高中物理求极值方法与常用结论总结
高中物理中的极值问题

物理中的极值问题武穴育才高中 刘敬随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。
极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。
1.配方法:a b ac a b x a c bx ax 44)2(222-++=++ 当a >0时,当2b x a =-时,y min =ab ac 442- 当a <0时当2b x a =-时,y max =ab ac 442- 2.判别式法:二次函数令0≥∆,方程有解求极值.3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab4.三角函数法:θθcos sin b a y +==)sin(22θϕ++b a当090=+θϕ,22max b a y += 此时,ba arctan =θ 也可用求导法:ba b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值.6.用图象法求极值通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。
7.几何作图法研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。
研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。
高考物理中数学方法

处理物理问题的数学方法一、极值法1、 利用二次函数求极值:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a(其中a 、b 、c 为实常数),当x =-b2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).2、 利用三角函数求极值:y =a cos θ+b sin θ=a 2+b 2(a a 2+b 2cos θ+ba 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=ba 2+b 2则有:y =a 2+b 2(sin φcos θ+cos φsin θ)=a 2+b 2sin (φ+θ)3、 利用均值不等式求极值:对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 24例题:[2013山东理综 22(15分)]如图所示,一质量m =0.4kg 的小物块,以v 0=2m/s 的初速度,在与斜面成某的角度的拉力F 作用下,沿斜面向上做匀加速运动,经t =2s 的时间物块由A 点运动到B 点,AB 两点间的距离L =10m.已知斜面倾角30=θ,物块与斜面之间的动摩擦因数33=μ,重力加速度g 取10m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小。
(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 答:(1)物块加速度的大小为3m/s 2,到达B 点的速度为8m/s ; (2)拉力F 与斜面的夹角30°时,拉力F 最小,最小值是N 53 13=F min解析:(1)物体做匀加速直线运动,根据运动学公式,有:221at L =①, v=at ②联立解得; a=3m/s 2,v=8m/s (2)对物体受力分析 根据牛顿第二定律,有:水平方向:Fcosα-mgsinα-F f =ma 竖直方向:Fsinα+F N -mgcosα=0 其中:F f =μF N 联立解得:α)+sin(60 3 32ma +μcosα)+mg(sin α= sin cos ma +μcosα)+mg(sin α=F ︒+αμα故当α=30°时,拉力F 有最小值,为N 53 13=F min ; 二、几何法利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上常见的几何关系:1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图1所示.图1由勾股定理得:R 2=(R -CE )2+EB 2解得:R =EB 22CE +CE2.例题:[2014山东理综 24(20分)]如图-2甲所示,间距为、垂直于纸面的两平行板间存在匀强磁场。
专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。
本文通过例题归纳综合出极值问题的四种主要解法。
一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。
例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。
设第一个物体的质量为1m ,速度为1V 。
第二个物体的质量为2m ,速度为2V 。
碰撞以后的速度分别为'1V 和'2V 。
假使这四个速度都在一条直线上。
根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。
碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。
回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。
高考复习专题四—求极值的六种方法(解析版)

微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。
高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结(一)利用分式的性质求极值[例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30º角,如图示。
使A作匀速直线运动。
试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动?解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30º=μ(G+Fsin30º),得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30º-μcos30º=0时得μ=tg30º=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。
(二)利用一元二次方程求根公式求极值有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。
它的根就可能是要求的极值。
这种方法应用是很普遍的。
(三)利用一元二次方程判别式△=b2-4ac≥O求极值[例2] 一个质量为M的圆环,用细线悬挂着。
将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。
今将两小珠从环的顶端由静止开始释放。
证明,当m>M 时,圆环能升起。
证明:取小球为研究对象,受力如图(a)。
由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ(1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3)将(1)代入(3)式中,其中N’为(a)图中N的反作用力。
有2(2mg-3mgcosθ)cosθ=Mg 即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。
cosθ为实数,则△≥0,即(4m)2-4(6m)M≥0,可得m≥M 当m=M时,T恰好为零,但不升起,所以取m>M为升起条件。
高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值方法和常用结论是常见的问题类型,通过总结这些方法和结论,有助于高中物理学习者更好地理解和应用。
一、求极值方法:1.极值定理:对于一个连续函数f(x)在闭区间[a,b]上,必然存在至少一个极大值和极小值,即f(x)在[a,b]上必然取得极值。
2.导数法则:利用导数的相关概念和性质,可以简化极值的求解过程。
(1)极值的必要条件:函数f(x)在x=c处取得极值,必然满足f'(c)=0。
(2)极值的充分条件:若函数f'(x)在x=c的邻域内存在符号变化,且在c处f''(c)存在,则f(x)在x=c处取得极值。
3.端点法:闭区间[a,b]上的函数f(x),当x=a或x=b时,可以直接求解f(a)和f(b),作为极值的候选值。
4.区间内部法:闭区间[a,b]上的函数f(x),通过求解f'(x)=0,得到f(x)的驻点。
然后比较驻点和两个端点的函数值,选取最大和最小值作为极值。
5.辅助线法:即画出函数的图像,观察图像的整体形状,然后根据函数的性质和题目要求,确定极值所在的位置。
二、常用结论:1.函数的单调性:函数在给定的定义域内是递增的还是递减的。
(1)若f'(x)>0,则f(x)在区间上递增。
(2)若f'(x)<0,则f(x)在区间上递减。
2.极值判定:通过一、二阶导数的符号来判断函数的极值。
(1)若f''(x)>0,则f(x)在x处取得极小值。
(2)若f''(x)<0,则f(x)在x处取得极大值。
3.凹凸性:函数图像在其中一区间上是凹向上还是凹向下。
(1)若f''(x)>0,则f(x)在区间上是凹向上的。
(2)若f''(x)<0,则f(x)在区间上是凹向下的。
4.零点定理:对于一个连续函数f(x),若f(a)和f(b)异号,则在开区间(a,b)内至少存在一个实根。
物理习题中极值问题的数学求解方法

物理习题中极值问题的数学求解方法江西宁都中学卢加英江西省宁都县342800本文结合平常的习题教学,将高中物理习题中的极值问题解法归纳分类,以飨读者。
一、利用一元二次函数知识求极值设有二次函数2224()22b ac b y ax bx c a x a a-=++=++ 若a <0则y 有极大值,当2bx a =-时,2max 42ac b y a -=若a >0则y 有极小值,当2bx a =-时,2max 42ac b y a-=例1:一辆汽车以10m/s 的速度匀速直线行驶15s 后,一辆摩托车从静止开始,在同一地点出发,以1m/s2的速度作匀加速直线运动追赶汽车,求二车何时相距最远?最远距离多大?解:设摩托车行驶t 秒后二车相距S 米,有10(t+15)-12×1×t2=S 即:S=-12t2+10t +150题中“何时相距最远”实际就是t 为何值时,有最大值Smax 依一元二次函数知识可知:t =2ba-=10(s)时, Smax=200(m)例1也可以借助如下方法进行求解将S=-12t2+10t+150变形为12t2-10t -150+S=0 要使方程有解,则△=(-10) 2-4×12×(-150+S)≥0得S≤200m ,即S 最大值Smax=200m 二、利用一元二次方程根的判别式求极值应用该方法,宜选择适当的物理量作自变量,通过物理规律导出一个一元二次方程,利用△=b2-4ac ≥0求解例2:如图一,顶角为2θ的光滑圆锥置于磁感应强度为B ,方向竖直向下的匀强磁场中,现有一个质量为m ,带电量为+Q 的小球沿圆锥面在水平面内作匀速圆周运动,求小球作圆周运动的最小图3半径。
解:以小球为研究对象,受重力mg ,弹力FN 及洛仑兹力f 的作用,如图2建立坐标系 设:轨道半径R在x 方向:2N f F COS mRνθ-=①在y 方向:0N F Sin mg θ-=②f BQ ν=③整理得:2cot 0m QRB mgR ννθ-+=关于ν的一元二次方程中ν有实数解有△=Q2B2R2-4m2gRCot θ≥0R≥4 m2gRCot θ/ Q2B2即Rmin=4m2gCot θ/ Q2B2三、利用三角函数的有界属性求极值设有三角函数y Sinx =(或cos x )在定义域内一定有-1≤y≤ 1 即ymax=1 ymin=-1例3:某人与一平直公路距离h=50m ,一客车以速度v1=10m/s 沿此公路匀速驶来,当客车与人距离S=200m 时,人开始追赶,求人能追上客车的最小奔跑速度。
自用教案:物理极值的几种数学求法

物理极值的几种数学求法河南省汝阳县实验高中——师儆愈高中物理中有许多极值类问题,为使同学们能够全面了解极值类问题的求法,现做简单归纳如下:【典例解析】 一、利用三角函数求极值1、利用三角函数的有界性求极值如果所求物理量表达式中含有三角函数,可利用三角函数的有界性求极值。
若所求物理量表达式可化为“ααcos sin A y =”的形式,可变为α2sin 21A y =,当︒=45α时,y 有极值2A。
2、利用“化一”法求三角函数极值对于复杂的三角函数,例如θθcos sin b a y +=,要求极值时,先需要把不同名的三角函数θsin 和θcos ,变成同名的三角函数,这个工作叫做“化一”。
)cos sin (cos sin 222222θθθθbabba ab a b a y ++++=+=)cos sin sin (cos 22θφθφ++=b a ab b a =++=φφθtan )sin(22其中 故y 的极大值为22b a +。
【类型Ⅰ】三角函数()θθθθ2sin 2cos sin AA f ==(其中θ为锐角)。
当 45=θ时,三角函数()θf 取最大值()2max Af =θ。
【例1-1】如图所示,底边恒定为b,当斜面与底边所成夹角θ为多大时,物体沿此光滑斜面由静止从顶端滑到底端所用时间才最短?此题的关键是找出物体从斜面顶端滑至底端所用时间与夹角的关系式,这是一道运动学和动力学的综合题,应根据运动学和动力学的有关知识列出物理方程。
【解析】设斜面倾角为θ时,斜面长为S ,物体受力如图所示,由图知θcos bS =由匀变速运动规律得:221at S =由牛顿第二定律提:mgsin θ=ma …………③一.数学方法 几何法:切割线定理求极值函数法均值不等式法正弦定理法根的判别式法 三角函数法利用三角函数的有界性求极值利用三角函数 “化一”法求三角函数极值二次函数顶点法 二次函数法 配方法 求导数法联立解得:θθθ2sin 4cos sin 22g bg b aSt ===可见,在90°≥θ≥0°内,当2θ=90°时,sin2θ有最大值,t 有最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。
很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。
下面将为你总结高中物理求极值的方法和常用结论。
一、求极值的方法
1.寻找最值法:
通过寻找物理问题的最大值或最小值来求出极值。
2.解析法:
通过建立数学模型,对其求导或使用其他数学方法得出极值。
3.几何方法:
通过几何图形的性质和分析来求出极值。
二、常用结论
1.极大值与极小值:
对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,
f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为
f(x)的极小值点。
2.拐点与拐点性质:
对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,
在c点右侧由正变负,则c称为f(x)的拐点。
拐点的性质为:由凹变凸
的拐点称为极小值点,由凸变凹的拐点称为极大值点。
3.一元二次函数的最值结论:
一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论
求得:
当a>0时,最小值为:y_min=c-b^2/(4a)
当a<0时,最大值为:y_max=c-b^2/(4a)
4.相对速度最小值结论:
当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度
最小值出现在它们的运动方向夹角为0°或者180°时。
5.成千上万法:
在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。
6.速度为零但加速度不为零时的移动物体:
当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可
以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中
a为加速度,t为时间。
7.物体自由落体的最高点:
自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体
停止上升,准备掉下来。
在最高点时,由重力加速度a和初始速度v0可
以得到移动时间t = v0/a,将这个时间代入位移公式s = v0t +
(1/2)at^2中求出最高点的高度h = (v0^2)/(2a)。
以上是高中物理求极值方法和常用结论的总结。
在物理学习中,掌握这些方法和结论,并能熟练运用于解决物理问题,将极大地提高对物理学的理解和掌握能力。