固体物理总结2012

合集下载

固体知识点物理总结高中

固体知识点物理总结高中

固体知识点物理总结高中一、固体的特性固体是物质存在的三种形态之一,其特点主要表现在以下几个方面:1. 定形性固体具有固定的形状和体积,不易被外力改变。

2. 弹性固体在受到外力作用时,会发生形变,但在去除外力后,又会恢复原状。

3. 坚固性固体的分子间有着紧密结合,使得它们具有一定的强度和硬度。

4. 导热性固体具有较强的导热性,能够传递热量。

5. 导电性部分固体具有导电性,能够传递电流。

二、固体的结构固体的结构主要分为离子晶体、分子晶体和金属晶体。

1. 离子晶体离子晶体是由正负离子通过静电力相互结合而成,晶体中正负离子的数量相等,呈电中性。

2. 分子晶体分子晶体是由分子通过共价键相互结合而成的固体,分子间的相互作用力比较弱。

3. 金属晶体金属晶体是由金属元素经过离子键相互结合而成的固体,金属晶体中的原子之间存在金属键的结合。

三、固体的性质固体的性质主要包括热性质、电性质和力学性质。

1. 热性质固体在不同温度下具有不同的热膨胀系数,随着温度的升高,固体的体积会扩大。

2. 电性质固体的电性质可以分为导电和绝缘两种情况。

金属晶体具有良好的导电性,离子晶体、分子晶体和非金属晶体通常是绝缘体。

3. 力学性质固体的力学性质主要包括硬度、弹性模量、屈服强度、断裂强度等。

四、固体的物理现象在日常生活和实验研究中,固体所表现出的物理现象主要包括:1. 热膨胀固体在受热时会发生体积的膨胀,这种现象被称为热膨胀。

2. 电阻现象不同类型的固体在受到电流作用时,会表现出不同的电阻特性,并且会有发热现象。

3. 弹性变形固体在受力作用时会发生弹性变形,这种变形是可逆的,即去除外力后,固体会恢复原状。

4. 塑性变形当固体受到较大的外力作用时,会发生塑性变形,使得其形状产生永久性改变。

五、固体的相关物理量在研究固体的过程中,涉及到一些固体的相关物理量。

主要包括:1. 密度固体的密度是指单位体积内的物质质量。

2. 热膨胀系数固体在受热时体积变化的比例与温度变化的比例之比。

固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。

黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。

本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。

一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。

晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。

晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。

二、晶体结构晶体结构是固体物理学的基础。

黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。

晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。

晶向和晶面则分别描述了晶体中原子排列的方向和平面。

三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。

黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。

声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。

四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。

黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。

自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。

这一模型可以解释金属的导电性和热传导性。

五、能带理论能带理论是固体电子理论的一个重要组成部分。

黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。

能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。

六、固体的磁性固体的磁性是固体物理中的另一个重要主题。

黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。

磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。

七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。

黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。

八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。

固体物理总结

固体物理总结

4.当电子(或光子)与晶格振动相互作用时,交换能量以
为单位。
晶体热容
1.固体比热的实验规律 (1)在高温时,晶体的比热为3NkB; (2)在低温时,绝缘体的比热按T3趋于零。
2.模式密度
定义:
D(
)
lim
0
n
m D()d3N 0
计算:D3 n12 V π c3
ds
s qq
3.晶体比热的爱因斯坦模型和德拜模型
2.线缺陷
当晶格周期性的破坏是发生在晶体内部一条线的周围近邻,
这种缺陷称为线缺陷。位错就是线缺陷。
位错
刃型位错:刃型位错的位错线与滑移方向垂直。 螺旋位错:螺旋位错的位错线与滑移方向平行。
位错缺陷的滑移
刃位错:刃位错的滑移方向与晶体受力方向平行。
螺位错:螺位错的滑移方向与晶体受力方向垂直。
第 五 章 能带理论 总结
Kn
(k
Kn 2
)
0
紧束缚近似
1.模型
晶体中的电子在某个原子附近时主要受该原子势场V(rR n)
的作用,其他原子的作用视为微扰来处理,以孤立原子的电子
态作为零级近似。
2.势场
1.晶体的结合能 晶体的结合能就是自由的粒子结合成晶体时所释放的能量, 或者把晶体拆散成一个个自由粒子所需要的能量。
EbU(r0)U(r0)
2.原子间相互作用势能
u(r)rAm rBn A、B、m、n>0
其中第一项表示吸引能,第二项表示排斥能。
3.原子晶体、金属晶体和氢键晶体
(1)原子晶体
结构:第Ⅳ族、第Ⅴ族、第Ⅵ族、第Ⅶ族元素都可以形成
k
r
e ik r
uk
r

固体物理知识点总结

固体物理知识点总结

一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序短程有序多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体;原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体;每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴晶轴为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞;晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞;WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子;4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积;六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数;晶体最大配位数为12,晶体可能配位数12,8,6,4,3,2;晶列过任意两格点的直线称为晶列晶向晶列方向晶向指数晶面全部格点用一族平行平面包含,该平行平面族称为晶面族,族中每个平面称为晶面晶面指数晶面在元胞基矢截距的倒数的互质整数组称为晶面指数密勒指数hkl晶面在晶胞基矢上截距的倒数的互质整数组称为密勒指数面间距面密度体密度致密度解理面对原子晶体,密勒指数简单的晶面族,面间距较大,晶面格点密度大,晶面间结合力较小,容易解理;对离子晶体,晶面格点密度大且晶面是电中性的晶面容易解理7、倒格子:定义倒格子是晶格点阵在波矢空间的傅立叶变换倒格子基矢倒格矢布里渊区以任意倒格点为原点,作所有倒格矢的垂直平分面将倒格子空间分成的一系列区域,称为布里渊区理论公式1、布拉菲点阵分布函数2、倒格矢3、倒格子基矢与正格子关系式4、晶面指数57-60、密勒指数61、晶面间距65-66、晶面原子密度的计算图形和关系曲线1、简单立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同晶面上格点分布、倒格子基矢、第一布里渊区2、体心立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格点分布、倒格子基矢、第一布里渊区2、面心立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格点分布、倒格子基矢、第一布里渊区3、115-1204、金刚石结构最小结构单元、配位数、元胞、晶胞、晶胞基矢、不同面格点分布、倒格子基矢、第一布里渊区第二章晶体结合基本概念1、两粒子间排斥力及其性质两粒子间吸引力及其性质两粒子间总相互作用力及其特点2、两粒子间相互作用势能晶体总相互作用能晶体结合能绝对零度下,忽略粒子零点振动能,晶体粒子最小总相互作用势能等于晶体结合能3、离子键及特点马德隆常数4、共价键的形成及其特点两个原子各出一个电子,在两个原子核之间形成较大电子云密度被两个原子共用、自旋相反配对的电子结构极性共价键形成及其特点共用电子对偏向负电性大的原子的共价键6、金属键形成及其特点金属原子结合成金属晶体时,价电子脱离原子成为晶格共有电子,原子成为正离子实,共有化电子与离子实库仑引力构成金属键7、范德瓦耳斯键形成及其特点原子负电性原子电离能基态原子失去一个电子成为正离子所需能量原子亲和能基态原子俘获一个电子成为负离子时释放的能量5、原子负电性与晶体结构关系10、SP3、SP2、SP轨道杂化的形成及其性质原子S、P轨道波函数杂化形成的波函数给出的电子几率分布称为杂化轨道;理论公式1、两粒子间相互作用能的一般形式2、两粒子间相互作用力的一般形式3、晶体体积弹性模量4、原子负电性计算式图形和关系曲线1、两粒子相互作用势能2、两粒子相互作用力3、SP3杂化轨道示意图第三章晶格振动基本概念1、一维单原子晶格振动及其特点2、一维双原子晶格振动及其特点3、简谐近似原子绕格点弹性振动谐振,振动位移与弹性力成正比4、最近邻近似5、周期性边界条件6、格波8、格波波矢、波矢空间、波矢密度第一布里渊区波矢个数8、色散关系圆频率-波长关系群速度相速度原子振动状态用格波位相描述,波速等于振动位相传播速度,称为相速度6、光学支格波声学支格波长纵光学波、长纵声学波基元中两个原子相反振动,形成长光学波10、振动模式数每个波矢对应一个声学波圆频率和一个光学波圆频率;N个元胞一维双原子晶格共有2N个独立振动模式自由度;11、振动模式数与晶体结构的关系11、声子晶格振动能量的“量子”声子准动量声子统计分布一定温度下,晶体中能量为的平均声子数由玻色-爱因斯坦统计给出,平均声子数12、振动模式密度12、正则变换独立振动模式的正交性、完备性周期性边界条件下,所有的晶格振动模式构成正交、完备集态空间理论公式1、一维格波、二维格波三维格波解2、一维、二维、三维晶格周期性边界3、三维晶格振动总能量表达式及其意义4、晶格振动模式密度定义5、一维、二维、三维晶格振动模式密度计算图形和关系曲线1、一维单原子晶格色散关系曲线2、一维双原子晶格色散关系曲线第四章晶体能带基本概念1、单电子近似包括:绝热近似假设相对于电子运动速度,离子实近似固定在格点上不动;平均场近似假设每个价电子所处的周期场相同,与其它价电子、离子实的库仑相互作用只与该价电子位置有关周期性势场近似若单电子势具有晶格平移周期性,晶体价电子的定态薛定谔方程求解转化为晶格周期场中单电子薛定谔方程求解2、电子共有化运动、晶体电子、能带电子波包代表的电子称为能带电子3、布洛赫定理布洛赫波的物理意义4、周期性边界条件5、电子波矢、波矢空间、波矢空间密度、电子能态状态密度6、能带共有化电子能量本征值,不同波矢对应的能量值能级的集合,称为能带禁带能隙、满带、空带、导带能量最低的空带、价带能量最高的满带、近满带、半满带、能带底、能带顶、能带宽度7、准经典近似、波包8、电子平均速度能带电子波包群速度定义为能带电子的平均速度电子加速度9、电子有效质量及其物理意义电子有效质量概括了周期场对电子的作用,使外场下能带电子的运动,可用服从牛顿运动定律、具有有效质量的“赝电子”来描述;能带底电子有效质量能带顶电子有效质量10、导体、绝缘体、半导体的能带图11、固体导电性特点及其能带论解释11、空穴及物理意义电场作用下,缺1个电子的能带中其余2N-1个电子对电流的贡献等效为1个带正电子电量粒子的贡献,这个粒子称为空穴、空穴电荷量、空穴有效质量理论公式1、一维晶格、二维晶格、三维晶格的状态能态密度2、布洛赫波函数3、电子、空穴平均速度4、电子、空穴有效质量5、晶体电子在外场作用下的牛顿第二定律6、单电子近似下的薛定谔方程图形和关系曲线1、电子能带的四种不同表示方法2、导体、半导体、绝缘体能带三、试卷结构共七大题1、填空题20空,共20分2、画图及计算10分3、概念解释题共5个概念,10分4、画图及计算15分5、论述题10分6、画图及论述15分7、运用公式计算20分满分:100分四、成绩构成期末考试成绩80%,平时成绩20%特点:1、考试题目体现不同章节内容的连续 2、对所学内容的准确掌握补充:第一章PPT68改错第一章PPT75说明。

固体物理总结

固体物理总结

固体物理课程报告通过30多个学时的学习,我对固体物理有了一定的了解:固体是指在承受切应力时具有一定程度刚性的物质,在压强和温度一定且无外力作用时,它的形状和体积保持不变。

而固体物理学就是研究固体的性质、微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。

固体物理学的基本任务:从宏观到微观研究固体的各种物理性能并阐明其规律性;研究对象:金属、无机半导体、无机绝缘体 、晶态和非晶态固体和有机固体等;研究内容:晶体与非晶体的微观结构、各种无激发、杂质与缺陷等。

固体物理学顾名思义就是研究固体的学科。

固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性。

以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动以及它们和宏观物理性质的关系。

而固体指的是在承受切应力时,具有一定程度刚性的物质,包括晶态和非晶态固体。

固体物理学有两个最基本的问题:第一:固体是由什么原子组成的?它们是怎样排列和组合的?第二:结构是如何形成的?固体物理的研究领域是相当广泛的,主要包括介质物理、铁电物理、晶体物理、半导体物理、铁磁物理、超导物理、纳米物理和非晶态物理。

固体物理学科的建立和发展决定于几个方面:晶体结构的认知;晶体结合的认知;晶格振动和固体比热容的认识和发展;缺陷的认知;固体电子论的发展;相变的研究;固体磁性;超导现象的认识和发展;半导体物理的研究以及无序系统和一些新的发展。

固体物理学讲述了固体中的原子结构、结合规律、运动状态和能量关系,固体中电子的运动方程、电子的能带结构、金属导体的导电机制、半导体的基本原理、超导性的基本规律,是20世纪物理学发展最快的一门学科。

一 晶体结构和周期性晶体结构是固体物理学中非常重要的部分,它为固体物理的研究奠定了基础。

固体材料是由大量的原子(分子、离子)组成的,不同原子构成的晶体具有不同的性质,即使是由同种原子构成的晶体,由于结构不同其性质也会有很大的差别。

固体物理1-6章总结

固体物理1-6章总结

CV
3NkB
θE 2 θE / T ) e T
爱因斯坦特征温度
CV 3NkB (
Debye模型 认为晶体可以看成是连续介质中的弹性波,但晶体中的格波的频率应 该有一个分布,频率与波矢的关系近似为线性关系 CV 3Nk 在高温下:T >> D
12 Nk B T 3 D 在低温下:T << D CV T 德拜温度 D 5 D kB 在高温下多用爱因斯坦模型,低温下则应用德拜模型。
熔点和沸点介于离子晶体和分子晶体 之间,密度小,有许多分子聚合的趋 势,介电系数大。
冰 H2F H2N

~ 0.1ev/ 键
习题
P35- 1.1; ▲ 1.5; ▲ 1.6; ▲ 1.7;1.8;1.10 ▲ 1.设一格子基矢分别为a1=3i,a2=3j,a3=1.5(i+j+2k),试 求该晶体的倒格子基矢。 ▲ 2.半导体GaAs具有闪锌矿结构, Ga、As两原子最近 距离为d=2.45A,求晶格常数,原胞基矢和倒格子基矢。 ▲ P58- 2.8
ni 0,1,2,3....
1 E i (ni )i 2 i 1 i 1 1 ni ▲频率为ωi的格波的平均声子数
i
平均能量
i i i i 2 e k BT 1
e k BT 1
绝缘体中声子热导率与温度的关系
1 CV v l 3
离子晶体导电的机制 离子晶体的导电率 位错的定义、分类,刃型位错的滑移
半导体物理
作业
▲ P101- 4.3;4.4;4.7
第五章 金属电子论
1. ▲自由电子气的概念及模型:特鲁德模型与索末菲模型(定性)

固体物理第一章总结

固体物理第一章总结

固体物理(黄昆)第一章总结(总5页)页内文档均可自由编辑,此页仅为封面第一章晶体结构1.晶格实例1.1面心立方(fcc)配位数12 格点等价格点数4 致密度0.74原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)1.2简单立方(SC)配位数6 格点等价格点数1 致密度0.52CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等1.3体心立方(bcc)配位数8 格点等价格点数2 致密度0.68原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等1.4六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度0.74典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等1.5金刚石结构最近邻原子数4 次近邻原子数12 致密度0.34晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构2.1基本概念晶体:1. 化学性质相同 2. 几何环境相同 基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞2.2维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志 晶列(向)指数:[l m n]晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=4.1简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k ⎧=⎪=⎨⎪=⎩4.2体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体4.3面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.1对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)5.2六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象5.3对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪⎪ ⎪⎝⎭,中心反演的正交矩阵1 0 0 0 1 0 0 0 1-⎛⎫⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。

东南大学固体物理基础知识总结

东南大学固体物理基础知识总结

经典模型: CV 3Nlk ;
爱因斯坦模型:所有原子都近似以相同频率 E 振动,将色散关系简化为一条平直线,即所
有声子都具有相同的能量 E
,得到爱因斯坦温度 TE

E k
。该模型在常温和高温时很适
用,但在低温时, CV
3Nlk TE T

2
e

TE T

,热容以指数形式趋近于 0,这与实际情况不符。
因为在低温下,晶格振动激发多为频率低的长声学波声子,此时色散关系应为线性的斜线。 因爱因斯坦模型没有考虑声学波对热容的贡献,故在低温时不再适用;
德拜模型:按照低温激发的长声学波声子来近似处理色散关系,即 q ,得到模式密度

3V 2 2
3
2d
,德拜频率 D

6
《固体物理基础》知识总结
在周期性边界条件下: q

2 Na
Z

2 L
Z
,Z
为整数。当 q


2 a
时, max

2

,当
m
q 0 时,min 0 。长波近似下 q 0, a
q ,极限长波速度 v a m

。周期
m
对称性:q q,q q 2 。
面心立方 a
晶格
截角八面
1
4
4
a3/4
4π/a
体/十四面 32π3/a3
4
体心立方

晶体原子的振动
绝热近似(不考虑电子受到激发跃迁到激发态所带来的影响);
最近邻近似(每个原子只受到最近邻原子的作用,不考虑其他原子的影响);
简谐近似(因原子在平衡位置附近做微小振动,可以看作是线性回复力作用下的简谐运动)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.倒格子(倒易点阵)
设晶格(正格子)的基矢为 ,定义满足
则称 为倒格子(倒易点阵)基矢,由 构成的格子称为倒格子(其中h1、h2、h3为任意整数)。
2.正规过程和翻转过程
声子之间的相互作用遵循能量守恒和准动量守恒,即有
(1)若 为正规过程.
碰撞后系统的准动量不变,对热流无影响。即不起阻力作用,对热传导没有贡献。
把近邻格矢 代入公式 中,得到
注:计算时利用到和差化积公式。
由三角函数的特点易知,在简约布里渊区中:
能带与原子能级的示意图:
2)[111]方向:
所以[111]方向:
[111]方向第一布里渊区边界:
[111]方向的能级图如下图:
3)计算出[111]方向的能带,便可计算出[111]方向能带顶和能带底的有效质量。
3、求色散关系
解:设第n-1,n,n+1,n+2个原子离开平衡位置的位移为 由胡克定律:
采用简谐近似和最近邻近似可知
由牛顿第二定律有:
联立(4-2式)和(4-3)式得:
运动方程的解为类波解:
将4-5式代入4-4式得:
其有解的条件为:
2)长声学波:
a.原胞中相邻原子的振幅相.把晶体看成连续介质的弹性波,其传播速度等于声音在晶体中的传播速度。
c.光学支的最高点,振动频率较高,能量较高。
两者的共同之处就是波矢很小,准动量很小。
4.线缺陷
在两个方向上尺寸很小,另外一个方向上延伸较长的晶格缺陷。
能带底: ,其倒有效质量为:
这时有效质量约化为标量,简写成 。
同理能带顶: ,其倒有效质量为:
这时有效质量约化为标量,简写成 。
2.计算NaCl晶体中肖脱基缺陷的浓度n。
解:假设晶体中包含2N个离子,N个正离子,N个负离子。若晶体中正离子空位的个数为n,为保持电中性,则必有n个负离子空位。我们可以写出这个体系的自由能函数。
(2)若 为翻转过程.
翻转过程中动量有很大的变化,破坏声子波矢之和或准动量之和,产生热阻力,对热传导有贡献。
3.长光学波和长声学波的特点:
1)长光学波:
a.原胞中相邻原子的振动方向相反,同种的原子振动方向相同,原胞质心保持不变,描述原胞内原子的反相运动;
b.传播速度接近光速;
c.光学支的最高点,振动频率较高,能量较高。
位错有三种类型,螺位错、刃位错和混合位错。
螺位错:柏氏矢量与位错线平行。无确定的滑移面(其滑移面是围绕位错线的螺旋卷面),仅可滑移,不可攀移。
刃位错:柏氏矢量与位错线垂直。其有确定的滑移面,既可滑移,又可攀移。
混合位错:柏氏矢量与位错线呈任意角度 。它可以分解成螺位错和刃位错,混合位错既可滑移,又可攀移。
5.布洛赫定理
当势场具有晶格周期性时,波动方程
其中 为任意晶格矢量
的解具有如下形式:

即表示具有晶格周期势场的波动方程的解的形式是平面波和周期函数的乘积,即是周期函数调幅的平面波。
6.固体物理学原胞和晶胞的区别
固体物理学原胞:
1)原胞有8个顶点,每个原胞包含一个格点,是最小的周期重复单元。
2)原胞的选择是多样的。
设 表示形成一对正、负离子空位的能量,则晶体中有n个空位对时,内能增加
对于正离子,N个正离子将有:
种不同的微观组态,将使熵增加
同理,对于负离子:
则熵值共增加
综合(6-2)和(6-5)式得到你n个空位对存在时,系统的自由能将改变
应用平衡条件 得:
注:其中应用了string公式 。
解上式可得平衡时,空位对的数目
晶体学原胞:
1)其不是最小的周期性单元,体积是固体物理学原胞的整数倍。
2)除顶点外,格点可能出现在六面体的体心或面心上。
3)不仅反映格子的周期性,也反映了格子的对称性。
7.体心立方晶体中由原子 态 形成的能带
解:
1) 态波函数是球对称的,在各个方向重叠积分相同,因此在
中 有相同的值,简单表示为:
体心立方的八个近邻格点为
相关文档
最新文档