电磁学PPT55436
合集下载
电磁学PPT课件-2024鲜版

1 2
麦克斯韦方程组的构成
四个基本方程,描述电场、磁场、电荷和电流之 间的关系。
物理意义
揭示了电磁场的基本规律,预测了电磁波的存在 ,为电磁学的发展奠定了基础。
方程组中各量的含义及相互关系
3
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
2024/3/28
且电流大小和方向均不随时间变化。
欧姆定律的内容
02
介绍欧姆定律,即在同一电路中,通过导体的电流与导体两端
的电压成正比,与导体的电阻成反比。
欧姆定律的应用
03
列举欧姆定律在电路分析中的广泛应用,如计算电阻、电压和
电流等。
14
稳恒磁场产生条件及描述方法
稳恒磁场的定义和产生条件
阐述稳恒磁场的概念,即由恒定电流产生的磁场,其磁场强度和 方向均不随时间变化。
霍尔效应的原理
介绍霍尔效应的原理,即在通电的半导体薄片上施加一个与电流方 向垂直的磁场,会在半导体两侧产生电势差的现象。
霍尔效应的应用
列举霍尔效应在测量磁场、制作霍尔元件等方面的应用。
2024/3/28
16
磁路定理及其在工程中应用
磁路定理的内容
介绍磁路定理,即在磁路 中,磁通量总是沿着磁阻 最小的路径闭合。
配电网
将电能从变电站输送到用户端,包括架空线路、电缆、配 电变压器等设施。
2024/3/28
26
工业自动化领域传感器技术应用
位移传感器
利用电磁感应原理测量 物体位移或位置变化, 广泛应用于机床、自动 化生产线等领域。
2024/3/28
压力传感器
将压力转换为电信号输 出,用于测量气体或液 体的压力,常见于工业 控制、航空航天等领域 。
大学物理《电磁学》PPT课件

欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。
大学物理《电磁学》PPT课件

电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
大学物理《电磁学》PPT课件

2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
↑载流螺线管的磁感应线 ←载流直导线的磁感应线 比较
1 e E dS
S
0
Q
dV
静电场中高斯定理反映静电场是有源场;
m B dS 0
安 培 演 示 电 流 相 互 作 用 的 装 置 ( 复 制 品 )
电流与电流之间的相互作用
I
F F
I
电流与电流之间的相互作用
I F
F
I
磁场对运动电荷的作用
电子束
+
磁场对运动电荷的作用
电子束
S N
+
我们得把问题引向一个更深的层次 思想深邃的科学家自问:磁铁究竟是什么?如 果磁场是由电荷运动激发的,那么来自一块磁铁的 磁场是否也可能是由于电流的的效果呢? 安培用通电螺线管很好地模拟了一个磁针:
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
磁感应线的疏密反映磁场的强弱。
B
③性质: •磁感应线是无头无尾的闭合曲线,磁场中任 意两条磁感应线不相交。 •磁感应线与电流线铰链 通过无限小面元dS 的磁感应线数目dm与dS 的 比值称为磁感应线密度。我们规定磁场中某点的磁
2
大学物理《电磁学》PPT课件

作用于
运动电荷 B
产生
三、磁感应强度(Magnetic Induction)
1. 磁感应强度 B 的定义:
对比静电场场强的定义 F q0 E
将一实验电荷射入磁场,运动电荷在磁场中 会受到磁力作用。
实验表明
① Fm v
② Fm q0v sin
2
时Fm达到最大值
Fm
q0
v
θ=0 时Fm= 0,
F e 0 v y 0 e(v yBzi v yBxk )
Bx 0 Bz Fz e v y Bx
Bx
Fz e vy
8.69 10-2 T
B
Bx2
B
2 y
0.1T
tan Bz 0.57
Bx
300
资料
原子核表面
~1012T
中子星表面
~106T
目前最强人工磁场 ~7×104T
太阳黑子内部
S
B
m BS
②均匀磁场,S 法线方向与磁场方向成 角
S
n
B m BS cos B S
③磁场不均匀,S 为任意曲面
dm BdS cosθ B dS ④S 为任意闭合曲面
m B dS S
m BdS cosθ B dS
S
S
规定:dS正方向为曲面上由内向外的法线方向。
则 磁感应线穿入,m 为负;穿出,m为正。
人们最早认识磁现象是从天然磁铁开(称 天然磁铁为永恒磁铁)。
对其基本现象的认识归纳如下:
(1) 同号的磁极有相互排斥力,异号的磁极有相 互吸引力
(磁铁间相互作用力称为磁力)
(2)磁铁分割成小段,小段仍有两极(磁荷假说)
(3) 铁棒可以被磁化
电磁学 全套课件

一、电荷
第五章静电场
§5-1库仑定律
1、种类:正电荷、负电荷
2、电荷的量子化
e1.61 019C
qne(n1,2 )
二、电荷守恒定律
1、常见的两种起电方式
摩擦起电 感应起电
起电本质:电子从一个物体转移到另一个物体
AB
A
B
A
B
2、电荷守恒定律:在孤立系统中,不论系统的电荷如何 迁移,系统的电荷电量的代数和保持不变。
一、等势面
1、定义:电场中电势相等的点所组成的曲面
2、说明: 沿等势面移动电荷电场力不做功 电场线和等势面处处正交 规定:相邻等势面的电势差相等。
等势面密的地方电场强,等势面稀疏的地方电场弱。 电场线的方向总是指向电势降低的方向
点电荷
等量异号点电荷
二、电势梯度
1、电势梯度
E
若带电体电荷无限分布,则在有限范围内选取零电势点。
五、电势的计算
1、点电荷电场的电势
U 1 q
4 0 r
q
a
r
说明 •球对称性 •电势有正有负,决定于场源电荷的正负
2、点电荷系的电势
U
i
1 qi
4 0 ri
U1U2
电势叠加原理:点电荷系电场中某场点的电势等于各个点电荷 电场在该场点的电势的代数和。
q0从无限远处移到O点,电场力做功多少?
q1
a
q2
a O
a
q4
a
q3
例2、求半径为R、均匀带电为q的细圆环轴线上任一点的电势。
dl
R
r
a
Ox x
讨论: 环心处:x=0 x>>R处
第五章静电场
§5-1库仑定律
1、种类:正电荷、负电荷
2、电荷的量子化
e1.61 019C
qne(n1,2 )
二、电荷守恒定律
1、常见的两种起电方式
摩擦起电 感应起电
起电本质:电子从一个物体转移到另一个物体
AB
A
B
A
B
2、电荷守恒定律:在孤立系统中,不论系统的电荷如何 迁移,系统的电荷电量的代数和保持不变。
一、等势面
1、定义:电场中电势相等的点所组成的曲面
2、说明: 沿等势面移动电荷电场力不做功 电场线和等势面处处正交 规定:相邻等势面的电势差相等。
等势面密的地方电场强,等势面稀疏的地方电场弱。 电场线的方向总是指向电势降低的方向
点电荷
等量异号点电荷
二、电势梯度
1、电势梯度
E
若带电体电荷无限分布,则在有限范围内选取零电势点。
五、电势的计算
1、点电荷电场的电势
U 1 q
4 0 r
q
a
r
说明 •球对称性 •电势有正有负,决定于场源电荷的正负
2、点电荷系的电势
U
i
1 qi
4 0 ri
U1U2
电势叠加原理:点电荷系电场中某场点的电势等于各个点电荷 电场在该场点的电势的代数和。
q0从无限远处移到O点,电场力做功多少?
q1
a
q2
a O
a
q4
a
q3
例2、求半径为R、均匀带电为q的细圆环轴线上任一点的电势。
dl
R
r
a
Ox x
讨论: 环心处:x=0 x>>R处
大学物理:电磁学PPT

N F4
O
F2 B
en
M,N F1
O,P B
F2
en
l1 l1 M F1 sin F2 sin Il2 B l1 sin ISB sin 2 2 M IS B m B 线圈有N匝时 m NIS
2 电流元的磁场
dB
P *
I
Idl
0 Idl dB er 2 4 r
——毕奥-萨伐尔定律
r
3
磁场的叠加原理
B Bi
i
B dB
例 1: 判断下列各点磁感强度的方向和大小.
1 8 2Βιβλιοθήκη dB 0 1、 5 点 :
7
Idl
R
6 5 4
例 5:
一半径为R,均匀带电Q的薄球壳。 求球壳内外任意点的电场强 度。
0 r R 如图,过P点做球面S1 E dS E dS 0 E 0
S1 S1
r
P
+ + +
+
S +1
O
如图,过P点做球面S2 rR E dS E dS Q / 0
rB
(electric potential )
点电荷电场 中的电势:
V
Q 40 r
电势的叠加 原理:
V Vi
i
点电荷电场中常取 无穷远处为电势零点
点电荷的电场线和等势面:
两平行带电平板的电场线和等势面:
+ + + + + + + + + + + +
2024年度电磁学全套ppt课件

等效电源定理
将复杂电路中的某一部分等效 为一个电源,从而简化电路分
析的方法。
17
04
磁场与磁力线
2024/2/3
18
磁场基本概念及性质
2024/2/3
磁场定义
磁场是由磁体周围空间存在的一种特殊物质,它对放入其 中的磁体产生力的作用。
磁场性质
磁场具有方向性,其方向由小磁针N极受力方向确定;磁 场具有叠加性,多个磁场可以相互叠加形成合磁场。
混联电路
既有串联又有并联的电路称为混联电路,分析时可根据需要将其简化 为简单的串联或并联电路进行处理。
2024/2/3
16
复杂电路简化技巧
支路电流法
以支路电流为未知量,列写KCL 和KVL方程进行求解的方法。
2024/2/3
节点电压法
以节点电压为未知量,列写KCL 方程进行求解的方法。
叠加定理
对于线性电路,多个独立电源 共同作用时产生的响应等于各 独立电源单独作用时产生的响 应的叠加。
互感现象
当两个线圈靠近时,一个线圈中的电流变化会在另一个线圈 中产生感应电动势,这种现象称为互感现象。互感电动势的 大小与两个线圈的匝数、相对位置和磁场的变化率有关。
26
变压器原理及应用
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制成。当 原线圈中加上交流电压时,铁芯中就会产生交变磁场,从而在副线圈中产生感应电动势。通过改变原、副线圈的 匝数比,就可以实现电压的升高或降低。
电阻的串联与并联
多个电阻串联时,总电阻等于各电阻之和;多个电阻并联时,总 电阻的倒数等于各电阻倒数之和。
15
串联、并联和混联电路分析
将复杂电路中的某一部分等效 为一个电源,从而简化电路分
析的方法。
17
04
磁场与磁力线
2024/2/3
18
磁场基本概念及性质
2024/2/3
磁场定义
磁场是由磁体周围空间存在的一种特殊物质,它对放入其 中的磁体产生力的作用。
磁场性质
磁场具有方向性,其方向由小磁针N极受力方向确定;磁 场具有叠加性,多个磁场可以相互叠加形成合磁场。
混联电路
既有串联又有并联的电路称为混联电路,分析时可根据需要将其简化 为简单的串联或并联电路进行处理。
2024/2/3
16
复杂电路简化技巧
支路电流法
以支路电流为未知量,列写KCL 和KVL方程进行求解的方法。
2024/2/3
节点电压法
以节点电压为未知量,列写KCL 方程进行求解的方法。
叠加定理
对于线性电路,多个独立电源 共同作用时产生的响应等于各 独立电源单独作用时产生的响 应的叠加。
互感现象
当两个线圈靠近时,一个线圈中的电流变化会在另一个线圈 中产生感应电动势,这种现象称为互感现象。互感电动势的 大小与两个线圈的匝数、相对位置和磁场的变化率有关。
26
变压器原理及应用
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制成。当 原线圈中加上交流电压时,铁芯中就会产生交变磁场,从而在副线圈中产生感应电动势。通过改变原、副线圈的 匝数比,就可以实现电压的升高或降低。
电阻的串联与并联
多个电阻串联时,总电阻等于各电阻之和;多个电阻并联时,总 电阻的倒数等于各电阻倒数之和。
15
串联、并联和混联电路分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章 电磁场
§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
精品课件
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
磁通量的变化率成正比。
dm
dt
负号是楞次定律的要求。
所以也可这样做:
(1)直接用 dm 算大小
dt
(2)楞次定律定方向
利用法拉第电磁感应定律
求的关键:求m
精品课件
10
若有N 匝线圈,彼此串联,总电动势等于各匝线圈所产生
的电动势之和。令每匝的磁通量为 1、 2 、 3
d 1 d 2
dm
dt
m
s
B
ds
精品课件
17
一、动生电动势
D
+
洛仑兹力提供非静电力
f e(v B )
-
f
v
E非fevB
C
E非 dl
D
C
(v
B)
dl
精品课件
18
+
D
(v
B)
-
dl
v
C
D (vB)dl
C
C (vB)dl
D
C
vBD cosdl
精品课件
13
例2. 一长直电流 I,与之共面的 abcd 线框 v
以 向右匀速平动。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
×
b
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
精品课件
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
精品课件
15
例3. 若上题中 v = 0,I = I0sin t,则结果如
何?
解:
b ac
m
0Illnxa
2
x
dm
dt
I x a
l v
d
2 0lln x xaI0cots
方向:楞次定律
精品课件
16
§2 动生电动势
其途径有三:1.部分导体作切割磁力线运动 2.改变磁场 3.导体不动,磁场不变,改变磁介质
精品课件
3
法拉第于1791年出生在英国伦敦附 近的一个小村里,父亲是铁匠,自幼家 境贫寒,无钱上学读书。13岁时到一家 书店里当报童,次年转为装订学徒工。
在学徒工期间,法拉第除工作外,利用书店的条件, 在业余时间贪婪地阅读了许多科学著作,例如《化学对 话》、《大英百科全书》的《电学》条目等,这些著作 开拓了他的视野,激发了他对科学的浓厚兴趣。
dt dt
磁通链数(或全磁通): Ψ 1 2 3
d d(1 2 3 )
dt
dt
若每匝磁通量相同 d N d
dt
dt
设闭合导体回路中的总电阻为R,由全电路欧姆定律
得回路中的感应电流为:
Ii
i
R
1 R
dΦ dt
精品课件
11
例1 空间上均匀的磁场 B= kt (k > 0),方向如图。
法则。1833年楞次在总结了安培的
电动力学与法拉第的电磁感应现象
后,发现了确定感生电流方向的定
律─楞次定律。
楞次定律说明电磁现象也遵循能
εI
非静电力
静电力
––– 将单位正电荷从电源负极经由电源内部
移到正极,非静电力所作的功
电场中 E
F
E非
F非 q
q
A非 q
1833年,法拉第发现了电解定律,1837年发现了电解 质对电容的影响,引入了电容率概念。1845年发现了磁光 效应,后又发现物质可分为顺磁质和抗磁质等。
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
精品课件
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
精品课件
6
楞次(1804~1865)俄国物理学家。
1831年法拉第发现了电磁感应现象
后,当时已有许多便于记忆的“左
手定则”、“右手定则”、“右手
楞次
螺旋法则”等经验性规则,但是并
没有给出确定感生电流方向的一般
2
精品课件
21
2. 磁场不均匀
C D (v B )d l
例 求当金属棒转到与水平方向成角时, 棒内
感应电动势的大小和方向.
当穿过一个闭合导体回路所包围的面积内的磁通 量发生变化时(不论这种变化是由什么原因引起的),在 导体回路中就有电流产生。这种现象称为电磁感应现象。
回路中所产生的电流称为感应电流。 相应的电动势则称为感应电动势。
精品课件
2
一线圈,如果要有感应电流产生,通过它的磁场 要满足什么条件?
那就是:通过线圈的磁通要发生变化
F非 dl
q
E非 dl
精品课件
8
A非 q
F非 dl
q
E非 dl
I
εI
内部
方向: 负极
正极
即使导体回路不闭合,甚至仅是一假想回路,只要 回路中磁通变化,就一定有感应电动势;但回路要 闭合,才有感应电流
精品课件
9
3.法拉第电磁感应定律
叙述:导体回路中的感应电动势 的大小与穿过导体回路的
vBl
负号方 表向 示 C : D
精品课件
19
二、动生电动势的计算
1. 磁场均匀
例
vB
A
v
dl
R
B
C D (v B )d l
A BvB co2s()Rd
2vBR
精品课件
20
例
b (vB)dl
a
v
dl
b
bvBcosdl a
vB
a
LlBcosdl 0 1 Bl2
1812年,学徒期满,法拉第打算专门从事科学研究。 次年,经著名化学家戴维推荐,法拉第到皇家研究院实 验室当助理研究员。在戴维的支持和指导下作了许多化 学方面的研究工作。
精品课件
4
1821年法拉第读到了奥斯特的描述他发现电流磁效应 的论文《关于磁针上的电碰撞的实验》。该文给了他很大 的启发,使他开始研究电磁现象。经过十年的实验研究, 在1831年,他终于发现了电磁感应现象。
导a线 以 bv匀速右平动。
求:t 时刻回路中的感应电动势 。
n
B
a
60
l v
b
精品课件
12
解:
msBco6s0 ds 0xBco6s0ldx
1 Blx 1 Blvt 1 klvt 2
2
2
2
n
B
a
60
l v
b
dm klvt
dt
B= kt (k > 0)
楞次定律定方向:a b.
§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
精品课件
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
磁通量的变化率成正比。
dm
dt
负号是楞次定律的要求。
所以也可这样做:
(1)直接用 dm 算大小
dt
(2)楞次定律定方向
利用法拉第电磁感应定律
求的关键:求m
精品课件
10
若有N 匝线圈,彼此串联,总电动势等于各匝线圈所产生
的电动势之和。令每匝的磁通量为 1、 2 、 3
d 1 d 2
dm
dt
m
s
B
ds
精品课件
17
一、动生电动势
D
+
洛仑兹力提供非静电力
f e(v B )
-
f
v
E非fevB
C
E非 dl
D
C
(v
B)
dl
精品课件
18
+
D
(v
B)
-
dl
v
C
D (vB)dl
C
C (vB)dl
D
C
vBD cosdl
精品课件
13
例2. 一长直电流 I,与之共面的 abcd 线框 v
以 向右匀速平动。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
×
b
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
精品课件
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
精品课件
15
例3. 若上题中 v = 0,I = I0sin t,则结果如
何?
解:
b ac
m
0Illnxa
2
x
dm
dt
I x a
l v
d
2 0lln x xaI0cots
方向:楞次定律
精品课件
16
§2 动生电动势
其途径有三:1.部分导体作切割磁力线运动 2.改变磁场 3.导体不动,磁场不变,改变磁介质
精品课件
3
法拉第于1791年出生在英国伦敦附 近的一个小村里,父亲是铁匠,自幼家 境贫寒,无钱上学读书。13岁时到一家 书店里当报童,次年转为装订学徒工。
在学徒工期间,法拉第除工作外,利用书店的条件, 在业余时间贪婪地阅读了许多科学著作,例如《化学对 话》、《大英百科全书》的《电学》条目等,这些著作 开拓了他的视野,激发了他对科学的浓厚兴趣。
dt dt
磁通链数(或全磁通): Ψ 1 2 3
d d(1 2 3 )
dt
dt
若每匝磁通量相同 d N d
dt
dt
设闭合导体回路中的总电阻为R,由全电路欧姆定律
得回路中的感应电流为:
Ii
i
R
1 R
dΦ dt
精品课件
11
例1 空间上均匀的磁场 B= kt (k > 0),方向如图。
法则。1833年楞次在总结了安培的
电动力学与法拉第的电磁感应现象
后,发现了确定感生电流方向的定
律─楞次定律。
楞次定律说明电磁现象也遵循能
εI
非静电力
静电力
––– 将单位正电荷从电源负极经由电源内部
移到正极,非静电力所作的功
电场中 E
F
E非
F非 q
q
A非 q
1833年,法拉第发现了电解定律,1837年发现了电解 质对电容的影响,引入了电容率概念。1845年发现了磁光 效应,后又发现物质可分为顺磁质和抗磁质等。
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
精品课件
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
精品课件
6
楞次(1804~1865)俄国物理学家。
1831年法拉第发现了电磁感应现象
后,当时已有许多便于记忆的“左
手定则”、“右手定则”、“右手
楞次
螺旋法则”等经验性规则,但是并
没有给出确定感生电流方向的一般
2
精品课件
21
2. 磁场不均匀
C D (v B )d l
例 求当金属棒转到与水平方向成角时, 棒内
感应电动势的大小和方向.
当穿过一个闭合导体回路所包围的面积内的磁通 量发生变化时(不论这种变化是由什么原因引起的),在 导体回路中就有电流产生。这种现象称为电磁感应现象。
回路中所产生的电流称为感应电流。 相应的电动势则称为感应电动势。
精品课件
2
一线圈,如果要有感应电流产生,通过它的磁场 要满足什么条件?
那就是:通过线圈的磁通要发生变化
F非 dl
q
E非 dl
精品课件
8
A非 q
F非 dl
q
E非 dl
I
εI
内部
方向: 负极
正极
即使导体回路不闭合,甚至仅是一假想回路,只要 回路中磁通变化,就一定有感应电动势;但回路要 闭合,才有感应电流
精品课件
9
3.法拉第电磁感应定律
叙述:导体回路中的感应电动势 的大小与穿过导体回路的
vBl
负号方 表向 示 C : D
精品课件
19
二、动生电动势的计算
1. 磁场均匀
例
vB
A
v
dl
R
B
C D (v B )d l
A BvB co2s()Rd
2vBR
精品课件
20
例
b (vB)dl
a
v
dl
b
bvBcosdl a
vB
a
LlBcosdl 0 1 Bl2
1812年,学徒期满,法拉第打算专门从事科学研究。 次年,经著名化学家戴维推荐,法拉第到皇家研究院实 验室当助理研究员。在戴维的支持和指导下作了许多化 学方面的研究工作。
精品课件
4
1821年法拉第读到了奥斯特的描述他发现电流磁效应 的论文《关于磁针上的电碰撞的实验》。该文给了他很大 的启发,使他开始研究电磁现象。经过十年的实验研究, 在1831年,他终于发现了电磁感应现象。
导a线 以 bv匀速右平动。
求:t 时刻回路中的感应电动势 。
n
B
a
60
l v
b
精品课件
12
解:
msBco6s0 ds 0xBco6s0ldx
1 Blx 1 Blvt 1 klvt 2
2
2
2
n
B
a
60
l v
b
dm klvt
dt
B= kt (k > 0)
楞次定律定方向:a b.