粒子群算法最全的ppt

合集下载

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

《粒子群优化算法》课件

《粒子群优化算法》课件
2 原理
粒子群优化算法是基于群体智能思想的优化方法,其思想来源于生物群体中的合作行为。
粒子群优化算法的流程
1
初始化种群
随机生成一定数量的个体,作为种群的起始状态。
2
计算适应度函数
对每个个体,根据适应度函数计算其适应度值。
3
更新速度和位置
根据当前的速度和位置,以及社会经验和个体经验,计算每个个体的新速度和新位置。
《粒子群优化算法》PPT 课件
这是一份关于粒子群优化算法的PPT课件,通过它,你将掌握这种算法的定 义、原理、应用,以及未来的发展方向。
什么是粒子群优化算法?
1 定义
粒子群优化(Particle Swarm Optimization,PSO)算法是一种进化算法,由Kennedy和 Eberhart在1995年提出测种群的状态是否满足结束条件,如果是,输出结果;否则继续更新。
粒子群优化算法在求解函数最小值中的应 用
Rosenbrock函数
粒子群优化算法可以用于求解Rosenbroke函数的全 局最优解。
Rastrigin函数
粒子群优化算法可以用于求解Rastrigin函数的全局 最优解。
粒子群优化算法在机器学习中的应用
粒子群优化算法的未来
1
发展方向
加强算法的智能性和泛化能力。
2
进一步应用
将粒子群优化算法应用到集成优化、无人驾驶、协同控制等领域。
总结
1 通过这份PPT课件,你已经了解了粒子群优化算法的定义、原理、应用和未来的发展方
向。
神经网络优化
粒子群优化算法可以优化神经网络中的连接权重、 偏置值等参数,提高神经网络的精确度。
选取最优超参数
粒子群优化算法可以为机器学习模型选择最优的超 参数,包括学习率、迭代次数、隐藏层数等。

粒子群优化算法PPT上课讲义

粒子群优化算法PPT上课讲义

02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
01 算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。
我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由简 单个体粒子群优化算法PPT
01
ALGORITHM INTRODUCTION
算法简介
粒子群算法
设想这样一个场景:一群鸟在随 机搜索食物。在这个区域里只有 一块食物。所有的鸟都不知道食 物在那里。但是他们知道当前的 位置离食物还有多远。那么找到 食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食 物最近的鸟的周围区域。
01 算法介绍
01 算法介绍
PSO产生背景之一:CAS
我们把系统中的成员称为具有适应性的主体(Adaptive Agent),简称为主体。所谓具有适应性,就是指它能够 与环境以及其它主体进行交流,在这种交流的过程中 “学习”或“积累经验”,并且根据学到的经验改变自 身的结构和行为方式。整个系统的演变或进化,包括新 层次的产生,分化和多样性的出现,新的、聚合而成的、 更大的主体的出现等等,都是在这个基础上出现的。即 CAS(复杂适应系统)理论的最基本思想

粒子群优化算法ppt

粒子群优化算法ppt

联合优化
粒子群优化算法可以用于联合优化神经网络的参数和结构,进一步提高神经网络的性能。
粒子群优化算法在神经网络训练中的应用
粒子群优化算法可以用于优化控制系统的控制器参数,以提高控制系统的性能和稳定性。
控制器参数优化
鲁棒性优化
联合优化
粒子群优化算法可以用于提高控制系统的鲁棒性,以应对系统中的不确定性和干扰。
粒子群优化算法可以用于联合优化控制系统的参数和结构,进一步提高控制系统的性能和稳定性。
03
粒子群优化算法在控制系统中的应用
02
01
06
总结与展望
粒子群优化算法是一种高效的全局优化算法,具有速度快、简单易行、易于并行化等优点。它利用群体智慧,通过粒子间的协作与信息共享,可以快速找到全局最优解。
优点
PSO算法的特点包括:简单易懂、易实现、能够处理高维问题、对初始值不敏感、能够处理非线性问题等。
定义与特点
粒子群优化算法的起源与发展
PSO算法的起源可以追溯到1995年,由 Kennedy 和 Eberhart博士提出,受到鸟群觅食行为的启发。
最初的PSO算法主要应用于函数优化问题,后来逐渐发展应用到神经网络训练、模式识别、图像处理、控制等领域。
边界条件的处理
通过对粒子速度进行限制,可以避免粒子在搜索空间中过度震荡,从而更好地逼近最优解。
粒子速度的限制
实例一
针对函数优化问题,通过对粒子速度和位置进行更新时加入随机扰动,可以增加粒子的探索能力,从而寻找到更好的最优解。
实例二
针对多峰函数优化问题,将粒子的个体最佳位置更新策略改为基于聚类的方法,可以使得粒子更好地逼近问题的全局最优解。
粒子的适应度函数用于评估其位置的好坏。

计算智能-粒子群算法PPT课件

计算智能-粒子群算法PPT课件
公式(1)的第一项对应多样化(diversification)的特点,第二项、 第三项对应于搜索过程的集中化(intensification)特点,这三项之 间的相互平衡和制约决定了算法的主要性能。
2020/4/13
9
参数意义
(1)粒子的长度N:问题解空间的维数。
(2)粒子种群大小M:粒子种群大小的选择视具体问题而定,但 是一般设置粒子数为20-50。对于大部分的问题10个粒子已经可 以取得很好的结果,不过对于比较难的问题或者特定类型的问 题,粒子的数量可以取到100或200。另外,粒子数目越多,算 法搜索的空间范围就越大,也就更容易发现全局最优解。当然, 算法运行的时间也较长。
2020/4/13
5
粒子群优化算法的一般数学模型
假设在一个N维空间进行搜索,粒子i的信息可用两个N维向量 来表示:
第i个粒子的位置可表示为 xixi1,xi2,xiNT
速度为 vi vi1,vi2,viNT
在找到两个最优解后,粒子即可根据下式来更新自己的速度和 位置:
v i k 1 d v i k d c 1 r1 a k ( P n i k b d d x i k ) d e c 2 r s2 a k t ( G n d k d b x i k ) d (1e ) s
每个粒子知道自己到目前为止发现的最好位置(particle best,记 为pbest)和当前的位置,pbest就是粒子本身找到的最优解,这 个可以看作是粒子自己的飞行经验。
除此之外,每个粒子还知道到目前为止整个群体中所有粒子发 现的最好位置(global best,记为gbest),gbest是在pbest中的最 好值,即是全局最优解,这个可以看作是整个群体的经验。
8

粒子群算法

粒子群算法

智能优化计算
1 粒子群算法的基本原理
1.1 粒子群算法的提出 ➢ 五年后,在国际上逐步被接受,并有大批不同 领域的学者投入该算法相关研究,目前已经成 为智能优化领域研究的热门
➢ 2003年,《控制与决策》第二期刊登国内第一篇 PSO论文——综述文章
8
历年发表论文的数目
2500
2328
2000
1500
xikd
)
c2 ra n d( ) ( p gbest
xikd )
xk 1 id
xikd
vk 1 id
i 1,2,, m; d 1,2,, D
惯性权重(续)
通过调节w值,可以控制PSO的全局探索和局部开发能力:
• w≥1:微粒速度随迭代次数的增加而增加,微粒发散。
• 0<w<1 :微粒减速,算法的收敛性依靠惯性权重c1和 c2 。
共性
(1)都属于仿生算法; (2)都属于全局优化方法; (3)都属于随机搜索算法; (4)都隐含并行性; (5)根据个体的适配信息进行搜索,因此不受函 数约束条件的限制,如连续性、可导性等; (6)对高维复杂问题,往往会遇到早熟收敛和收 敛性能差的缺点,都无法保证收敛到最优点。
PSO就是对鸟群或鱼群寻找食物这种群体行为的模拟。
单个鸟 整个鸟群
单个微粒
由多个微粒组 成的微粒群
一个微粒代表问题 的一个解
每个微粒都有一个 由被优化函数值决 定的适应值
鸟群寻找食 物的飞行策 略
鸟群行为
微粒位置和速 度的更新策略
PSO
13
每个微粒通过跟踪 自身找到的最好位 置以及邻域内其它 微粒找到的最好位 置,完成对整个搜 索空间的搜索
最大化问题

粒子群算法(基础精讲)课件

粒子群算法(基础精讲)课件

神经网络训练
神经网络训练是指通过训练神经网络来使其能够学习和模拟特定的输入输出关系 。粒子群算法可以应用于神经网络的训练过程中,通过优化神经网络的参数来提 高其性能。
例如,在机器视觉、语音识别、自然语言处理等领域中,神经网络被广泛应用于 各种任务。粒子群算法可以用于优化神经网络的结构和参数,从而提高其分类、 预测等任务的准确性。
优势
在许多优化问题中,粒子群算法表现出了良好的全局搜索能 力和鲁棒性,尤其在处理非线性、多峰值等复杂问题时具有 显著优势。
粒子群算法的核心要素
02
粒子个体
01
粒子
在粒子群算法中,每个解被称为一个粒子,代表问题的 一个潜在解。
02
粒子状态
每个粒子的位置和速度决定了其状态,其中位置表示解 的优劣,速度表示粒子改变方向的快慢。
社会认知策略的引入
总结词
引入社会认知策略可以增强粒子的社会性,提高算法的群体协作能力。
详细描述
社会认知策略是一种模拟群体行为的方法,通过引入社会认知策略,可以增强粒子的社会性,提高算 法的群体协作能力。在粒子群算法中引入社会认知策略,可以使粒子更加关注群体最优解,促进粒子 之间的信息交流和协作,从而提高算法的全局搜索能力和鲁棒性。
03 粒子群算法的实现步骤
初始化粒子群
随机初始化粒子群的 位置和速度。
初始化粒子的个体最 佳位置为随机位置, 全局最佳位置为随机 位置。
设置粒子的个体最佳 位置和全局最佳位置 。
更新粒子速度和位置
根据粒子个体和全局最佳位置计 算粒子的速度和位置更新公式。
更新粒子的速度和位置,使其向 全局最佳位置靠近。
每个粒子都有一个记录其历史最 佳位置的变量,用于指导粒子向

粒子群算法ppt

粒子群算法ppt
若加速系数、最大速度等参数太大,粒子群可能错过最优解, 算法不收敛;
而在收敛的情况下,由于所有的粒子都向最优解的方向飞去, 所以粒子趋向同一化(失去了多样性),使得后期收敛速度明显变 慢,同时算法收敛到一定精度时,无法继续优化,所能达到的精度 也不高。
因此很多学者都致力于提高PSO算法的性能。
惯性权重法(Inertia Weight):
基本思想:
在PSO中,把一个优化问题看作是在空中觅食的鸟群,那么 “食物”就是优化问题的最优解,而在空中飞行的每一只觅食的 “鸟”就是PSO算法中在解空间中进行搜索的一个“粒子” (Particle)。“群”(Swarm)的概念来自于人工生命,满足人工生 命的五个基本原则。因此PSO算法也可看作是对简化了的社会模型 的模拟,这其中最重要的是社会群体中的信息共享机制,这是推动 算法的主要机制。
vmax是一个非常重要的参数,如果该值太大,则粒子们也许会飞过优 秀区域;另一方面如果该值太小,则粒子们可能无法对局部最优区域 以外的区域进行充分的探测。实际上,它们可能会陷入局部最优,而 无法移动足够远的距离跳出局部最优达到空间中更佳的位置。
(5) rand1和rand2是介于[0,1]之间的随机数,增加了粒子飞行的 随机性。
(6)迭代终止条件:一般设为最大迭代次数Tmax、计算精度或最优解 的最大停滞步数△t。
算法流程:
开始 初始化粒子X、V 计算Pbest、Gbest 粒子位置、速度更新 计算适应函数值 更新Pbest、Gbest
达到迭代次数或
精度要求?


输出所需参数
结束
四、PSO的各种改进算法
PSO收敛速度快,特别是在算法的早期,但也存在着精度较低, 易发散等缺点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决TSP问题
当所有蚂蚁完成一次周游后,各路径上的信息素将 进行更新:
ij (t n) (1 ) ij (t) ij
m
ij
k ij
,
k 1
k ij
Q Lk
,
0,
若蚂蚁k在本次周游中经过边ij 否则
其中,ρ(0< ρ <1)表示路径上信息素的蒸发系数, Q为正常数,Lk表示第k只蚂蚁在本次周游中所走过 路径的长度。
智能优化计算
6.3 基本蚁群优化算法
初始化:华t=0;东NC理=0;工τij(t大)=C学; Δ自τij(t)动=0;化系 2007年
将m只蚂蚁放到n座城市上
置禁忌表索引s=1;并将其起点城市加入各自
6.3.1 蚂蚁系统的模型与实现
禁忌表中
算法流程
Y
禁忌表已满?
N
s=s+1
将m只蚂蚁按照其各自计算的转移概率pijk选 择下一城市,并将该城市加入到禁忌表中。
指无智能的主体通过合作表现出智能行为的特性, 在没有集中控制且不提供全局模型的前提下,为寻 找复杂的分布式问题求解方案提供了基础。
智能优化计算
6.1 群智能
6.1.2 群智能算法
华东理工大学自动化系 2007年
优点 灵活性:群体可以适应随时变化的环境; 稳健性:即使个体失败,整个群体仍能完成任务; 自我组织:活动既不受中央控制,也不受局部监管。
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
蚁巢
华东理工大学自动化系 2007年
食物
蚂蚁从A点出发,随机选择路线ABD或ACD。 经过9个时间单位时:走ABD的蚂蚁到达终点,走 ACD的蚂蚁刚好走到C点。
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
蚁巢
典型算法 蚁群算法(蚂蚁觅食) 粒子群算法(鸟群捕食)
智能优化计算
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源
蚁群的自组织行为 “双桥实验” 通过遗留在来往路径 上的信息素 (Pheromone)的挥 发性化学物质来进行 通信和协调。
华东理工大学自动化系 2007年
智能优化计算
6.2 蚁群优化算法原理
华东理工大学自动化系 2007年
食物
经过18个时间单位时:走ABD的蚂蚁到达终点 后得到食物又返回了起点A,而走ACD的蚂蚁刚好走 到D点。
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
蚁巢
华东理工大学自动化系 2007年
食物
最后的极限是所有的蚂蚁只选择ABD路线。 (正反馈过程)
特点 个体的行为很简单,但当它们一起协同工作时,却 能够突现出非常复杂(智能)的行为特征。
智能优化计算
6.1 群智能
6.1.2 群智能算法
华东理工大学自动化系 2007年
描述
群智能作为一种新兴的演化计算技术已成为研究焦 点,它与人工生命,特别是进化策略以及遗传算法 有着极为特殊的关系。 特性
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
华东理工大学自动化系 2007年
解决TSP问题
每只蚂蚁根据路径上的信息素和启发式信息(两城
市间距离)独立地选择下一座城市:
在时刻t,蚂蚁k从城市i转移到城市j的概率为
pikj
(t
)
[ ij (t)] [ij (t)] [ is (t)] [is (t)]
智能优化计算
华东理工大学自动化系 2007年
第六章 群智能算法
智能优化计算
6.1 群智能
6.1.1 群智能的概念 6.1.2 群智能算法
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源 6.2.2 蚁群算法的原理分析
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现 6.3.2 蚂蚁系统的参数设置和基本属性
华东理工大学自动化系 2007年
智能优化计算
6.9 粒子群优化算法的应用
6.9.1 求解TSP问题 6.9.2 其它应用
6.10 群智能算法的特点与不足
华东理工大学自动化系 2007年
ห้องสมุดไป่ตู้
智能优化计算
6.1 群智能
6.1.1 群智能的概念
华东理工大学自动化系 2007年
群智能( Swarm Intelligence, SI ) 人们把群居昆虫的集体行为称作“群智能”(“群 体智能”、“群集智能”、“集群智能”等)
6.2.1 蚁群算法的起源
蚁群的自组织行为 “双桥实验”
华东理工大学自动化系 2007年
智能优化计算
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源
华东理工大学自动化系 2007年
提出蚁群系统 1992年,意大利学者M. Dorigo在其博士论文中提出 蚂蚁系统(Ant System)。 近年来, M. Dorigo等人进一步将蚂蚁算法发展为一 种通用的优化技术——蚁群优化(ant colony optimization, ACO)。
6.6 粒子群算法的基本原理
6.6.1 粒子群算法的提出 6.6.2 粒子群算法的原理描述
6.7 基本粒子群优化算法
6.7.1 基本粒子群算法描述 6.7.2 参数分析 6.7.3 与遗传算法的比较
6.8 改进粒子群优化算法
6.8.1 离散二进制PSO 6.8.2 惯性权重模型 6.8.3 收敛因子模型 6.8.4 研究现状
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
华东理工大学自动化系 2007年
解决TSP问题 在算法的初始时刻,将m只蚂蚁随机放到n座城市;
将每只蚂蚁 k的禁忌表tabuk(s)的第一个元素tabuk(1) 设置为它当前所在城市;
设各路径上的信息素τij(0)=C(C为一较小的常数);
,
sJk (i)
0,
下一步允许的城市的集合
j Jk (i) α、β分别表示信
j Jk (i) 息素和启发式因子
Jk (i) 1,2, , n tabuk , ij 1/ dij
的相对重要程度。
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
华东理工大学自动化系 2007年
6.4 改进的蚁群优化算法
6.4.1 蚂蚁系统的优点与不足 6.4.2 最优解保留策略蚂蚁系统 6.4.3 蚁群系统 6.4.4 最大-最小蚂蚁系统 6.4.5 基于排序的蚂蚁系统 6.4.6 各种蚁群优化算法的比较
华东理工大学自动化系 2007年
智能优化计算
6.5 蚁群优化算法的应用
6.5.1 典型应用 6.5.2 医学诊断的数据挖掘
相关文档
最新文档