叠加物体相对运动问题,
4连接体问题及解题方法

4连接体问题及处理方法一、连接体问题1.连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统.2.连接体题型(1)系统内所有物体相对静止,即运动情况相同,a 也相同------相对静止问题(2)系统内物体相对运动,运动情况不同,a 也不同------相对运动问题二、处理方法1整体法分析系统受力时只分析外力不必分析内力;在用隔离法解题时要注意判明隔离体的运动方向和加速度方向,同时为了方便解题,一般我们隔离受力个数少的物体.2.相对静止类:程。
(整体与隔离结合使用)例1.A 、B 两物体靠在一起,放在光滑水平面上,m B =6Kg ,今用水平力F A =6N 推A ,用水平力F B =3N 拉B ,A 、B 有多大?3.相对运动问题:例2.如图所示,光滑水平面上静止放着长L =1.6 m 、质量为M =3 kg 的木板.一个质量为m =1 kg 的小木块放在木板的最右端,m 与M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,若2s 时两者脱离,则F 为多大?4.判断相对静止还是相对运动:以最容易达到最大加速度的物体作为切入点,进入分析例3.如图所示,m 1=40 kg 的木板放在无摩擦的地板上,木板上又放m 2=10 kg 的石块,石块与木板间的动摩擦因数μ=0.6,试问(1)当水平力F =50 N 时,石块与木板间有无相对滑动?(2)当水平力F =100 N 时,石块与木板间有无相对滑动?(g =10 m/s 2)此时m 2的加速度为多大?5.方法总结①.当它们具有共同加速度时,一般是先整体列牛顿第二定律方程,再隔离受力个数少的物体分析列牛顿第二定律方程.②.当它们的加速度不同且涉及到相对运动问题,一般采用隔离法分别分析两个物体的运动情况,再找它们运动或受力的联系点列辅助条件方程.练习题1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A .211m m m + FB .212m m m + FC .FD .21m m F 2.上题若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则A 对B 作用力等于为( )3.如图所示,光滑平面上以水平恒力F 拉动小车和木块,一起做无相对滑动的加速运动,若小车质量为M ,木块质量为m ,加速度大小为a ,木块和小车间的动摩擦因数为μ,对于这个过程某同学用以下四个式子来表示木块受到的摩擦力大小,正确的是() A.F-Ma B.μma C.μmg D.Ma4.如图所示,物体P置于水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N的重物,物体P向右运动的加速度为a1;若细线下端不挂重物,而用F=10N的力竖直向下拉细线下端,这时物体P的加速度为a2,则( )A.a1>a2B.a1=a2C.a1<a2D.条件不足,无法判断5.如图所示,质量分别为M、m的滑块A、B叠放在固定的、倾角为θ的斜面上,A与斜面间、A与B之间的动摩擦因数分别为μ1,μ2,当A、B从静止开始以相同的加速度下滑时,B受到摩擦力()A.等于零B.方向平行于斜面向上C.大小为μ1mgcosθD.大小为μ2mgcosθ6.相同材料的物块m和M用轻绳连接,在M上施加恒力F,使两物块作匀加速直线运动,求在下列各种情况下绳中张力。
牛顿运动定律的应用:牛顿运动定律的应用之“滑块—木板模型”

一、模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动,滑块-木板模型(如图所示),涉与摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中。
二、常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
三、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f> f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
[名师点睛]1. 此类问题涉与两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口。
求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
题型专练一 连接体问题、板块模型、传送带模型(解析版)—2023年高考物理热点重点难点专练

题型专练一 连接体问题、板块模型、传送带模型连接体问题、 板块模型、传送带模型是经典的三种模型,是涉及多个物体发生相对运动的问题,分析这类问题要从受力分析和运动过程分析,分析每个物体的运动情况,由牛顿第二定律分析它们的加速度情况,有时还要结合能量和动量的观点解决问题。
例题1. (2022·全国·高考真题)如图,一不可伸长轻绳两端各连接一质量为m 的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L 。
一大小为F 的水平恒力作用在轻绳的中点,方向与两球连线垂直。
当两球运动至二者相距35L 时,它们加速度的大小均为( )A .58F mB .25FmC .38F mD .310Fm【答案】A【解析】当两球运动至二者相距35L 时,,如图所示由几何关系可知3310sin 52LL θ==设绳子拉力为T ,水平方向有2cos T F θ=解得58T F =对任意小球由牛顿第二定律可得T ma =解得58Fa m=故A 正确,BCD 错误。
故选A 。
例题2. (多选)(2021·全国·高考真题)水平地面上有一质量为1m 的长木板,木板的左端上有一质量为2m 的物块,如图(a )所示。
用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b )所示,其中1F 、2F 分别为1t 、2t 时刻F 的大小。
木板的加速度1a 随时间t 的变化关系如图(c )所示。
已知木板与地面间的动摩擦因数为1μ,物块与木板间的动摩擦因数为2μ,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g 。
则( )A .111=F m g μB .2122211()()m m m F g m μμ+=-C .22112m m m μμ+>D .在20~t 时间段物块与木板加速度相等【答案】BCD【解析】A .图(c )可知,t 1时滑块木板一起刚在从水平滑动,此时滑块与木板相对静止,木板刚要滑动,此时以整体为对象有1112()F m m g μ=+A 错误;BC .图(c )可知,t 2滑块与木板刚要发生相对滑动,以整体为对象, 根据牛顿第二定律,有211212()()F m m g m m a μ-+=+以木板为对象,根据牛顿第二定律,有221121()0m g m m g m a μμ-+=>解得2122211()()m m m F g m μμ+=-()12212m m m μμ+>BC 正确;D .图(c )可知,0~t 2这段时间滑块与木板相对静止,所以有相同的加速度,D 正确。
4.10《牛顿第二定律:滑块-滑板问题》

二、经典例题
【例1 】如图所示,平板A 长l = 10m, 质量M =4kg, 放在光滑的水平面上。在A 上最右端
放一物块B (大小可忽略),其质量m=2kg 。已知A 、B 间动摩擦因数μ = 0.4, 开始时A 、
B 都处于静止状态(取g=10m/s²) 。则
● (1) 要将A 从物块B 下抽出来,则加在平板A 上的水平恒力F 至少为多大?
B. F 拉动B, 则可能A 、B 、C 一起运动
C. F 拉动C, 则可能A 的加速度大于B 的加速度
D. F 拉动C, A 与B 的加速度大小总相等
)
8 .质量为2 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表
面水平冲上木板,如图甲所示。A 和B 经过1 s 达到同一速度,之后共同减速直至静止,
板,在两木板的左端分别放有完全相同的物块,开始都处于静止状态。现分别对两物块施
加水平恒力1 、 2 ,经过时间 1 、 2 物块与木板分离后,两木板的速度大小分别为 1 和
2 , 已知物块与木板之间的动摩擦因数相同,则(
A . 若1 = 2 , 且1 > 2 , 则 1 < 2
数μ=
3
2
. 对木板施加沿斜面向上的恒力F, 使木板沿斜面由静止开始向上做匀加速直线运动,
假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g= 10 m/s².
(1)为使物块不滑离木板,求力F 应满足的条件;
(2) 若F=37.5N, 物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的
大的水平力
F = kt(k 是常数),木板和木块加速度的大小分别为 1 和 2 ,下列反映 1 和 2 变化的图
高中物理两物体相对滑动问题_概述说明以及解释

高中物理两物体相对滑动问题概述说明以及解释1. 引言1.1 概述在物理学中,相对滑动问题是一个常见的研究课题。
这种问题涉及到两个物体之间的相对滑动以及滑动时发生的现象,该现象可以通过一些因素影响力的大小和方向。
了解和分析两物体相对滑动问题对于我们理解摩擦力、运动和力学原理具有重要意义。
1.2 文章结构本文将按照以下结构来介绍和解释高中物理中的两物体相对滑动问题:- 引言:介绍文章的背景概述、结构和目的。
- 正文:简单介绍相对滑动问题,讨论物体相对滑动的条件以及发生的现象与解释。
- 理论分析:深入探讨影响物体相对滑动力大小和方向的因素,推导相关公式并进行解析,并分析实例应用。
- 实验验证:设计实验来验证所得到的理论结果,收集数据并进行分析,并讨论结果和误差分析。
- 结论:总结文章主要观点、结果,并提出未来研究建议或展望。
1.3 目的本文旨在深入探讨高中物理中的两物体相对滑动问题,介绍该问题的背景与概述,阐明物体相对滑动的条件和现象,并进行理论分析和实验验证,从而揭示物体相对滑动的原理和规律。
通过本文的阅读,读者将能够更加全面地了解两物体相对滑动问题,并在实际应用中运用所学知识。
2. 正文:2.1 相对滑动问题简介在物理学中,相对滑动问题是指涉及两个物体之间的相对运动和滑动的研究。
通常情况下,我们关注的是两个物体之间存在摩擦力或其他力使它们发生相对运动时的现象和规律。
2.2 物体相对滑动的条件要使两个物体之间发生相对滑动,需要满足以下条件:- 存在摩擦力或其他外力作用于这两个物体;- 这些作用力超过了物体之间的粘连力或静摩擦力;- 物体表面之间没有完全平坦且光滑的接触。
当这些条件同时存在时,物体就会开始发生相对运动,并出现滑动现象。
2.3 物体相对滑动时发生的现象与解释当两个物体开始产生相对运动时,我们可以观察到以下现象:- 物体表面产生摩擦热:由于摩擦力的作用,两个物体之间会产生热量。
这是因为运动会导致分子运动更加频繁和剧烈,从而转化为内能。
牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。
摩擦力的方向如何判断
摩擦力的方向判断,是高中物理知识的一个难点。
对于刚接触高中物理的高一新生来说,在学习这部分内容时,更感到困难。
在教材中,也仅仅只有抽象的一句话:摩擦力的方向与相对运动或相对运动趋势的方向相反,至于如何理解和应用,学生也摸不着头脑。
其实要克服这个难点,只要掌握几个关键步骤,就迎刃而解了。
1、滑动摩擦力的方向判断要判断滑动摩擦力的方向,就先得区分运动方向和相对运动方向这两个概念。
物体的运动方向是相对于地面而言的,而物体的相对运动方向是相对于和它接触的物体而言的。
清楚了这两个概念,对我们的判断就更加清晰了。
例1:如图1,传送带匀速顺时针转动,物体以初速度为0到的摩擦力的方向。
错解:物体放在传送带时后,将在滑动摩擦力的带动下相对地面向右运动,则物体受到的图1摩擦力方向向左。
错解分析:物体向右运动是对的,(以地面为参考系)但物体相对传送带的方向是向左的,(而不打算相对地面,与地面无任何关系)所以受到的摩擦力的方向是向右的。
错误的原因是错把运动方向当成了相对运动方向。
根据以上分析,我们欲判断滑动摩擦力的方向,应该明确以下几个方面:(1)应该明确受力物体和施力物体。
(2)明确受力物体相对施力物体的相对运动方向,而不是受力物体相对地面或其他的参考系,这点是非常重要的。
因为摩擦力是发生在受力物体施力物体之间,与任何其他物体无关,这是学生常犯的错误,尤其老是以地为参考系,判断物体相对于地面的方向。
(3)摩擦力的方向和第二步判断出的相对运动的方向相反。
其中(2)应该是最重要的一步,当然也是最难的一步。
如上例,学生就是在这点上常犯错误。
2、静摩擦力的方向判断对于静摩擦力,判断的方法仍然遵守上面的三个步骤,只是判断相对运动方向改为判断相对运动趋势方向。
当然,对静摩擦力,判断相对运动趋势的方向比较难,我们可以用假设法。
假设法,就是假设物体之间没有摩擦力,看物体之间将要发生的相对运动,那么这个相对运动方向也就是我们要找的相对运动趋势方向。
分析叠放物块间摩擦力的技巧
分析叠放物块间摩擦力的技巧分析叠放物块间摩擦力的技巧叠加物体的受力分析,关键是抓住研究对象是否处于平衡状态,即匀速直线运动状态或静止状态,是否有相对运动或相对运动的趋势。
然后采用整体法、隔离法进行受力分析,从而判定摩擦力的大小和方向。
在叠放物块间,判断静摩擦力的有无及方向,可以先假设接触面是不光滑的,两物体间有弹力。
根据摩擦力产生的条件,从多个角度确定静摩擦力的有无及方向。
当两个物体叠放,其中一个物体受到拉力作用时,有两种形式。
在A、B物体一起向右匀速运动或A、B物体均保持静止的情况下,可以通过二力平衡原理和方法来分析A物体是否受到向左的静摩擦力。
总之,分析叠放物块间摩擦力的技巧是抓住关键是平衡,先整体,再隔离,相对运动摩擦力。
文章无格式错误,但第一段中的删除明显有问题的段落不清晰,因此不进行删除。
改写如下:题目1:三物体静止,受力情况如何?在图中,三个物体静止,其中B受水平向右的力F作用,下列说法正确的是:A。
B对A有摩擦力作用B。
B受到A、C摩擦力的作用C。
B只受到C的摩擦力作用D。
地面对C有摩擦力作用,大小等于F解析:将B、C看成一个整体,这是a类形式,可知A不受摩擦力。
将A、B看成一个整体,这是b类形式,则B、C间有摩擦力。
将三个物体看成一个整体,则C受地面的摩擦力,方向向左。
根据二力平衡,地面对C的摩擦力与F大小相等。
因此,答案为C、D正确。
题目2:木块叠放,受力情况如何?在图中,三个相同的木块叠放在水平地面上,B受水平向右的拉力F1=15N,C受到水平向左的拉力F2=6N,三木块均处于静止。
此时A、B间的摩擦力大小为f1;B、C间的摩擦力大小为f2;C与地面间的摩擦力大小为f3.则下列哪组说法正确?A。
f1=0N,f2=15N,f3=9NB。
f1=0N,f2=9N,f3=6NC。
f1=15N,f2=9N,f3=6ND。
f1=15N,f2=6N,f3=9N解析:根据物体的运动状态与受力情况的关系可知,题中的三个物体均处于静止状态,故受到平衡力的作用。
物体间有相对运动趋势或相对运动这个条件比较容易出问题
物体间有相对运动趋势或相对运动这个条件比较容易出问题若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。
关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要防碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,所以物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的防碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,所以物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。
若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存有着静摩擦力,物体的加速就是静摩擦力作用的结果,所以物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存有着滑动摩擦力,同样物体的加速就是该摩擦力的结果,所以物体一定受沿传送带前进方向的摩擦力。
若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。
若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。
所以该摩擦力方向一定与物体运动方向相反。
若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。
机械运动常用的原理是什么
机械运动常用的原理是什么机械运动是指物体在力的作用下发生的运动,它是基于一些力学原理和物理法则的。
下面我将详细介绍机械运动常用的原理。
1. 牛顿运动定律:牛顿运动定律是机械运动的基本原理之一。
第一定律是惯性定律,它表明物体在没有受到外力作用时会保持匀速直线运动或静止。
第二定律是加速度定律,它说明物体的加速度与物体所受力之间的关系。
第三定律是作用-反作用定律,它指出对于每一个作用力,都会有一个与之大小相等、方向相反的反作用力产生。
2. 力的叠加原理:力的叠加原理指的是多个力作用于物体上时,物体所受合力等于各个力的矢量和。
这个原理在机械运动中常常用于解决在多个力作用下物体的运动状态和轨迹。
3. 能量守恒定理:能量守恒定理是机械运动的重要原理之一。
能量守恒定理指的是一个封闭系统的总机械能在运动过程中保持不变。
这个定理包括动能守恒和势能守恒两个方面。
动能守恒指的是物体的动能在运动过程中保持不变;势能守恒指的是物体的势能在运动过程中保持不变。
4. 力矩定理:力矩定理是机械运动的重要原理之一。
力矩定理指的是物体绕一定轴旋转运动时,所受的合外力矩等于物体的角加速度。
这个定理常用于解决涉及到力矩和角速度的问题,例如杠杆原理、转动惯量的计算等。
5. 阻力原理:阻力是机械运动中常常遇到的力之一。
阻力是由于物体与介质(通常是气体或液体)之间的相互作用而产生的。
对于流体介质中的物体运动,阻力的大小和方向与物体的速度、物体形状和流体介质的特性有关。
阻力原理常用于解决涉及到介质对物体运动的影响的问题。
6. 惯性定律:惯性定律是机械运动的基本原理之一,它包括惯性质量定律和惯性系原理。
惯性质量定律指的是物体对力的抵抗能力,即质量越大的物体对外力的抵抗越强。
惯性系原理指的是自由运动物体的运动状态与参考系的选择无关,即物体的运动是相对于参考系而言的。
7. 摩擦力原理:摩擦力是机械运动中常常遇到的力之一。
摩擦力是由于物体间的接触而产生的,它的方向与物体间的相对运动方向相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图所示,光滑水平面上静止放着长L=1.6m,质量为M=3kg的木块(厚度不计),一
个质量为m=1kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木
板施加一水平向右的拉力F,(g取10m/s2)
(1)为使物体与木板不发生滑动,F不能超过多少?
(2)如果拉力F=10N恒定不变,求小物体所能获得的最大速度?
(3)如果拉力F=10N,要使小物体从木板上掉下去,拉力F作用的时间至少为多少?
考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.
专题:牛顿运动定律综合专题.
分析:(1)隔离对小物体分析,求出它的临界加速度,再对整体分析,运用牛顿第二定
律求出拉力的最大值.
(2)若拉力F小于最大值,则它们最后一起做匀加速直线运动,若拉力F大于最大值,
知小物体与木板之间始终发生相对滑动,小物体受到水平方向上只受摩擦力,做匀加速
直线运动,当它滑离木板时,速度最大,根据两者的位移差等于木板的长度,求出运动
的时间,再根据速度时间公式求出最大的速度.
(3)题中木板在恒力F的作用下由静止开始向右加速运动,滑块受摩擦力作用相对地面
也向右匀加速滑动,由牛顿第二定律求出木板的加速度大于滑块的加速度.所以在力F
作用时间内木板的速度必大于滑块的速度,若力F作用一段时间停止后,木块继续做匀
加速运动,木板做匀减速运动,当两者的速度恰好能够相等并且木块滑到木板最右端时
达到下滑的临界状态,这时木块相对于木板的位移为L,则力F作用在木板上的时间就
是最短时间.对系统研究,根据动量定理列出时间与速度的关系式,根据动能定理列出
木板滑行距离速度,由运动学公式列出时间与木板滑行距离与时间的关系,再联立求解
答:(1)为使物体与木板不发生滑动,F不能超过4N;
(2)如果拉力F=10N恒定不变,求小物体所能获得的最大速度为根号1.6
(3)如果拉力F=10N,要使小物体从木板上掉下去,拉力F作用的时间至少
0.8s.
质量为m=1.0kg的小滑块(可视为质点)放在质量为M=3.0kg的长木板的右端,木板上表面光滑,木板与地面之间的动摩擦因数为,木板长L=1.0m,开始时两者都处于静止状态,现对木板施加水平向右的恒力F=12N,如图所示,为使小滑块不掉下木板,试求:(g取10m/s2)
(1)用水平恒力F作用的最长时间;(2)水平恒力F做功的最大值。
解:(1)撤力前后木板先加速后减速,设加速过程的位移为x1,加速度为a1,加速运动的时间为t1;减速过程的位移为x2,加速度为a2,减速运动的时间为t2。
牛顿第二定律得:
撤力前:
解得
撤力后:
解得
为使小滑板不从木板上掉下,应满足x1+x2≤L ,又a1t1=a2t2
由以上各式可解得t1≤1s,即作用的最长时间为1s
(2)木板在拉力F作用下的最大位移
所以F做功的最大值
光滑水平面上有一质量M=15kg的长木板,木板上依次有木块1.2.3.4.5其质量m1
m2 m3 m4 m5分别为1kg 2kg 3kg 4kg 5kg,各木块与木板之间动摩擦因数相同,最
初,木板静止,各个木块分别以速度v1=1m/s ......v5=5m/s 同时开始向右运动,最后,
诸木块均未从木板上掉下来.求此过程中木块3的速度最大值和最小值.
[注:木板上的木块从左到右依次为 1 2 3 4 5
3的最大速度就是系统最终的速度。
而在运动过程中,3先减速,达到与板相对静止时,由于板在4、5的摩擦力作用下还在加速,所以又带动3加速,所以当3与板相对静止时速度最小。