matlab多元非线性回归及显着性分析(实例)
matlab多元非线性回归及显着性分析(实例)

matlab多元非线性回归及显著性分析给各位高手:小弟有一些数据需要回归分析(非线性)及显著性检验(回归模型,次要项,误差及失拟项纯误差,F值和P值),求大侠帮助,给出程序,不胜感激。
模型:DA TA=... %DA TA前三列是影响因子,第四列为响应值[2 130 75 48.61;2 110 75 56.43;2 130 45 61.32;2 110 45 65.28;1 110 45 55.80;1 130 75 45.65;1 110 75 50.91;1 130 45 67.94;1.5 120 60 74.15;1.5 120 60 71.28;1.5 120 60 77.95;1.5 120 60 74.16;1.5 120 60 75.20;1.5 120 85 35.65;1.5 140 60 48.66;1.5 120 30 74.10;1.5 100 60 62.30;0.5 120 60 66.00;2.5 120 60 75.10];回归分析过程:(1)MA TLAB编程步骤1:首先为非线性回归函数编程,程序存盘为user_function.m function y=user_function(beta,x)b0 = beta(1);b1 = beta(2);b2 = beta(3);b3 = beta(4);x0 = x(:,1);x1 = x(:,2);x2 = x(:,3);x3 = x(:,4);y=b0*x0+b1*x1.^2+b2*x2.^2+b3*x3.^2;(2)MA TLAB编程步骤2:编写非线性回归主程序,程序运行时调用函数user_functionx=[1 2 130 75 48.61;1 2 110 75 56.43;1 2 130 45 61.32;1 2 110 45 65.28;1 1 110 45 55.80;1 1 130 75 45.65;1 1 110 75 50.91;1 1 130 45 67.94;1 1.5 120 60 74.15;1 1.5 120 60 71.28;1 1.5 120 60 77.95;1 1.5 120 60 74.16;1 1.5 120 60 75.20;1 1.5 120 85 35.65;1 1.5 140 60 48.66;1 1.5 120 30 74.10;1 1.5 100 60 62.30;1 0.5 120 60 66.00;1 2.5 120 60 75.10]; %%第1列全是1,第6列是指标变量,其余列是自变量xx=x(:,1:5);yy=x(:,5); %%指定响应变量yy和自变量xxbeta0=[0.5 0.4 0.7 0.5]; %%设置初始回归系数(如何确定初值?)[beta_fit,residual] = nlinfit(xx,yy,@user_function,beta0) %%非线性回归结果beta_fit =91.37571.2712-0.0009-0.0049residual =-4.2935-1.0248-9.2044-9.7957-15.4620-3.4398-2.73111.229311.18898.318914.988911.198912.2389-9.5678-9.3704-2.0767-4.83315.58147.0540即y=.3757+1.2712*x1.^2-0.0009*x2.^2-0.0049*x3.^2;。
Matlab实现多元的回归实例

Matlab 实现多元回归实例(一)一般多元回归一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。
如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。
进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。
在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或者[b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。
回归方程具有如下形式:011m m y x x λλλε=++⋅⋅⋅++其中,ε是残差。
在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。
⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。
matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 9698 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显著% fV:F分布值,越大越好,线性回归方程越显著% fH:0或1,0不显著;1显著(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显著线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显著的线性作用% tH:0或1,0不显著;1显著% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显著的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显著的=1),% 但是所有的回归系数却对Y的线性作用却不显著=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显著性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显著(好);H=0,回归不显著% 回归系数的显著性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显著tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显著的线性作用;H(i)=0,Xi 对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]) ;。
多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立.⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、多项式回归(一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];[p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 10075 80 70 50 65 90 100 110 60收入 1000 600 1200500 300 400 1300 1100 1300 300 价格 5 7 6 6 8 7 5 4 3 9解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.00011.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值.(2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,StepwiseHistory.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。
MATLAB回归分析

MATLAB回归分析回归分析是统计学中常用的一种方法,用于建立一个依赖于自变量(独立变量)的因变量(依赖变量)的关系模型。
在MATLAB环境下,回归分析可以实现简单线性回归、多元线性回归以及非线性回归等。
简单线性回归是一种最简单的回归分析方法,它假设自变量和因变量之间存在线性关系。
在MATLAB中,可以通过`polyfit`函数进行简单线性回归分析。
该函数可以拟合一元数据点集和一维多项式,返回回归系数和截距。
例如:```matlabx=[1,2,3,4,5];y=[2,3,4,5,6];p = polyfit(x, y, 1);slope = p(1);intercept = p(2);```上述代码中,`x`是自变量的数据点,`y`是因变量的数据点。
函数`polyfit`的第三个参数指定了回归的阶数,这里是1,即一次线性回归。
返回的`p(1)`和`p(2)`分别是回归系数和截距。
返回的`p`可以通过`polyval`函数进行预测。
例如:```matlabx_new = 6;y_pred = polyval(p, x_new);```多元线性回归是在有多个自变量的情况下进行的回归分析。
在MATLAB中,可以使用`fitlm`函数进行多元线性回归分析。
例如:```matlabx1=[1,2,3,4,5];x2=[2,4,6,8,10];y=[2,5,7,8,10];X=[x1',x2'];model = fitlm(X, y);coefficients = model.Coefficients.Estimate;```上述代码中,`x1`和`x2`是两个自变量的数据点,`y`是因变量的数据点。
通过将两个自变量放在`X`矩阵中,可以利用`fitlm`函数进行多元线性回归分析。
返回值`model`是回归模型对象,可以通过`model.Coefficients.Estimate`获得回归系数。
matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题matlab建立多元线性回归模型并进行显著性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = -16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats = 0.9282 180.9531 0.0000 即对应于b的置信区间分别为[-33.7017,1.5612]、[0.6047,0.834]; r2=0.9282, F=180.9531, p=0.0000 p<0.05, 可知回归模型 y=-16.073+0.7194x 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% stats.fTest=[fV,fH],F检验相关参数,检验线性回归方程是否显著% fV:F分布值,越大越好,线性回归方程越显著% fH:0或1,0不显著;1显著(好)% stats.tTest=[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显著线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显著的线性作用% tH:0或1,0不显著;1显著% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显著的线性作用% stats.TUQR=[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+5.623*exp(x2)+1.2*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,0.99)%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显著的(stats.fH=1),% 但是所有的回归系数却对Y的线性作用却不显著(stats.tF=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+U R=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显著性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显著(好);H=0,回归不显著% 回归系数的显著性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显著tInv=tinv(0.5+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显著的线性作用;H(i)=0,Xi对Y 的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fT est',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。
多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X (1)............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05)3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 .9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点. (4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2ˆct bt a s++=)解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T);b,stats 得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 75 80 70 50 65 90 100 110 60 收入10006001200500300400130011001300300价格5766875439解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)']; [b,bint,r,rint,stats]=regress(y,X); b,stats 结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)n⨯阶矩阵;y表示因变量数据,1⨯n阶矩阵;inmodel表示矩说明:x表示自变量数据,m阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha表示显著性水平(缺省时为0.5).2、运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 5 X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.27.06063];X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1 1.1239];X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 57.76687];format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)]) legend('一次线性回归','二次线性回归') xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.1 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767 B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-1.8488 1.8488 1.6394e-0096.22 6.227.2643e-12.22 12.22 2.6077e-19.72 19.72 -2.0489e-1.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3 + 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388 120.25*X2*X2+ .25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.41*X4*X4。
MATLAB实例:多元函数拟合(线性与非线性)

MATLAB实例:多元函数拟合(线性与⾮线性)MATLAB实例:多元函数拟合(线性与⾮线性)作者:凯鲁嘎吉 - 博客园更多请看:之前写过⼀篇博⽂,是。
现在⽤拟合多元函数,实现线性拟合与⾮线性拟合,其中⾮线性拟合要求⾃定义拟合函数。
下⾯给出三种拟合⽅式,第⼀种是多元线性拟合(回归),第⼆三种是多元⾮线性拟合,实际中第⼆三种⽅法是⼀个意思,任选⼀种即可,推荐第⼆种拟合⽅法。
1. MATLAB程序fit_nonlinear_data.mfunction [beta, r]=fit_nonlinear_data(X, Y, choose)% Input: X ⾃变量数据(N, D), Y 因变量(N, 1),choose 1-regress, 2-nlinfit 3-lsqcurvefitif choose==1X1=[ones(length(X(:, 1)), 1), X];[beta, bint, r, rint, states]=regress(Y, X1)% 多元线性回归% y=beta(1)+beta(2)*x1+beta(3)*x2+beta(4)*x3+...% beta—系数估计% bint—系数估计的上下置信界% r—残差% rint—诊断异常值的区间% states—模型统计信息rcoplot(r, rint)saveas(gcf,sprintf('线性曲线拟合_残差图.jpg'),'bmp');elseif choose==2beta0=ones(7, 1);% 初始值的选取可能会导致结果具有较⼤的误差。
[beta, r, J]=nlinfit(X, Y, @myfun, beta0)% ⾮线性回归% beta—系数估计% r—残差% J—雅可⽐矩阵[Ypred,delta]=nlpredci(@myfun, X, beta, r, 'Jacobian', J)% ⾮线性回归预测置信区间% Ypred—预测响应% delta—置信区间半⾓plot(X(:, 1), Y, 'k.', X(:, 1), Ypred, 'r');saveas(gcf,sprintf('⾮线性曲线拟合_1.jpg'),'bmp');elseif choose==3beta0=ones(7, 1);% 初始值的选取可能会导致结果具有较⼤的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab多元非线性回归及显著性分析
给各位高手:小弟有一些数据需要回归分析(非线性)及显著性检验(回归模型,次要项,误差及失拟项纯误差,F值和P值),求大侠帮助,给出程序,不胜感激。
模型:
DA TA=... %DA TA前三列是影响因子,第四列为响应值
[2 130 75 48.61;
2 110 75 56.43;
2 130 45 61.32;
2 110 45 65.28;
1 110 45 55.80;
1 130 75 45.65;
1 110 75 50.91;
1 130 45 67.94;
1.5 120 60 74.15;
1.5 120 60 71.28;
1.5 120 60 77.95;
1.5 120 60 74.16;
1.5 120 60 75.20;
1.5 120 85 35.65;
1.5 140 60 48.66;
1.5 120 30 74.10;
1.5 100 60 6
2.30;
0.5 120 60 66.00;
2.5 120 60 75.10];
回归分析过程:
(1)MATLAB编程步骤1:首先为非线性回归函数编程,程序存盘为user_function.m function y=user_function(beta,x)
b0 = beta(1);
b1 = beta(2);
b2 = beta(3);
b3 = beta(4);
x0 = x(:,1);
x1 = x(:,2);
x2 = x(:,3);
x3 = x(:,4);
y=b0*x0+b1*x1.^2+b2*x2.^2+b3*x3.^2;
(2)MATLAB编程步骤2:编写非线性回归主程序,程序运行时调用函数user_function
x=[1 2 130 75 48.61;
1 2 110 75 56.43;
1 2 130 45 61.32;
1 2 110 45 65.28;
1 1 110 45 55.80;
1 1 130 75 45.65;
1 1 110 75 50.91;
1 1 130 45 67.94;
1 1.5 120 60 74.15;
1 1.5 120 60 71.28;
1 1.5 120 60 77.95;
1 1.5 120 60 74.16;
1 1.5 120 60 75.20;
1 1.5 120 85 35.65;
1 1.5 140 60 48.66;
1 1.5 120 30 74.10;
1 1.5 100 60 62.30;
1 0.5 120 60 66.00;
1 2.5 120 60 75.10]; %%第1列全是1,第6列是指标变量,其余列是自变量xx=x(:,1:5);yy=x(:,5); %%指定响应变量yy和自变量xx
beta0=[0.5 0.4 0.7 0.5]; %%设置初始回归系数(如何确定初值?)
[beta_fit,residual] = nlinfit(xx,yy,@user_function,beta0) %%非线性回归
结果
beta_fit =
91.3757
1.2712
-0.0009
-0.0049
residual =
-4.2935
-1.0248
-9.2044
-9.7957
-15.4620
-3.4398
-2.7311
1.2293
11.1889
8.3189
14.9889
11.1989
12.2389
-9.5678
-9.3704
-2.0767
-4.8331
5.5814
7.0540
即
y=.3757+1.2712*x1.^2-0.0009*x2.^2-0.0049*x3.^2;
matlab中nlinfit函数非线性拟合的使用方法如下:例1。