高中数学必修一集合经典题型总结
高中数学必修一集合与函数概念知识点总结及练习题

高中数学必修一集合与函数概念知识点总结1.元素与集合(1)元素与集合的定义:一般地,把统称为元素,把一些元素组成的叫做集合(简称为集).(2)集合中元素的性质:①确定性:即给定的集合,它的元素是.②互异性:即给定集合的元素是.③无序性.(3)集合相等:只要构成两个集合的元素是,就称这两个集合是相等的.(4)元素与集合的关系:a是集合A的元素,记作,a不是集合A的元素,记作2.集合的表示方法除了用自然语言表示集合外,还可以用和表示集合.(1)列举法:把集合中的元素,并用花括号“{}”括起来表示集合的方法.(2)描述法:用集合所含元素的表示集合的方法.3.常用数集及其记法集合自然数集正整数集整数集有理数集实数集记法4.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,则称集合A是集合B的子集5.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B,且B⊆A,就说集合A与B相等真子集如果集合A⊆B,但存在元素x∈B,且x∉A,则称集合A是B的真子集6.空集(1)定义:的集合叫做空集.(2)用符号表示为:(3)规定:空集是任何集合的. 是任何非空集合的7.子集的有关性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么8.集合的并集与交集的定义并集交集自然语言由所有属于集合A或属于集合B的元素组成的集合由属于集合A且属于集合B的所有元素组成的集合符号语言图形语言9.并集与交集的运算性质并集的运算性质交集的运算性质A∪B B∪A A∩B B∩AA∪A=A∩A=A∪∅=A∩∅=A⊆B⇔A∪B=A⊆B⇔A∩B=A∪B⊇A,A∪B B A∩B⊆B,A∩B A10.全集(1)定义:如果一个集合含有我们所研究问题中涉及的,那么称这个集合为全集.(2)符号表示:通常记作第1 页共4 页。
高中数学必修一集合专题练习(知识点+练习题)

必修一第一章:集合专题一、集合概念1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.二、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 若集合A 中含有n 个元素,则集合A 有n 2个子集,21n -个真子集.三、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且集合专题训练1. 设集合A ={1,2,3},B ={2,3,4},则A ∪B =( )A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4} 2. 设集合A ={x|x 2−4x +3<0},B ={x|2x −3>0},则A ∩B =( ) A. (−3,−32) B. (−3,32) C. (1,32) D. (32,3)3. 设集合A ={1,2,4},B ={x|x 2−4x +m =0},若A ∩B ={1},则B =( )A. {1,−3}B. {1,0}C. {1,3}D. {1,5}4. 已知集合A ={1,2,3,4},B ={y|y =3x −2,x ∈A},则A ∩B =( )A. {1}B. {4}C. {1,3}D. {1,4}5. 已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( )A. 1B. 2C. 3D. 46. 已知集合A ={x|1<2x <8},集合B ={x|0<log 2x <1},则A ∩B =( )A. {x|1<x <3}B. {x|1<x <2}C. {x|2<x <3}D. {x|0<x <2}7. 集合A ={0,1,2}的真子集的个数是______ .8. 已知集合,,A ∪B =A ,则实数p 的取值范围是______.9. 若集合A ={x|ax 2+3x +2=0}中至多有一个元素,则a 的取值范围是_____________10. 如图,若集合A ={1,2,3,4,5},B ={2,4,6,8,10},则图中阴影部分表示的集合为______.11.已知全集U =R ,集合A ={x|x 2−4x ≤0},B ={x|m ≤x ≤m +2}.(1)若m =3,求∁U B 和A ∪B ;(2)若B ⊆A ,求实数m 的取值范围;(3)若Φ=⋂B A ,求实数m 的取值范围.。
人教A版高中数学必修一第一章——集合知识要点及重要题型复习讲义

例1、已知集合A ={a -2,2a 2+5a,12},且-3∈A ,求a .2、设a 、b ∈R ,集合{1,a +b ,a }与⎩⎨⎧⎭⎬⎫0,b a ,b 相等,则b -a =________. 3、已知A ={1,2,x 2-5x +9},B ={3,x 2+ax +a },如果A ={1,2,3},2∈B ,求实数a 的值.集合间的基本关系强调 空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅. ∅∅{∅},∅∅{∅},0∅∅,0∅{∅},0∅{0},∅∅{0}.1、已知a ,b ∅R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1B .0C .-1D .±12、已知P ={x |2<x <k ,x ∅N},若集合P 中恰有3个元素,则k 的取值范围为 .3、已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∅R},若B ∅A ,则实数m 的取值范围为________.5已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值集合.(6).设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}.4、(1)若B 是A 的真子集,求实数a 的取值范围;(2)是否存在实数a 使B ⊆A?2.交集与并集的运算性质(1)A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅;(2)A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ;(3)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .集合基本运算1、已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( )A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2、已知集合A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},求A ∩B ,A ∪B . 3、已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求实数a 的取值范围.4、设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求实数a 的取值范围.5、设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求实数a 的取值范围.6、设全集U=R,A={x|1≤x≤3},B={x|2<x<4},C={x|a≤x≤a+1}.(1)分别求A∩B,A∪(∁U B);(2)若B∪C=B,求实数a的取值范围.7.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.48.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B=A,则()A.-3≤m≤4B.-3<m<4C.2<m<4D.2<m≤49.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2},且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.10.已知A={x|-2≤x≤4},B={x|x>a}.(1)若A∩B≠A,求实数a的取值范围;(2)若A∩B≠∅,且A∩B≠A,求实数a的取值范围.11.设集合A={x|x2+ax-12=0},B={x|x2+bx+c=0},且A≠B,A∪B={-3,4},A∩B ={-3},求a,b,c的值12.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.。
高中数学必修一集合与集合的关系知识点总结与练习

1.2子集、全集、补集 一、课本扫描 二、基本概念 1、子集的概念对于两个集合A 与B(1)如果集合A 中的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或说集合B 包含集合A ,记作A B ⊆或B A ⊇,这时,集合A 叫做集合B 的子集。
(2)如果A B A B ⊆≠且,我们就说集合A 是集合B 的真子集,记作A ⊄B 。
(3)如果A B ⊆同时B A ⊆,那么A B =。
子集的概念是由讨论集合与集合间的关系引出的,两个集合A 与B 之间的关系如下:A B A B B A A B A B A BA B ⎧=⇔⊆⊆⎧⊆⎨⎪≠⇔⊄⎨⎩⎪⎩且 其中记号AB (或B A )表示集合A 不包含于集合B (或者集合B 不包含集合A )。
2、子集具有以下性质: ①A A ⊆,即任何一个集合都是它本身的子集。
②如果,A B B A ⊆⊆,那么A B =。
③如果,A B B C ⊆⊆,那么A C ⊆。
④如果,AB BC ,那么AC 。
⑤空集是任何集合的子集,是任何非空集合的真子集。
3、关于有限集合子集个数的讨论。
①n 个元素的集合有2n个子集。
②n 个元素的集合有21n -个真子集。
③n 个元素的集合有21n-个非空子集。
④n 个元素的集合有22n-个非空真子集。
4、全集与补集设S 是一个集合,A 是S 的一个子集,由S 中所有不属于集合A 的元素组成的集合,叫做S 中的子集A 的补集,记作s C A 用数学式子表示为:{}S C A x x S x A =∈∉且。
如果集合S 含有我们所要研究的各个集合的全部元素,我们称集合S 为全集,记作U 。
5、全集与补集的性质 (1)()U U C C A A =,(2),U A U C A U ⊆⊆,(3),U U C U C U=∅∅=6、关于全集与补集的理解(1)全集具有相对性,是相对于我们所研究的问题而言的一个概念。
如:小学数学研究的问题常在有理数集内,则有理数集是全集。
高中数学必修一第一章集合与常用逻辑用语必练题总结(带答案)

高中数学必修一第一章集合与常用逻辑用语必练题总结单选题1、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D2、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:A.5B.10C.15D.20答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.3、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.4、命题“∀x<0,x2+ax−1≥0”的否定是()A.∃x≥0,x2+ax−1<0B.∃x≥0,x2+ax−1≥0C.∃x<0,x2+ax−1<0D.∃x<0,x2+ax−1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x<0,x2+ax−1≥0”的否定是“∃x<0,x2+ax−1<0”.故选:C5、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.6、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.7、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C8、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.多选题9、(多选题)下列各组中M,P表示不同集合的是()A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=x2+1,x∈R},P={x|x=t2+1,t∈R}D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}答案:ABD分析:选项A中,M和P的代表元素不同,是不同的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,解出集合M和P.选项D中,M和P的代表元素不同,是不同的集合.选项A中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,M={y|y=x2+1,x∈R}=[1,+∞),P={x|x=t2+1,t∈R}=[1,+∞),故M=P;选项D中,M是二次函数y=x2-1,x∈R的所有因变量组成的集合,而集合P是二次函数y=x2-1,x∈R图象上所有点组成的集合.故选ABD.10、已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={−1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={−1}D.A∩B的真子集个数是7答案:ACD分析:求出集合A,再由集合的基本运算以及真子集的概念即可求解.A={x|2x+1≥0,x∈Z}={x|x≥−1,x∈Z},B={−1,0,1,2},2A∩B={0,1,2},故A正确;A∪B={x|x≥−1,x∈Z},故B错误;,x∈Z},所以(∁U A)∩B={−1},故C正确;∁U A={x|x<−12由A∩B={0,1,2},则A∩B的真子集个数是23−1=7,故D正确.故选:ACD11、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.填空题12、请写出不等式a>b的一个充分不必要条件___________.答案:a>b+1 (答案不唯一)分析:根据充分不必要条件,找到一个能推出a>b,但是a>b推不出来的条件即可.因为a>b+1能推出a>b,但是a>b不能推出a>b+1,所以a>b+1是不等式a>b的一个充分不必要条件,所以答案是:a>b+1(答案不唯一)13、已知集合A={x|−2≤x≤7},B={x|m+1≤x≤2m−1},若B⊆A,则实数m的取值范围是____________.答案:(−∞,4]分析:分情况讨论:当B=∅或B≠∅,根据集合的包含关系即可求解.当B=∅时,有m+1≥2m−1,则m≤2;当B≠∅时,若B⊆A,如图,则{m+1≥−2, 2m−1≤7,m+1<2m−1,解得2<m≤4.综上,m的取值范围为(−∞,4].所以答案是:(−∞,4]14、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).解答题15、已知集合A={x|−1≤x≤2},B={y|y=ax+3,x∈A},C={y|y=2x+3a,x∈A},(1)若∀y 1∈B ,∀y 2∈C ,总有y 1≤y 2成立,求实数a 的取值范围;(2)若∀y 1∈B ,∃y 2∈C ,使得y 1≤y 2成立,求实数a 的取值范围; 答案:(1)a ≥5;(2)a ≥−14. 分析:(1)设y 1=ax +3,y 2=2x +3a ,由题设可得y 1max ≤y 2min ,建立不等式组,解之可得答案. (2)由题设可得y 1max ≤y 2max ,建立不等式组,解之可得答案.(1)设y 1=ax +3,y 2=2x +3a ,其中−1≤x ≤2, 由题设可得y 1max ≤y 2min ,即y 1max ≤3a −2,故{−a +3≤−2+3a 2a +3≤−2+3a , 解得a ≥5.(2)由题设可得y 1max ≤y 2max ,故{−a +3≤4+3a 2a +3≤4+3a ,解得a ≥−14.。
高中数学必修一集合经典题型总结

慧诚教育2017年秋季高中数学讲义必修一第一章复习知识点一集合的概念1.集合一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集不含任何元素的集合叫做空集,记为∅.知识点二集合与元素的关系1.属于如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性________、________、________.2.集合的分类(1)有限集:含有________元素的集合.(2)无限集:含有________元素的集合.3.常用数集及符号表示知识点四1.列举法把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A ,都有________. (2)任何一个集合A 都是它本身的子集,即________. (3)如果A ⊆B ,B ⊆C ,则________. (4)如果A ⊆B ,B ⊆C ,则________. 3.集合相等4.如果A ⊆B ,B ⊆A ,则A =B ;反之,________________________.知识点六 集合的运算1.交集2.并集3.交集与并集的性质4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________.5.补集典例精讲题型一 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)

(每日一练)高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)单选题1、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.2、设集合A、B均为U的子集,如图,A∩(∁U B)表示区域()A.ⅠB.IIC.IIID.IV答案:B分析:根据交集与补集的定义可得结果.由题意可知,A∩(∁U B)表示区域II.故选:B.3、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D4、已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A.{−4,1}B.{1,5}C.{3,5}D.{1,3}答案:D分析:首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A∩B,得到结果.由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},又因为B={−4,1,3,5},所以A∩B={1,3},故选:D.小提示:本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.5、若全集U=R,集合A={0,1,2,3,4,5,6},B={x|x<3},则图中阴影部分表示的集合为()A.{3,4,5,6}B.{0,1,2}C.{0,1,2,3}D.{4,5,6}答案:A分析:根据图中阴影部分表示(∁U B)∩A求解即可.由题知:图中阴影部分表示(∁U B)∩A,∁U B={x|x≥3},则(∁U B)∩A={3,4,5,6}.故选:A6、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.7、已知命题p:∃x∃N,e x<0(e为自然对数的底数),则命题p的否定是()A.∃x∃N,e x<0B.∃x∃N,e x>0C.∃x∃N,e x≥0D.∃x∃N,e x≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.8、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:A分析:记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,根据题目条件得到集合之间的关系,并推出A D,,所以甲是丁的充分不必要条件.记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,由甲是乙的充分不必要条件得,A B,由乙是丙的充要条件得,B=C,由丁是丙的必要不充分条件得,C D,所以A D,,故甲是丁的充分不必要条件.故选:A.9、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D10、已知集合A={﹣1,0,1,2},B={x|0<x<3},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1,2}D.{1,2}答案:D分析:根据交集的定义写出A∩B即可.集合A={﹣1,0,1,2},B={x|0<x<3},则A∩B={1,2},故选:D多选题11、若x2−x−2<0是−2<x<a的充分不必要条件,则实数a的值可以是().A.1B.2C.3D.4答案:BCD分析:根据充分必要条件得出a范围,可得选项.由x2−x−2<0得−1<x<2,因此,若x2−x−2<0是−2<x<a的充分不必要条件,则a≥2.故选:BCD.小提示:本题考查根据充分必要条件求参数的范围,属于基础题.12、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;A.由(−4,4)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;B.由(−3,3)⊂≠C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.13、已知集合A={4,a},B={1,a2},a∈R,则A∪B可能是()A.{-1,1,4}B.{1,0,4}C.{1,2,4}D.{-2,1,4}答案:BCD分析:根据集合元素的互异性讨论参数范围即可得结果.若A∪B含3个元素,则a=1或a=a2或a2=4,a=1时,不满足集合元素的互异性,a=0,a=2或a=−2时满足题意,结合选项可知,A∪B可能是{1,0,4},{1,2,4},{-2,1,4}.故选:BCD.14、(多选)下列“若p,则q”形式的命题中,p是q的必要条件的有()A.若x,y是偶数,则x+y是偶数B.若a<2,则方程x2-2x+a=0有实根C.若四边形的对角线互相垂直,则这个四边形是菱形D.若ab=0,则a=0答案:BCD分析:根据必要条件的定义逐一判断即可.A:x+y是偶数不一定能推出x,y是偶数,因为x,y可以是奇数,不符合题意;B:当方程x2-2x+a=0有实根时,则有(−2)2−4a≥0⇒a≤1,显然能推出a<2,符合题意;C:因为菱形对角线互相垂直,所以由四边形是菱形能推出四边形的对角线互相垂直,符合题意;D:显然由a=0推出ab=0,所以符合题意,故选:BCD15、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.16、已知集合A ={x ∣x 2−2x −3=0},B ={x ∣ax =1},若B ⊆A ,则实数a 的可能取值( )A .0B .3C .13D .−1答案:ACD解析:由集合间的关系,按照a =0、a ≠0讨论,运算即可得解.∵集合A ={−1,3},B ={x |ax =1},B ⊆A ,当a =0时,B =∅,满足题意;当a ≠0时,B ={x |ax =1}={1a },要使B ⊆A ,则需要满足1a =−1或1a =3,解得a =−1或a =13,∴a 的值为0或−1或13.故选:ACD .17、设A ={x|x 2−8x +15=0},B ={x|ax +1=0},若A ∩B =B ,则实数a 的值可以为()A .−15B .0C .3D .−13答案:ABD分析:根据A ∩B =B ,得到B ⊆A ,然后分a =0, a ≠0讨论求解.∵A ∩B =B ,∴B ⊆A ,A ={x|x 2−8x +15=0}={3,5} ,当a =0时,B =∅,符合题意;当a ≠0时,B ={−1a } ,要使B ⊆A ,则−1a =3或−1a =5,解得a =−13或a =−15. 综上,a =0或a =−13或a =−15.故选:ABD .18、下列说法正确的是( )A .“对任意一个无理数x ,x 2也是无理数”是真命题B .“xy >0”是“x +y >0”的充要条件C .命题“∃x ∈R, x 2+1=0”的否定是“∀x ∈R ,x 2+1≠0”D .若“1<x <3”的必要不充分条件是“m −2<x <m +2”,则实数m 的取值范围是[1,3]答案:CD解析:根据命题的真假,充分必要条件,命题的否定的定义判断各选项.x =√2是无理数,x 2=2是有理数,A 错;x =−1,y =−2时,xy >0,但x +y =−3<0,不是充要条件,B 错;命题∃x ∈R,x 2+1=0的否定是:∀x ∈R,x 2+1≠0,C 正确;“1<x <3”的必要不充分条件是“m −2<x <m +2”,则{m −2≤1m +2≥3,两个等号不同时取得.解得1≤m ≤3.D 正确.故选:CD .小提示:关键点点睛:本题考查命题的真假判断,解题要求掌握的知识点较多,需要对四个选项一一判断.但求解时根据充分必要条件的定义,命题的否定的定义判断,对有些错误的命题可以举例说明其不正确.19、(多选)下列是“a <0,b <0”的必要条件的是( )A .(a +1)2+(b +3)2=0B .a +b <0C .a −b <0D .a b >0答案:BD分析:由a<0,b<0判断各个选项是否成立可得.取a=−2,b=−4,得(a+1)2+(b+3)2=2≠0,故A不是“a<0,b<0”的必要条件;由a<0,b<0,得a+b<0,故B是“a<0,b<0”的必要条件;取a=−2,b=−4,得a−b=−2−(−4)=2>0,故C不是“a<0,b<0”的必要条件;>0,故D是“a<0,b<0”的必要条件.由a<0,b<0,得ab故选:BD.20、下列关系正确的是()A.0∉∅B.∅⊆{0}C.{∅}⊆{0}D.∅{∅}答案:ABD分析:利用元素与集合之间的关系,集合与集合之间的关系判断即可.由空集的定义知:0∉∅,A正确.∅⊆{0},B正确.{∅}⊄{0},C错误.∅{∅},D正确.故选:ABD.填空题21、已知集合A={x|x<-1,或x>2},B={x|2a≤x≤a+3},若“x∃A”是“x∃B”的必要条件,则实数a的取值范围是______.答案:(-∞,-4)∃(1,+∞)分析:根据题目条件可得B ∃A ,对B 进行分类讨论求出实数a 的取值范围.因为“x ∃A ”是“x ∃B ”的必要条件,所以B ∃A ,当B =∃时满足题意,即2a >a +3,所以a >3;当B ≠∃时,{2a ≤a +3a +3<-1 或{2a ≤a +32a >2, 解得:a <-4或1<a ≤3;综上可得,实数a 的取值范围是(-∞,-4)∃(1,+∞).所以答案是:(-∞,-4)∃(1,+∞).22、设非空集合Q ⊆M ,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合M ={1,2,3,4,5,6,7},则其偶子集Q 的个数为___________.答案:63分析:对集合Q 中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q 的个数,综合可得结果.集合Q 中只有2个奇数时,则集合Q 的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种, 若集合Q 中只有4个奇数时,则集合Q ={1,3,5,7},只有一种情况,若集合Q 中只含1个偶数,共3种情况;若集合Q 中只含2个偶数,则集合Q 可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q 中只含3个偶数,则集合Q ={2,4,6},只有1种情况.因为Q 是M 的偶子集,分以下几种情况讨论:若集合Q 中的元素全为偶数,则满足条件的集合Q 的个数为7;若集合Q 中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q 中的元素是2个奇数1个偶数,共6×3=18种;若集合Q 中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.23、若“x>3”是“x>m”的必要不充分条件,则m的取值范围是________.答案:m>3分析:由题,“x>3”是“x>m”的必要不充分条件,则(m,+∞)是(3,+∞)的真子集,可得答案. 因为“x>3”是“x>m”的必要不充分条件,所以(m,+∞)是(3,+∞)的真子集,所以m>3,故答案为m>3.小提示:本题考查了不要不充分条件,属于基础题.。
高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
慧诚教育2017年秋季高中数学讲义必修一第一章复习知识点一集合的概念1.集合一般地,把一些能够________________对象瞧成一个整体,就说这个整体就是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集不含任何元素的集合叫做空集,记为∅、知识点二 集合与元素的关系 1.属于如果a 就是集合A 的元素,就说a ________集合A ,记作a ________A 、 2.不属于如果a 不就是集合A 中的元素,就说a ________集合A ,记作a ________A 、 知识点三 集合的特性及分类 1.集合元素的特性________、________、________、 2.集合的分类(1)有限集:含有________元素的集合. (2)无限集:含有________元素的集合. 3.常用数集及符号表示知识点四 1.列举法把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法. 2.描述法用集合所含元素的________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集2(1)规定:空集就是____________的子集,也就就是说,对任意集合A ,都有________. (2)任何一个集合A 都就是它本身的子集,即________. (3)如果A ⊆B ,B ⊆C ,则________. (4)如果A ⊆B ,B ⊆C ,则________. 3.集合相等4如果A ⊆B ,B ⊆A ,则A =B ;反之,________________________、 知识点六 集合的运算 1.交集2.并集34、全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________.5.补集典例精讲题型一判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x2-2=0的实数解”中,能够构成集合的就是。
题型二验证元素就是否就是集合的元素1、已知集合{}Z n Z m n m x x A ∈∈-==,,22、 求证:(1)3∈A;(2)偶数4k-2(k ∈Z)不属于A 、2、集合A 就是由形如()Z n Z m n m ∈∈+,3的数构成的,判断321-就是不就是集合A 中的元素、题型三 求集合1.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集就是( )A 、⎩⎪⎨⎪⎧x =3y =-7 B.{x ,y |x =3且y =-7}C.{3,-7}D.{(x ,y )|x =3且y =-7}2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎨⎧2x +y =0x -y +3=0的解集的就是( )A.①②③④⑤⑥B.②③④⑤C.②⑤D.②⑤⑥3、数集A 满足条件:若a ∈A ,则1+a 1-a∈A (a ≠1).若13∈A ,求集合中的其她元素、4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合就是M ,用列举法表示集合M 为 。
题型四 利用集合中元素的性质求参数1.已知集合S ={a ,b ,c }中的三个元素就是△ABC 的三边长,那么△ABC 一定不就是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2、设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫b a b ,则b -a =________、3、已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围就是________、4、已知集合A ={x |ax 2-3x +2=0}、(1)若A 就是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.5、已知集合A 就是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A.2B.3C.0或3D.0或2或36.(2016·浙江镇海检测)已知集合A 就是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________、题型五 判断集合间的关系1、设⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214,则M 与N 的关系正确的就是( ) A 、 M=N B 、N M ≠⊂ C 、N M ≠⊃ D 、以上都不对2.判断下列集合间的关系: (1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }.3.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系、题型六 求子集个数1.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有2个子集,则a 的取值构成的集合为________.题型七 利用两个集合之间的关系求参数1、已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________、2.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能就是( )A.0B.1C.2D.33.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}、 (1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.题型八 集合间的基本运算1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B 、其中正确的个数为( )A.1B.2C.3D.42.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( ) A.{x |x >-3} B.{x |-3<x ≤5} C.{x |3<x ≤5}D.{x |x ≤5}3.已知集合A={2,-3},集合B满足B∩A=B,那么符合条件的集合B的个数就是()A.1B.2C.3D.44.(2016·全国卷Ⅲ理,1)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)5.下列关系式中,正确的个数为()①(M∩N)⊆N;②(M∩N)⊆(M∪N);③(M∪N)⊆N;④若M⊆N,则M∩N=M、A.4B.3C.2D.16.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________、7.(2016·唐山一中月考试题)已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B)、8.设全集U={1,2,3,4,5},集合S与T都就是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有()A.3∈S,3∈TB.3∈S,3∈∁U TC.3∈∁U S,3∈TD.3∈∁U S,3∈∁U T题型九根据集合运算的结果求参数1.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________、2.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}、(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.3.设A={x|x2+8x=0},B={x|x2+2(a+2)x+a2-4=0},其中a∈R、如果A∩B=B,求实数a的取值范围、4.已知集合A={x|x2+ax+12b=0}与B={x|x2-ax+b=0},满足(∁U A)∩B={2},A∩(∁U B)={4},U=R,求实数a,b的值、5.U={1,2},A={x|x2+px+q=0},∁U A={1},则p+q=________、4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠∅,则()A.k<0B.k<2C.0<k<2D.-1<k<26.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},试探求a取何实数时,(A∩B) ∅与A∩C=∅同时成立、题型十交集、并集、补集思想的应用1.若三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数解,试求实数a的取值范围.题型十一集合中的新定义问题1.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”、(1)判断集合A={-1,1,2}就是否为可倒数集;(2)试写出一个含3个元素的可倒数集.2.集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A.7B.12C.32D.643.当x∈A时,若x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,由A的所有孤立元素组成的集合称为A的“孤星集”,若集合M={0,1,3}的孤星集为M′,集合N={0,3,4}的孤星集为N′,则M′∪N′=()A.{0,1,3,4}B.{1,4}C.{1,3}D.{0,3}4.设U为全集,对集合X,Y定义运算“*”,X*Y=∁U(X∩Y),对于任意集合X,Y,Z,则(X*Y)*Z=()A.(X∪Y)∩∁U ZB.(X∩Y)∪∁U ZC.(∁U X∪∁U Y)∩ZD.(∁U X∩∁U Y)∪Z5.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都就是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值就是________、6.设A,B就是两个非空集合,定义A与B的差集A-B={x|x∈A,且x∉B}、(1)试举出两个数集,求它们的差集;(2)差集A-B与B-A就是否一定相等?说明理由;(3)已知A={x|x>4},B={x|-6<x<6},求A-(A-B)与B-(B-A).知识点一函数的有关概念知识点二两个函数相等的条件1.定义域________.2.________完全一致.知识点三区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2、特殊区间的表示知识点四 函数的三种表示法:解析法、图象法、列表法. 知识点五 分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的________,那么称这样的函数为分段函数.分段函数就是一个函数,分段函数的定义域就是各段定义域的________,值域就是各段值域的________. 知识点六 映射的概念设A ,B 就是两个________________,如果按某一个确定的对应关系f ,使对于集合A 中的________________,在集合B 中都有________确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 知识点七 函数的单调性1.增函数、减函数:设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上就是增函数;当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上就是减函数.2.函数的单调性:若函数f (x )在区间D 上就是增(减)函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.3.单调性的常见结论:若函数f (x ),g (x )均为增(减)函数,则f (x )+g (x )仍为增(减)函数;若函数f (x )为增(减)函数,则-f (x )为减(增)函数;若函数f (x )为增(减)函数,且f (x )>0,则1f (x )为减(增)函数. 知识点八 函数的最大值、最小值性质:知识点九 函数的奇偶性 1.函数奇偶性的概念2、性质(1)偶函数的图象关于y轴对称,奇函数的图象关于原点对称.(2)奇函数在对称的区间上单调性相同,偶函数在对称的区间上单调性相反.(3)在定义域的公共部分内,两个奇函数之积与商(分母不零)为偶函数;两个奇函数之与为奇函数;两个偶函数的与、积与商为偶函数;一奇一偶函数之积与商(分母不为零)为奇函数.例1(2016年10月学考)函数f(x)=ln(x-3)的定义域为()A.{x|x>-3}B.{x|x>0}C.{x|x>3}D.{x|x≥3}例2(2016年4月学考)下列图象中,不可能成为函数y=f(x)图象的就是()例3 已知函数f (x )=⎩⎪⎨⎪⎧log 13x x >1-x 2-2x +4x ≤1则f (f (3))=________,f (x )的单调递减区间就是________.例4 (2015年10月学考)已知函数f (x )=x +a +|x -a |2,g (x )=ax +1,其中a >0,若f (x )与g (x )的图象有两个不同的交点,则a 的取值范围就是________.例5 已知函数f (x )=⎩⎨⎧a x(x <0)(a -3)x +4a (x ≥0)满足对任意的x 1<x 2都有f (x 1)>f (x 2),求a 的取值范围.例6 (2016年4月学考改编)已知函数f (x )=1x -1-1x -3、(1)设g (x )=f (x +2),判断函数g (x )的奇偶性,并说明理由; (2)求证:函数f (x )在2,3)上就是增函数.例7 (2015年10月学考)已知函数f (x )=ax +1x +1+1x -1,a ∈R 、(1)判断函数f (x )的奇偶性,并说明理由; (2)当a <2时,证明:函数f (x )在(0,1)上单调递减.例8 (2016年10月学考)设函数f (x )=1(|x -1|-a )2的定义域为D ,其中a <1、(1)当a =-3时,写出函数f (x )的单调区间(不要求证明);(2)若对于任意的x ∈0,2]∩D ,均有f (x )≥kx 2成立,求实数k 的取值范围.一、选择题1.函数f(x)=1-2x+1x+3的定义域为()A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]2.下列四组函数中,表示同一个函数的就是()A.y=-2x3与y=x-2xB.y=(x)2与y=|x|C.y=x+1·x-1与y=(x+1)(x-1)D.f(x)=x2-2x-1与g(t)=t2-2t-13.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能就是()4.已知f (x )就是一次函数,且ff (x )]=x +2,则f (x )等于( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -15.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不就是映射的就是( ) A.f :x →y =12xB.f :x →y =13xC.f :x →y =14xD.f :x →y =16x6.已知f (x )就是奇函数,g (x )就是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( ) A.4B.3C.2D.17.若函数y =ax +1在1,2]上的最大值与最小值的差为2,则实数a 的值为( ) A.2B.-2C.2或-2D.08.偶函数f (x )(x ∈R )满足:f (4)=f (1)=0,且在区间0,3]与3,+∞)上分别递减与递增,则不等式x ·f (x )<0的解集为( )A.(-∞,-4)∪(4,+∞)B.(-∞,-4)∪(-1,0)C.(-4,-1)∪(1,4)D.(-∞,-4)∪(-1,0)∪(1,4) 二、填空题9.已知函数f (x )=⎩⎪⎨⎪⎧1-12x x ≥01x x <0若f (a )=a ,则实数a =________、10.设f (x )=ax 2+bx +2就是定义在1+a,1]上的偶函数,则f (x )>0的解集为________. 11.若关于x 的不等式x 2-4x -a ≥0在1,3]上恒成立,则实数a 的取值范围为________. 三、解答题12.已知函数f (x )=1+ax 2x +b 的图象经过点(1,3),并且g (x )=xf (x )就是偶函数.(1)求函数中a 、b 的值;(2)判断函数g (x )在区间(1,+∞)上的单调性,并用单调性定义证明.13.已知二次函数f (x )=ax 2-2ax +2+b 在区间2,3]上有最大值5,最小值2、 (1)求f (x )的解析式;(2)若b >1,g (x )=f (x )+mx 在2,4]上为单调函数,求实数m 的取值范围.答案精析知识条目排查 知识点一1.确定的不同的 全体2.每个对象 知识点二 1.属于 ∈ 2.不属于 ∉ 知识点三1.确定性 互异性 无序性2.(1)有限个 (2)无限个3.正整数集 有理数集 知识点四 1.一一列举出来 2.共同特征 知识点五1.任意一个 A ⊆B B ⊇A x ∈B x ∉A AB BA2.(1)任何集合 ∅⊆A (2)A ⊆A (3)A ⊆C (4)AC3.集合B 就是集合A 的子集(B ⊆A )4.如果A =B, 则A ⊆B ,且B ⊆A知识点六1.属于集合A且属于集合B的所有元素{x|x∈A,且x∈B}2.所有属于集合A或属于集合B的元素{x|x∈A,或x∈B}3.B∩A B∪A A A∅A A B4.所有元素U5.不属于集合A∁U A{x|x∈U,且x∉A}题型分类示例例1 D例2A∵A=B,∴2∈B,则a=2、]例3{4}解析∵全集U={2,3,4},集合A={2,3},∴∁U A={4}.例4A∵A∩B=A,∴A⊆B、∵A={1,2},B={1,m,3},∴m=2,故选A、]例5B由B中不等式变形得(x-2)(x+4)>0,解得x<-4或x>2,即B=(-∞,-4)∪(2,+∞).∵A=-2,3],∴A∪B=(-∞,-4)∪-2,+∞).故选B、]例6C图中的阴影部分就是M∩P的子集,不属于集合S,属于集合S的补集,即就是∁I S的子集,则阴影部分所表示的集合就是(M∩P)∩∁I S,故选C、] 例7A A={x|1≤3x≤81}={x|0≤x≤4},B={x|log2(x2-x)>1}={x|x2-x>2}={x|x<-1或x>2},∴A∩B={x|2<x≤4}=(2,4].]考点专项训练1.B∵集合A={x|1≤x≤5},Z为整数集,则集合A∩Z={1,2,3,4,5}.∴集合A∩Z中元素的个数就是5,故选B、]2.C由x2-5x+6≥0,解得x≥3或x≤2、又集合A ={x |-1≤x ≤1},∴A ⊆B , 故选C 、] 3.D 4、C5.A ∁U B ={2,4,5,7},A ∩(∁U B )={3,4,5}∩{2,4,5,7}={4,5},故选A 、]6.A 因为全集U ={-1,1,3}, 集合A ={a +2,a 2+2},且∁U A ={-1}, 所以1,3就是集合A 中的元素,所以⎩⎨⎧a +2=1a 2+2=3或⎩⎪⎨⎪⎧a +2=3a 2+2=1由⎩⎪⎨⎪⎧ a +2=1a 2+2=3得a =-1、由⎩⎪⎨⎪⎧a +2=3a 2+2=1得a 无解,所以a =-1,故选A 、]7.D A ={x |x 2-8x +15=0}={3,5}, ∵B ⊆A ,∴B =∅或{3}或{5}, 若B =∅时,a =0; 若B ={3},则a =13;若B ={5},则a =15、故a =13或15或0,故选D 、]8.D ∵集合A ={x |x 2≥16}={x |x ≤-4或x ≥4}, B ={m },且A ∪B =A ,∴B ⊆A , ∴m ≤-4或m ≥4, ∴实数m 的取值范围就是 (-∞,-4]∪4,+∞),故选D 、] 9.{1,2} 10.0 1解析 A ={1,a },∵x (x -a )(x -b )=0, 解得x =0或a 或b , 若A =B ,则a =0,b =1、 11.4解析 全集U ={x ∈Z |-2≤x ≤4}={-2,-1,0,1,2,3,4},A ={-1,0,1,2,3},∁U A ={-2,4}, ∵B ⊆∁U A ,则集合B =∅,{-2},{4},{-2,4}, 因此满足条件的集合B 的个数就是4、 12.1,+∞)解析 由x 2-x <0,解得0<x <1, ∴A =(0,1).∵B =(0,a )(a >0),A ⊆B , ∴a ≥1、 13.3,+∞)解析 由|x -2|<a ,可得2-a <x <2+a (a >0), ∴A =(2-a,2+a )(a >0). 由x 2-2x -3<0,解得-1<x <3、 B =(-1,3).∵B ⊆A ,则⎩⎨⎧2-a ≤-12+a ≥3解得a ≥3、答案精析知识条目排查 知识点一非空数集 唯一确定 从集合A 到集合B {f (x )|x ∈A } 知识点二 1.相同 2.对应关系 知识点三1.a ,b ] (a ,b ) a ,b ) (a ,b ] 知识点五对应关系 并集 并集 知识点六非空的集合 任意一个元素x 唯一 知识点八f (x )≤M f (x 0)=M f (x )≥M f (x 0)=M 题型分类示例 例1 C例2 A 当x =0时,有两个y 值对应,故A 不可能就是函数y =f (x )的图象.] 例3 5 -1,+∞) 解析 f (3)=log 133=-1,∴f (f (3))=f (-1)=-1+2+4=5, 当x ≤1时,f (x )=-x 2-2x +4 =-(x +1)2+5, 对称轴x =-1,f (x )在-1,1]上递减,当x >1时,f (x )递减, ∴f (x )在-1,+∞)上递减. 例4 (0,1)解析 由题意得f (x )=⎩⎪⎨⎪⎧xx >aax ≤a在平面直角坐标系内分别画出0<a <1,a =1,a >1时,函数f (x ),g (x )的图象,由图易得当f (x ),g (x )的图象有两个交点时,有⎩⎨⎧0<a <1g (a )>a 解得0<a <1, a 的取值范围为0<a <1、例5 解 由题意知,f (x )为减函数,∴0<a <1且a -3<0且a 0≥(a -3)×0+4a ,∴0<a ≤14、例6 (1)解 ∵f (x )=1x -1-1x -3,∴g (x )=f (x +2)=1x +1-1x -1,∵g (-x )=1-x +1-1-x -1=1x +1-1x -1=g (x ),又∵g (x )的定义域为{x |x ≠-1且x ≠1},∴y =g (x )就是偶函数.(2)证明 设x 1,x 2∈2,3)且x 1<x 2,f (x 1)-f (x 2)=(1x 1-1-1x 1-3)-(1x 2-1-1x 2-3)=2(x 1-x 2)(x 1+x 2-4)(x 1-1)(x 1-3)(x 2-1)(x 2-3),∵x 1,x 2∈2,3)且x 1<x 2,∴x 1-x 2<0,x 1+x 2-4>0,(x 1-1)(x 1-3)(x 2-1)(x 2-3)>0,综上得f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在2,3)上就是增函数.例7 (1)解 因为f (-x )=-ax +1-x +1+1-x -1 =-(ax +1x -1+1x +1) =-f (x ),又因为f (x )的定义域为{x ∈R |x ≠-1且x ≠1},所以函数f (x )为奇函数.(2)证明 任取x 1,x 2∈(0,1),设x 1<x 2,则f (x 1)-f (x 2)=a (x 1-x 2)+x 2-x 1(x 1-1)(x 2-1)+x 2-x 1(x 1+1)(x 2+1) =(x 1-x 2)a -1(x 1-1)(x 2-1)-1(x 1+1)(x 2+1)] =(x 1-x 2)a -2(x 1x 2+1)(x 21-1)(x 22-1)]. 因为0<x 1<x 2<1,所以2(x 1x 2+1)>2,0<(x 21-1)(x 22-1)<1,所以2(x 1x 2+1)(x 21-1)(x 22-1)>2>a , 所以a -2(x 1x 2+1)(x 21-1)(x 22-1)<0、 又因为x 1-x 2<0,所以f (x 1)>f (x 2),所以函数f (x )在(0,1)上单调递减.例8 解 (1)单调递增区间就是(-∞,1],单调递减区间就是1,+∞).(2)当x =0时,不等式f (x )≥kx 2成立;当x ≠0时,f (x )≥kx 2等价于k ≤1[x (|x -1|-a )]2、 设h (x )=x (|x -1|-a )=⎩⎪⎨⎪⎧ -x [x -(1-a )]0<x ≤1x [x -(1+a )]1<x ≤2、①当a ≤-1时,h (x )在(0,2]上单调递增,所以0<h (x )≤h (2),即0<h (x )≤2(1-a ).故k ≤14(1-a )2、②当-1<a <0时,h (x )在(0,1-a 2]上单调递增,在1-a 2,1]上单调递减,在1,2]上单调递增, 因为h (2)=2-2a ≥(1-a )24=h (1-a 2). 即0<h (x )≤2(1-a ).故k ≤14(1-a )2、 ③当0≤a <1时,h (x )在(0,1-a 2]上单调递增, 在1-a 2,1-a )上单调递减,在(1-a,1]上单调递减, 在1,1+a )上单调递增,在(1+a,2]上单调递增,所以h (1)≤h (x )≤max{h (2),h (1-a 2)}且h (x )≠0、 因为h (2)=2-2a >(1-a )24=h (1-a 2), 所以-a ≤h (x )≤2-2a 且h (x )≠0、当0≤a <23时,因为|2-2a |>|-a |, 所以k ≤14(1-a )2; 当23≤a <1时,因为|2-2a |≤|-a |, 所以k ≤1a 2, 综上所述,当a <23时,k ≤14(1-a )2; 当23≤a <1时,k ≤1a 2、 考点专项训练1.A 要使函数有意义,则⎩⎪⎨⎪⎧ 1-2x ≥0x +3>0即⎩⎨⎧x ≤0x >-3、 故-3<x ≤0、即函数的定义域为(-3,0],故选A 、]2.D 在A 选项中,前者的y 属于非负数,后者的y ≤0,两个函数的值域不同; 在B 选项中,前者的定义域x ≥0,后者的x ∈R ,定义域不同;在C 选项中,前者定义域为x >1,后者为x >1或x <-1,定义域不同;在D 选项中,两个函数就是同一个函数,故选D 、]3.B4.A f (x )就是一次函数,设f (x )=kx +b ,ff (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,k 2=1,kb +b =2,解得k =1,b =1、则f (x )=x +1,故选A 、]5.A 6、B 7、C8.D 求x ·f (x )<0即等价于求函数在第二、四象限图象x 的取值范围.∵偶函数f (x )(x ∈R )满足f (4)=f (1)=0,∴f (4)=f (-1)=f (-4)=f (1)=0,且f (x )在区间0,3]与3,+∞)上分别递减与递增,如图可知:即x ∈(1,4)时,函数图象位于第四象限,x ∈(-∞,-4)∪(-1,0)时,函数图象位于第二象限,综上所述,x ·f (x )<0的解集为(-∞,-4)∪(-1,0)∪(1,4),故选D 、]9.-1或23解析 当a ≥0时,f (a )=1-12a =a , 得a =23; 当a <0时,1a=a ,解得a =-1或1(舍去).∴a =-1或23、 10.(-1,1)解析 ∵f (x )为定义在1+a,1]上的偶函数,∴1+a =-1,∴a =-2,又f (-x )=f (x ),即ax 2-bx +2=ax 2+bx +2,∴2bx =0,∴b =0,∴f (x )=-2x 2+2、∴由f (x )>0得,-2x 2+2>0,解得-1<x <1,∴f (x )>0的解集为(-1,1).11.(-∞,-4]解析 若关于x 的不等式x 2-4x -a ≥0在1,3]上恒成立, 则a ≤x 2-4x 在1,3]上恒成立,令f (x )=x 2-4x =(x -2)2-4,x ∈1,3],对称轴x =2,开口向上,f (x )在1,2)递减,在(2,3]递增,∴f (x )min =f (2)=-4,∴a ≤-4、12.解 (1)∵函数g (x )=xf (x )=x +ax 3x +b就是偶函数, 则g (-x )=g (x ).∴-x -ax 3-x +b =x +ax 3x +b恒成立, 即x -b =x +b 恒成立,∴b =0、又函数f (x )的图象经过点(1,3),∴f (1)=3,即1+a =3,∴a =2、(2)由(1)知g (x )=xf (x )=2x 2+1,g (x )在(1,+∞)上单调递增,设x 2>x 1>1,则g (x 2)-g (x 1)=2x 22+1-2x 21-1=2(x 2-x 1)(x 2+x 1).∵x 2>x 1>1,∴(x 2-x 1)(x 2+x 1)>0,∴g (x 2)>g (x 1),∴函数g (x )在区间(1,+∞)上就是增函数.13.解 (1)f (x )=a (x -1)2+2+b -a 、①当a >0时,f (x )在2,3]上单调递增,故⎩⎪⎨⎪⎧ f (2)=2f (3)=5即⎩⎪⎨⎪⎧ 2+b =23a +2+b =5所以⎩⎨⎧ a =1b =0、②当a <0时,f (x )在2,3]上单调递减,故⎩⎪⎨⎪⎧ f (2)=5f (3)=2即⎩⎪⎨⎪⎧ 2+b =53a +2+b =2所以⎩⎨⎧ a =-1b =3、所以f (x )=x 2-2x +2或f (x )=-x 2+2x +5、(2)因为b >1,所以f (x )=-x 2+2x +5,所以g (x )=-x 2+(m +2)x +5在2,4]上为单调函数, 故m +22≤2或m +22≥4,所以m ≤2或m ≥6、。