程。

教师注意让学生在操作中,经受探究过程,感知、理解抽屉原理。

2、教师注意培育学生的“模型”思想。

通过一系列的操作活动,学生对于枚举法和假设法有肯定的。

熟悉,加以比拟,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思索问题。

3、在活动中引导学生感受数学的魅力。

本节课的“抽屉原理”的建立是学生在观看、操作、思索与推理的根底上理解和发觉的,学生学的积极主动。

特殊以嬉戏引入,又以嬉戏完毕,既调动了学生学习的积极性,又学到了抽屉原理的学问,同时熬炼了学生的思维。

在整节课的教学活动中使学生感受了数学的魅力。

回忆整节课我觉得主要存在两个问题:1、在学生体验数学学问的产生过程中,我始终担忧学生不理解,不敢大胆放手,总是牵着学生的思路走。

2、这局部内容属于思维训练的内容,应当让学生多说理,让学生在说理的过程中真正理解体会“鸽巢问题”中的“总有”和“至少”的真正含义,并能敏捷运用所学学问解答一些变式练习。

鸽巢问题教学反思篇二数学课堂是师生互动的过程,学生是学习的仆人,教师是组织者和引导者。

一堂好的数学课,我认为应当是原生态,布满“数学味”的课;应当立足课堂,立足学问点。

“创设情境——建立模型——解释应用”是新课程提倡的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经受“鸽巢问题”的探究过程,从探究详细问题到类推得出一般结论,初步了解“鸽巢问题”。

本节课教学在师生互动方面有以下特色:1、激趣引入在导入新课时,我以嬉戏引入,不仅激发学生的兴趣,提高师生双边互动的积极性,更是让学生初步感受到鸽巢原理的本质。

通过嬉戏,一下子就抓住了学生的留意力。

让学生觉得这节课要探究的问题,好玩又有意义,唤起学生连续参加课堂互动的意愿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《鸽巢问题》教学反思
(2018—2019学年度第二学期 艾珍梅)
《鸽巢问题》是人教版六年级下册第五单元的教学内容。

“鸽巢原理”实际上是一种解决某种特定结构的数学或生活问题的模型,是一种数学思想方法。

这节课的内容相对抽象生涩,不易理解,教学难度较大。

而生活中很多问题中都隐含着鸽巢原理,所以通过让学生经历具体问题“数学化”的过程,使学生初步形成模型思想,体会数学与外部的密切联系,发展抽象能力、推理能力和应用能力又是十分必要的。

所以这节课在信息技术的辅助下我设计了基本训练,魔术导入,激发兴趣----化难为易,尝试动手操作(看到、摸到)----抛出引导性结论----尝试讨论总结出鸽巢原理,并通过巩固尝试生活实际问题的解惑,从而达到对鸽巢原理本质上的理解,最后在当堂检测,学生总结中结束。

学生通过自主学习、生生互动和师生互动,感悟数学学习的积极情感,认识数学具有抽象、严谨和应用广泛的特点,体会数学的内在价值。

让学生体验合作学习和分享学习带来的快乐,还学生一个真实有效的课堂。

生活素材导入,激发学习欲望,缓解学习压力。

可以说“抽屉原理”这一抽象艰涩的数学问题对于六年级的学生是非常具有挑战性的,如果学生思维能力弱,学习所面临的压力会更大。

所以,我将教材中的魔术案例具体细化,通过夸张的扑克牌教具以及动画说明,迅速抓住学生的注意力,激发学习兴趣,提升了学生学习的积极性,从而缓解了学习的压力。

每个学生都会带着想尽快
给魔术揭秘的心情快速的融入到新知识的学习中,达到了课堂导入的真正目的。

直观的实践活动,让学生经历“数学证明”,提升数学思维。

“抽屉原理”之所以难,主要难在建模上,以及学生不能自主发现(总有,至少)这个结论,并用准确的语言将其表述出来。

所以我们应该化难为易,用简单的实际案例,让学生借助直观的实践活动,利用学具实物操作,辅以课件演示,枚举法列举出方案,并调动学生思维,利用画图、表格、数形结合等方法记录下来,再通过教师先抛出错误结论的恰当引导,让学生自主发现4只铅笔放进3个纸杯中所隐含的“鸽巢原理”。

在这一过程中学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。

然而,如果我们反向思维来想,这一过程,其实也就是解释“为什么”为问题的鸽巢问题的“数学证明”。

虽然只是数学证明的雏形,但是学生经历了这样的“证明”过程,在解释鸽巢问题时,逻辑思维能力增强了,自然对于“鸽巢原理”的理解就更加通透了。

所以让学生初步经历“数学证明”是非常有必要的,这为以后较为严密的数学证明做了准备。

三.建立“模型思想”,搭起应用桥梁。

“鸽巢原理”的变式很多,应用更具灵活性,所以我们面临的另一难点就是如何将具体问题和“鸽巢问题”联系起来。

所以我们就要找到“鸽巢原理”的一般化模型,在大量例举之后,提出什么是“物体”和“抽屉”,引导学生发现只要“物体数”比“抽屉数”多1就有这样的结论,从而总结
归纳这一类“抽屉问题”的一般规律,学生借助直观操作、观察、表达等方式,从不同的角度认识鸽巢原理,理解更加深刻。

一般性原理找到后,模型已经建立,所以我们要先引导学生判断什么是“待分物体”和“抽屉”,从而找到具体问题与“鸽巢问题”的一般化模型的内在联系,再判断某个问题是否属于用“鸽巢原理”可以解决的范畴,从而进一步解决。

这也就是具体问题“生活化”的过程。

所以再后面设计了“魔术揭秘”、“抢椅子”等生活常见问题作为巩固练习,让学生体会模型思想,感悟“鸽巢原理”的本质价值。

四、本节课的不足之处:
1、部分学生判断不出谁是“要分的物体”,谁是“抽屉”。

因此,在今后的教学中,多下些功夫,增强提问的指向性、目的性,设计更加合理有梯度的练习加以巩固。

以求在课堂上让学生更好地理解、消化所授知识。

2、学生的语言表达不够完整,我也没有刻意的强调语言表达的严密性,在这一点上应值得注意。

所以,在今后的教学中,我要极力为学生营造宽松自由的学习氛围和学习空间,尊重学生的主体地位,及时发现并认可学生思维中闪亮的火花,并给予认可和指导,使教学能够面向全体学生,还学生一真实有效的课堂。

2019.4.26。

相关文档
最新文档