带压缩因子的粒子群算法

合集下载

粒子群优化算法(PSO)综述介绍

粒子群优化算法(PSO)综述介绍

带收缩因子的PSO算法:
vi
t 1
X [ v i 1U 1 ( pbi x i ) 2U 2 ( gb x i )]
t t t t t t t
收缩因子保证了收敛性并提高了收敛速度。 显然,该迭代公式和标准迭代公式相比并无本质区别, 只要适当选取参数,二者完全相同。
局部PSO算法:
在计算机上模拟该模型的结果显示:当g_increment较大 时,所有的个体很快地聚集到“谷地”上;反之,粒子缓 慢地摇摆着聚集到“谷地”的四周。 受此模型启发Kennedy和Eberhart设计出了一种演化优化 算法,并通过不断的试验和试错,最后将此算法的基本型 固定为:
vi
t 1
v i 1U 1 ( pbi x i ) 2U 2 ( gb x i )
vi
t 1
v i 1U 1 ( pbi x i ) 2U 2 ( lb x i )
t t t t t为自身最优位置 pbest和种群最优位置gbest。 对应的,在局部版本中,微粒除了追随自身最优位置 pbest之外,不跟踪种群最优位置gbest,而是跟踪拓 扑邻域中的所有微粒的最优位置lbest。
算法思想:
1.初始化种群数量,使他们随机的分布在平面上; 2.根据模型评估每个粒子的位置; 3.如果一个粒子当前的位置比它之前的的位置好,则记录下 新位置,记为pbest;
4.确定种群中最好的粒子的位置,记为gbest;
5.根据公式:
vi
t 1
v i 1U 1 ( p bi x i ) 2U 2 ( g b x i )
背景知识:
粒子群优化算法(Particle Swarm Optimization——PSO), 是由J. Kennedy和R. C. Eberhart于1995年提出的一种基 于种群的随机的优化算法。

粒子群算法以及应用原理

粒子群算法以及应用原理

粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .粒子群算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。

源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于叠代的优化工具。

带压缩因子的粒子群算法在汽包压力控制系统中的应用

带压缩因子的粒子群算法在汽包压力控制系统中的应用

带压缩因子的粒子群算法在汽包压力控制系统中的应用刘长良;高亚龙【摘要】In this paper, the principle of particle swarm algorithm, describes an improved algorithm which with compression factor of PSO, outlines the working principle of PID controllers, particle swarm optimization method implementation, and examples of the improved algorithm A drum pressure control system, optimize the use of matlab simulation show that the improved optimization algorithm outperforms the basic PSO, there are certain engineering applications in future.%针对基本粒子群算法的原理,阐述了一种改进算法(带压缩因子的粒子群算法),简述了PID控制器的工作原理、粒子群参数优化方法的实现,并举例说明此改进算法在某汽包压力控制系统中的应用,利用matlab 进行仿真优化,证明此改进算法优化的性能优于基本的粒子群优化算法,有很好的工程应用前景.【期刊名称】《计算机系统应用》【年(卷),期】2012(021)001【总页数】4页(P164-167)【关键词】压缩因子;粒子群算法;汽包压力;PID整定【作者】刘长良;高亚龙【作者单位】华北电力大学控制与计算机工程学院,保定071003;华北电力大学控制与计算机工程学院,保定071003【正文语种】中文1 引言粒子群优化算法((Particle Swarm Optimizatio,简称PSO),是1995年由Eberhart博士和Kennedy博士提出的一种基于群体智能理论的演化计算方法,通过种群粒子间的合作与竞争,产生群体智能指导优化搜索。

【背包问题】基于matlab粒子群算法求解背包问题【含Matlab源码1343期】

【背包问题】基于matlab粒子群算法求解背包问题【含Matlab源码1343期】

【背包问题】基于matlab粒⼦群算法求解背包问题【含Matlab源码1343期】⼀、获取代码⽅式获取代码⽅式1:完整代码已上传我的资源:⼆、背包问题简介1【背包问题】背包问题(Knapsack problem)是⼀种组合优化的NP完全问题。

问题描述为:给定⼀组物品,每种物品都有⾃⼰的重量weight和价格value,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。

2【0-1背包问题】ai:第i个物品的体积;ci:第i个物品的价值;b:背包的重量限制;背包问题就是在总的体积有限的条件下,追求总价值最⼤的有效资源分配问题。

有界的整数背包问题可转化成等价的0-1背包问题,定义变量三、粒⼦群算法简介1 引⾔⾃然界中的鸟群和鱼群的群体⾏为⼀直是科学家的研究兴趣所在。

⽣物学家Craig Reynolds在1987年提出了⼀个⾮常有影响的鸟群聚集模型,在他的仿真中,每⼀个个体都遵循:避免与邻域个体相撞:匹配邻域个体的速度;飞向鸟群中⼼,且整个群体飞向⽬标。

仿真中仅利⽤上⾯三条简单的规则,就可以⾮常接近地模拟出鸟群飞⾏的现象。

1990年, ⽣物学家Frank Heppner也提出了鸟类模型, 它的不同之处在于:鸟类被吸引飞到栖息地。

在仿真中,⼀开始每⼀只鸟都没有特定的飞⾏⽬标,只是使⽤简单的规则确定⾃⼰的飞⾏⽅向和飞⾏速度,当有⼀只鸟飞到栖息地时,它周围的鸟也会跟着飞向栖息地,最终整个鸟群都会落在栖息地。

1995年, 美国社会⼼理学家James Kennedy和电⽓⼯程师RussellEberhart共同提出了粒⼦群算法(ParticleS warm Optimization,PSO) , 该算法的提出是受对鸟类群体⾏为进⾏建模与仿真的研究结果的启发。

他们的模型和仿真算法主要对Frank Heppner的模型进⾏了修正,以使粒⼦飞向解空间并在最优解处降落。

粒⼦群算法⼀经提出,由于其算法简单,容易实现,⽴刻引起了进化计算领域学者们的⼴泛关注, 形成⼀个研究热点。

粒子群算法

粒子群算法

算法的构成要素
1.群体大小m m是个整型参数。当m很小的时候,陷入局优的可能性很大。然而,群 体过大将导致计算时间大幅增加。并且当群体数目增长至一定水平时, 再增长将不再有显著作用。当m=1的时候,PSO算法变为基于个体搜索 的技术,一旦陷入局优,将不能跳出。当m很大时,PSO的优化能力很 好,但收敛的速度将非常慢。一般取20-40,对较难或者特定的类别的 问题可以取100-200. 2.学习因子C1和C2 学习因子使粒子具有自我总结和向群体中优秀个体学习的能力,从而向 群体内或邻域内最优点靠近。C1和C2通常等于2,也有其他取值。但是 一般C1等于C2,并且范围在0和4之间。
五点原则



Millonas在开发人工生命算法的时候(1994),提出群体智 能概念,并提出五点原则: 1、接近性原则:群体应能够进行简单的时空运算 2、优质性原则:群体能够响应环境要素 3、变化相应原则:群体不应把自己的活动限制在一个狭小 范围内 4、稳定性原则:群体不应每次随环境改变自己的模式 5、适应性原则:群体的模式应在变化代价值时得到改变
PSO产生背景之一:复杂适应系统(CAS)
CAS理论的最基本的思想可以概述如下:
我们把系统中的成员称为具有适应性的主体 (Adaptive Agent),简称为主体。所谓具有适应性,就 是指它能够与环境以及其它主体进行交流,在这种交流 的过程中“学习”或“积累经验”,并且根据学到的经 验改变自身的结构和行为方式。整个系统的演变或进化, 包括新层次的产生,分化和多样性的出现,新的、聚合 而成的、更大的主体的出现等等,都是在这个交流的基 础上出现的。
5.邻域拓扑结构 全局版本粒子群优化算法将整个群体作为例子的邻域,速度快,不过有 时会陷入局部最优;局部版本粒子群优化算法将索引号相近或者位置相 近的个体作为粒子的邻域,收敛速度慢一点,不过很难陷入局部最优。 6.停止准则 一般使用最大迭代次数或可以接受的满意解作为停止准则。 7.粒子空间的初始化 较好地选择粒子的初始化空间,将大大缩短收敛时间。

优化算法-粒子群优化算法

优化算法-粒子群优化算法
步骤三:对于粒子i,将 pi(t ) 的适应值与全局最好位置进行比较 更新全局最好位置 G(t )。
步骤四:对于粒子的每一维,根据式(1)计算得到一个随机点 的位置。
步骤五:根据式(2)计算粒子的新的位置。
步骤六:判断是否满足终止条件。
粒子群优化算法
PSO算法在组合优化问题中的应用
典型的组合优化问题:TSP
粒子群优化算法
量子行为粒子群优化算法的基本模型
群智能中个体的差异是有限的,不是趋向于无穷大的。群体的聚 集性是由相互学习的特点决定的。
个体的学习有以下特点: 追随性:学习群体中最优的知识
记忆性:受自身经验知识的束缚
创造性:使个体远离现有知识
粒子群优化算法
聚集性在力学中,用粒子的束缚态来描述。产生束缚态的原因是 在粒子运动的中心存在某种吸引势场,为此可以建立一个量子化 的吸引势场来束缚粒子(个体)以使群体具有聚集态。
描述为: 给定n 个城市和两两城市之间的距离, 求一条访问各城市
一次且仅一次的最短路线. TSP 是著名的组合优化问题, 是NP难题, 常被用来验证智能启发式算法的有效性。
vid (t 1) wvid (t) c1r1 pid (t) xid (t) c2r2( pgd (t) xid (t))
xid (t 1) xid (t) vid (t 1)
粒子群优化算法
w 惯性权重 可以是正常数,也可以是以时间为变量的线性或非线性
正数。
粒子群优化算法
通常动态权重可以获得比固定值更好的寻优结果,动态权重可以在 pso搜索过程中呈线性变化,也可以根据pso性能的某个测度函数 而动态改变,目前采用的是shi建议的随时间线性递减权值策略。
粒子群优化算法

粒子群优化算法及其应用研究【精品文档】(完整版)

粒子群优化算法及其应用研究【精品文档】(完整版)

摘要在智能领域,大部分问题都可以归结为优化问题。

常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。

本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。

根据分析结果,研究了一种基于量子的粒子群优化算法。

在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。

本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。

最后,对本文进行了简单的总结和展望。

关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录 (II)1.概述 (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MATLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。

粒子群算法粒子群算法简介

粒子群算法粒子群算法简介

粒子群算法(1)----粒子群算法简介二、粒子群算法的具体表述上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。

下面通俗的解释PSO算法。

PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。

大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。

这个过程我们转化为一个数学问题。

寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。

为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。

下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。

直到最后在y=1.3706这个点停止自己的更新。

这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。

该函数的最大值就是鸟群中的食物计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。

更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。

下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。

粒子群算法(2)----标准的粒子群算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。

这个公式就是粒子群算法中的位置速度更新公式。

下面就介绍这个公式是什么。

在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主程序:
%------基本粒子群优化算法(Particle Swarm Optimization)----------- %------名称:带压缩因子的粒子群优化算法(PSO)
%------作用:求解优化问题
%------说明:全局性,并行性,高效的群体智能算法,提高解的精度
%------初始格式化-------------------------------------------------- clear all;
clc;
format long;
%------给定初始化条件---------------------------------------------- %c1=1.4962; %学习因子1
c1=3;
c2=2;
%c2=1.4962; %学习因子2
w=0.7298; %惯性权重
MaxDT=100; %最大迭代次数
D=6; %搜索空间维数(未知数个数)
N=20; %初始化群体个体数目
eps=10^(-6); %设置精度(在已知最小值时候用)
phi=c1+c2;
if phi<=4
disp('c1与c2的和必须大于4! ');
xm=NaN;
fv=NaN;
return;
end
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------ for i=1:N
for j=1:D
x(i,j)=randn; %随机初始化位置
v(i,j)=randn; %随机初始化速度
end
end
%------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- figure(3)
for i=1:N
P(i)=fitness2(x(i,:));
y(i,:)=x(i,:);
end
Pg=x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness2(x(i,:))<fitness2(Pg)
Pg=x(i,:);
end
end
%------进入主要循环,按照公式依次迭代,直到满足精度要求------------ for t=1:MaxDT
for i=1:N
ksi=2/abs(2-phi-sqrt(phi^2-4*phi));%ksi为压缩因子
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(Pg-x(i,:));
v(i,:)=ksi*v(i,:);
x(i,:)=x(i,:)+v(i,:);
if fitness2(x(i,:))<P(i)
P(i)=fitness2(x(i,:));
y(i,:)=x(i,:);
end
if P(i)<fitness2(Pg)
Pg=y(i,:);
end
end
Pbest(t)=fitness2(Pg);
end
plot(Pbest)
TempStr=sprintf('c1= %g ,c2=%g',c1,c2);
title(TempStr);
xlabel('迭代次数');
ylabel('适应度值');
%------最后给出计算结果
disp('*************************************************************') disp('函数的全局最优位置为:')
Solution=Pg
disp('最后得到的优化极值为:')
Result=fitness2(Pg)
disp('*************************************************************') 功能函数:
适应度函数源程序(fitness2.m)
function result=fitness2(x)
sum=0;
D=6;
for i=1:D
sum=sum+x(i)^2;
end
result=sum;。

相关文档
最新文档