高等数学课件:定积分的概念及性质
合集下载
《高数》定积分课件

《高数》定积分ppt 课件
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被
高等数学PPT课件:定积分的概念与性质

(1) 任意 a x0 x1 x2 xn1 xn b xi xi xi1 ,(i 1,2, , n),
(2) 任取 i xi , f (i )xi (i 1,2, , n)
n
(3) 并作和 S f (i )xi i 1
(4) 记 max{ x1, x2 , , xn },
定积分的概念与性质
性质7(定积分中值定理)f ( x)在[a,b]上 连续,
至少存在一点 [a,b] 积分中值公式
ab f ( x)dx f ( )(b a) (a b).
证
m(b
a)
b
a
f
(
x
)
dx
M(b a)
m
b
1
a
b
a
f
(
x)dx
M
闭区间上连续函数介值定理: [a,b]
f
(
(a b)
平均值公式
27
定积分的概念与性质
b
a
f
(
x)dx
f ( )(b a)
(a
b)
积分中值公式的几何解释
y f ( ) •
y f (x)
O
a
•
bx
曲边梯形的面积 ==矩形的面积
28
定积分的概念与性质
b
a
f
(
x)dx
f ( )(b a)
(a
b)
例
求证
lim
n
na
n
sin xdx x
定积分
definite integral
定积分和不定积分是积分学的两个 主要组成部分.
不定积分侧重于基本积分法的训练, 而定积分则完整地体现了积分思想 ---一种认识问题、分析问题、解决问题的 思想方法.
(2) 任取 i xi , f (i )xi (i 1,2, , n)
n
(3) 并作和 S f (i )xi i 1
(4) 记 max{ x1, x2 , , xn },
定积分的概念与性质
性质7(定积分中值定理)f ( x)在[a,b]上 连续,
至少存在一点 [a,b] 积分中值公式
ab f ( x)dx f ( )(b a) (a b).
证
m(b
a)
b
a
f
(
x
)
dx
M(b a)
m
b
1
a
b
a
f
(
x)dx
M
闭区间上连续函数介值定理: [a,b]
f
(
(a b)
平均值公式
27
定积分的概念与性质
b
a
f
(
x)dx
f ( )(b a)
(a
b)
积分中值公式的几何解释
y f ( ) •
y f (x)
O
a
•
bx
曲边梯形的面积 ==矩形的面积
28
定积分的概念与性质
b
a
f
(
x)dx
f ( )(b a)
(a
b)
例
求证
lim
n
na
n
sin xdx x
定积分
definite integral
定积分和不定积分是积分学的两个 主要组成部分.
不定积分侧重于基本积分法的训练, 而定积分则完整地体现了积分思想 ---一种认识问题、分析问题、解决问题的 思想方法.
定积分的概念和性质ppt课件

小区间长度记为:
ti ti ti 1 (i 1 ,2 ,3 , ,n )
n
(2)近似求和:s v(i )ti. i1
(3)取极限:
n
s
lim
0 i1
v(i
)ti
( 表示所有小区间的长度的最大者)
编辑版pppt
8
二、定积分的定义
定义 设函数f(x)在[a,b]上有界, 在[a,b]中任意插入若干个分点:
四、定积分的几何意义
若f(x)≥0,则
b
a
f (x)dx 的几何意义表示
由曲线y=f(x),直线x=a,x=b与x轴所围成
的曲边梯形的面积。
编辑版pppt
12
一般情形,ab f (x)dx 的几何意义为:它
是介于x轴,曲线y=f(x),直线x=a,x=b 之 间的各部分面积的代数和。
y
+
a
0 -
+ bx
性质 7(定积分中值如定果理函) f (数 x)在闭区
间[a,b]上连续,[则 a,b]在 上至少存在一点
,使
b af(x )d x f()b ( a )
( a b )
这个公式叫积分中值公 式。
编辑版pppt
22
证由性6, 质有
b
m (ba)af(x)d xM (ba)
即有 m 1
b
f(x)d xM
这些小区间的长度最大者)时,和式 f (i )xi 的
n
i 1
极限就是A,即
Alim
0 i1
f (i)xi
可见,曲边梯形的面积是一和式的极限
y=f(x) y
0 a x0 x1
f(ξi) x 2 ξi x i x 编1 辑版pi ppt
高等数学定积分的概念及性质课件

2.可积的充分条件:
定理1.函数f (x)在[a,b]上连续,则f (x)在[a,b]可积。 定理2.函数f (x)在[a,b]上有界,且只有有限个间断点, 则f (x)在[a,b]可积。
(1) f (x) 0,
b
a f (x)dx A
定积分等于曲边梯形的面积
(2) f (x) 0,
n
A Ai i 1
2.取近似
y
f (i )
y f (x)
Ai
o
x0 x1 x2
x xi1 i
x
x x xn2 n1 n
2.取近似
任取i xi1, xi , Ai f (i )xi
n
A f (i )xi
i =1
3.取极限
y
分割越来越细(也就是插入的分点越来越多)
确定的常数I,则称f (x)在[a,b]上可积,称此极限I为函数
f (x)在区间[a,b]上的定积分, 记作 b f (x)dx,即 a
b
n
a
f (x)dx lim 0 i1
f (i )xi
积分上限 a,b称为积分区间
积分号
b
n
a
f (x)dx lim 0 i1
b
a f (x)dx A
定积分等于曲边梯形面积的相反数
(3) f (x)在区间a,b变号时,
b
a f (x)dx A1 A2 +A3 A4 A5
定积分等于各部分面积的代数和
例1 计算 b f (x)dx a
解:此曲边梯形是高为1,
底边长为b a的矩形
f (x) 0
b
a dx b a
定积分的概念【高等数学PPT课件】

4
2
ba , 24 4
2 4
2 4
sin xdx x
2 2, 4
1
2
2
4
sin xdx x
2. 2
性质7(定积分中值定理)
如果函数f ( x)在闭区间[a, b]上连续,
则在积分区间[a, b]上至少存在一点,
使
b
f ( x)dx
则 b a
f
(
x
)dx
0.
(a b)
例3 比较积分值 -2 e xdx和 2 xdx的大小.
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
f ()(b a)
(a b).
a
积分中值公式
证
m(b
a)
b
a
f
( x)dx
M(b
a)
m
1b
b a a
f ( x)dx
M
由闭区间上连续函数的介值定理知
在区间[a, b]上至少存在一个点 ,
使
f
()
b
1
a
b
a
f
(
x)dx,
即
b
a f ( x)dx
dx x
的值.
解
f
(
x)
3
1 sin 3
《定积分的性质》课件

详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
函数可加性
总结词
函数可加性是指定积分具有函数可加性,即对于任意分割的两个子区间[a,c]和 [c,b],其上的定积分之和等于整个区间[a,b]上的定积分。
定积分的几何意义
面积
01
定积分表示曲线与x轴所夹的面积,即曲线下方的区域面积。
体积
02
对于二维平面上的曲线,定积分表示的是面积;对于三维空间
中的曲面,定积分则表示的是体积。
物理应用
03
定积分在物理中有广泛的应用,如计算力矩、功、速度等物理量。Βιβλιοθήκη 定积分的性质线性性质
定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对 每个函数进行积分后再求和或求差。
详细描述
积分第二中值定理说明了一个函数在两个闭 区间上的定积分值相等时,该函数在这两个 区间上必须满足的条件。这个定理在解决一 些等式问题时非常有用,因为它提供了一种 将两个区间的积分等式转化为函数性质的途 径。
积分第三中值定理
总结词
该定理表明如果一个函数在一个闭区间上的定积分值为零,那么该函数在该区间内至少 存在两个点,使得在这些点的函数值等于零。
详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则 ∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
03
定积分的比较性质
无穷区间上的比较性质
总结词
定积分在无穷区间上的比较性质是指,如果函数在无穷区间上的积分值与其在有限区间上的积分值相 等,则函数在无穷区间上的积分值也相等。
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
函数可加性
总结词
函数可加性是指定积分具有函数可加性,即对于任意分割的两个子区间[a,c]和 [c,b],其上的定积分之和等于整个区间[a,b]上的定积分。
定积分的几何意义
面积
01
定积分表示曲线与x轴所夹的面积,即曲线下方的区域面积。
体积
02
对于二维平面上的曲线,定积分表示的是面积;对于三维空间
中的曲面,定积分则表示的是体积。
物理应用
03
定积分在物理中有广泛的应用,如计算力矩、功、速度等物理量。Βιβλιοθήκη 定积分的性质线性性质
定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对 每个函数进行积分后再求和或求差。
详细描述
积分第二中值定理说明了一个函数在两个闭 区间上的定积分值相等时,该函数在这两个 区间上必须满足的条件。这个定理在解决一 些等式问题时非常有用,因为它提供了一种 将两个区间的积分等式转化为函数性质的途 径。
积分第三中值定理
总结词
该定理表明如果一个函数在一个闭区间上的定积分值为零,那么该函数在该区间内至少 存在两个点,使得在这些点的函数值等于零。
详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则 ∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
03
定积分的比较性质
无穷区间上的比较性质
总结词
定积分在无穷区间上的比较性质是指,如果函数在无穷区间上的积分值与其在有限区间上的积分值相 等,则函数在无穷区间上的积分值也相等。
高教社2024高等数学第五版教学课件-5.1 定积分的概念与性质

第五章 定积分
第一节 定积分的概念与性质
一、问题的提出
实例1 (求曲边梯形的面积)
由连续曲线 = ()(() ≥ 0)、
轴、直线 = 、 = 所围成的图形
称为曲边梯形。
用矩形面积近似取代曲边梯形面积
y
o
y
a
b
(四个小矩形)
x
o
a
b
x
(九个小矩形)
显然,小矩形越多,矩形总面积越接近曲边梯形面积.
→0
= max ∆
1≤≤
= σ=1 ± σ=1
=
→0
±
→0
性质1可以推广到有限个可积函数作和或者作差的情况.
性质2 被积函数的常数因子可提到积分号的外面,即
)(
总有下式成立:
)( = )( + )( .
例如,若 < < ,则
=
+
,
故 )( = )( − )(
= )( + )( .
证
因为 ≤ () ≤ ,由性质4得
≤ ≤ )( ,
又 = − ,
故( − ) ≤ ( ≤ )( − ).
性质6(积分中值定理)
∈
[, ],使)(
设函数()在[, ]上连续,则至少存在一点
第一节 定积分的概念与性质
一、问题的提出
实例1 (求曲边梯形的面积)
由连续曲线 = ()(() ≥ 0)、
轴、直线 = 、 = 所围成的图形
称为曲边梯形。
用矩形面积近似取代曲边梯形面积
y
o
y
a
b
(四个小矩形)
x
o
a
b
x
(九个小矩形)
显然,小矩形越多,矩形总面积越接近曲边梯形面积.
→0
= max ∆
1≤≤
= σ=1 ± σ=1
=
→0
±
→0
性质1可以推广到有限个可积函数作和或者作差的情况.
性质2 被积函数的常数因子可提到积分号的外面,即
)(
总有下式成立:
)( = )( + )( .
例如,若 < < ,则
=
+
,
故 )( = )( − )(
= )( + )( .
证
因为 ≤ () ≤ ,由性质4得
≤ ≤ )( ,
又 = − ,
故( − ) ≤ ( ≤ )( − ).
性质6(积分中值定理)
∈
[, ],使)(
设函数()在[, ]上连续,则至少存在一点
《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
a
a
n
证:
左端
lim [ f
0 i1
( i )
g( i )]xi
n
n
lim
0 i1
f
( i )xi
lim
0 i1
g( i )xi
=
右端
( k 为常数)
©
证: 当 a c b时,
a
因在
上可积 ,
cb
所以在分割区间时, 可以永远取 c 为分点 , 于是
f ( i )xi f ( i )xi f ( i )xi
©
定积分的几何意义:
曲边梯形面积
y
A1
a
A2
曲边梯形面积的负值
A3
A5
A4
bx
b
a f (x) d x A1 A2 A3 A4 A5
各部分面积的代数和
©
可积的充分条件: 定理1. 定理2.
例1. 利用定义计算定积分 解: 将 [0,1] n 等分, 分点为
取
则
f
(i )xi
i2xi
i2 n3
a x0 x1 x2 xn1 xn b 用直线 x xi 将曲边梯形分成 n 个小曲边梯形;
2) 取近似. 在第i 个窄曲边梯形上任取 i [xi1 , xi ]
y
作以[xi1 , xi ] 为底 , f (i )
为高的小矩形, 并以此小
梯形面积近似代替相应
窄曲边梯形面积
得
o a x1
©
在区间
i
x xi1xi b
积分上限
[a , b] 称为积分区间
b
n
a
f
( x) dx
lim
0 i1
f
(i ) xi
积分下限 被 积 函 数
被积 积分 表变 达量
积 分 和
式
定积分仅与被积函数及积分区间有关 , 而与积分
变量用什么字母表示无关 , 即
b
b
b
a f (x) dx a f (t) d t a f (u) d u
1
n1
sin
k
1
sin x dx
n k0 n n 0
0 2
nn
或
I
lim
n1
sin(
k)
1
1
sin
x dx
n k 0
nn 0
0 12
nn
©
(n1) x
n
n1 1 x
n
三、定积分的性质 (设所列定积分都存在)
规定
a
a f (x)dx 0
性质 1.
b
b
b
[ f (x) g(x)]dx f (x) dx g(x) dx
©
二、定积分定义 ( P143 )
a x0 x1 x2 xn b ,
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
( x) dx
即
b a
f
(
x)
dx
lim
0
n
i1
f
(
i
)
xi
o
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
第五章
定积分
积分学 不定积分 定积分
©
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质
©
一、定积分问题举例 矩形面积 梯形面积
1. 曲边梯形的面积 设曲边梯形是由连续曲线
以及两直线 所围成 , 求其面积 A .
©
y f (x)
A?
解决步骤 :
1) 分割. 在区间 [a , b] 中任意插入 n –1 个分点
Ai f (i )xi (xi xi xi1 )
xi1 xi
i
©
3) 求和.
n
n
A Ai f (i )xi
i1
i1
4) 取极限. 令
则曲边梯形面积
n
A
lim
0
i1
Ai
n
lim
0 i1
f
(i
)xi
y o a x1 xi1 xi
i
©
2. 变速直线运动的路程
设某物体作直线运动, 已知速度
©
且只有有限个间断点
(证明略)
y
y x2
o
i 1x
n
n
i1f(i源自)xi1 n3n
i2
i1
1 n3
1 6
n(n
1)(2n
1)
1 (1 1)(2 1) 6n n
1 0
x2
dx
lim
0
n
i 1
i
2xi
y
y x2
lim
n
1 3
©
o
i 1x
n
例2 1. 用定积分表示下述极限 :
解:
I
lim
是单调增函数,当 x 0 时,有
f x f 0 0, 则ex x.
依性质5,可知
1e xdx.
1
xdx
0
0
©
例5+. 试证:
证:
设
f (x)
sin x
x
,
则在
(0,
2
)
上,有
f
(x)
x cos
x sin x2
x
cos x x2
(x
tan
x)
0
f
(
2
)
f
(x)
f
(0 )
即
2 f (x) 1,
c
b
a f (x)dx c f (x)dx
©
b
4. dx b a a
5. 若在 [a , b] 上
则
n
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
0 i1
f
(i ) xi
0
推论1. 若在 [a , b] 上
则
©
推论2.
(a b)
证: f (x) f (x) f (x)
[a, b]
[a, c]
[c, b]
令 0
b
c
b
a f (x)dx a f (x)dx c f (x)dx
©
当 a , b , c 的相对位置任意时,
例如
a bc,
则有
ab
c
c
b
c
a f (x)dx a f (x)dx b f (x)dx
b
c
c
a f (x)dx a f (x)dx b f (x)dx
表示的是
x轴, x 0, x 1 与曲线 y 1 x2
所围成的图形的面积,也就是单位圆在第一象限部分
的面积,即,由此可得
1 1 x2 dx
0
4
©
例4. 比较积分值
1e x dx和
1
xdx
的大小.
0
0
解 令 f x ex x, f ' x ex 1 在 0,1 上有 f 'x 0, 则 f x
b
b
b
a f (x) dx a f (x) dx a f (x) dx
即
b
b
a f (x) dx a f (x) dx
6. 设 M max f (x), m min f (x) , 则
[a, b]
[a, b]
(a b)
©
例3 . 利用定积分的几何意义求
1 1 x2 dx. 0
解 从几何上看,定积分 1 1 x2 dx. 0
且
求在运动时间内物体所经过的路程 s.
解决步骤: 1) 分割.
n 个小段
将它分成 在每个小段上物体经
过的路程为
2) 取近似.
得
si v(i )ti (i 1, 2,, n)
©
3) 求和.
4) 取极限 .
上述两个问题的共性: • 解决问题的方法步骤相同 :
“分割,取近似,求和,取极限 ” • 所求量极限结构式相同: 特殊乘积和式的极限
x
(0,
2
)
故
2 0
2
dx
2 f (x) dx
0
2 1dx
0
即
1
2
sin
x
dx
0x
2
©
7. 积分中值定理
则至少存在一点
使
b
a f
( x) dx
f
( )(b a)