固体物理知识点

合集下载

固体物理重要知识点总结

固体物理重要知识点总结

固体物理重要知识点总结晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点2微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。

晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。

(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。

布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量化,以hv i来增减其能量,hv i就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了8 2以上3高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区爱因斯坦模型在低温下与实验存在偏差的根源是什么?答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013H Z,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。

固体物理学整理要点

固体物理学整理要点

固体物理复习要点第一章 1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。

说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。

3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

4、试述固体物理学原胞和结晶学原胞的相似点和区别。

答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。

它反映了晶体结构的周期性。

(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。

特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。

其体积是固体物理学原胞体积的整数倍。

5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。

答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。

答:7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。

第二层:占据1,3,5空位中心。

第三层:在第一层球的正上方形成ABABAB······排列方式。

固体物理知识点

固体物理知识点

1. 稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很 大差异?同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同2. 固体分为晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的 宏观特性有哪些?晶体有哪些分类?晶体长程有序, 非晶体短程有序, 准晶体具有长程取向性, 没有长程的平移对 称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性, 对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进 行分类。

原胞是一个晶格中最小的重复单元, 体积最小,格点只在顶角上, 面上和内部 不含格点。

晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。

3. 简单晶格与复式晶格的区别?简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相 同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同 的网格,这些网格的相对位移形成复式晶格24 3a 3=V 1 3 4 3a5. 晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征 (把基矢看做单 位矢量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的 余弦来表示。

晶面的法线方向与三个坐标轴的夹角的余弦之比, 等于晶面在三个轴上的截距 的倒数之比。

晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。

6. 简立方 [110]等效晶向有几个 ,表示成什么?110随机排列,任意取负,共 12种,表示为 <110>。

7. 倒格子矢量 Kh=h1b1+h2b2+h3b3 的大小,方向和意义 (矢量 Kh 这里 h 为下标, h1, b1, h2, b2, h3, b3里的数字均为下标, b1, b2, b3 为倒格子原胞基矢 ),提示: 从倒格子性质中找答案。

大小为 2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立 叶空间的周期性排列8. 倒格子和正格子之间的关系有哪些?1. 正格子基矢与倒格子基矢点乘2.正格矢与倒格矢的点乘为定值3.倒格子 原胞体积反比于正格子原胞体积4.倒格矢与正格中晶面族正交5.正格子与 倒格子互为对方的倒格子9. 证明面心立方晶体的倒格子是体心立方晶体 面心立方正格基矢4.假设体心立方边长是 a,格点上的小球半径为 N=1884R 3a1=2 单胞中原子所占体积为 V 1=N体心立方体体积为 V 2R , 4求体心立方致密度。

固体物理各章节知识点详细总结

固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32

2π Kh
d h1h2h3

d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···

固体物理学重要知识点

固体物理学重要知识点

(1)Hall 系数—— Hall 系数 对于自由电子:q =-e ,所以, 其中,n 为单位体积中的载流子数,即载流子浓度。

由Hall 系数的测量不仅可以判断载流子的种类(带正电还是带负电),而且还是测量载流子浓度的重要手段。

载流子浓度越低,Hall 系数就越大,Hall 效应就越明显。

(2)F-D 分布函数——Fermi -Dirac 分布函数其中 μ是电子的化学势,其物理意义是在体积不变的情况下,系统增加一个电子所需的自由能。

从分布几率看,当E =μ时,f(μ)=1/2 ,代表填充几率为1/2的能态。

当E -μ >几个kBT 时,exp[(E -μ)/ kBT] >>1 ,有: 这时,Fermi -Dirac 分布过渡到经典的Boltzmann 分布。

且f(E)随E 的增大而迅速趋于零。

这表明: E -μ >几个kBT 的能态是没有电子占据的空态。

(3)Bloch 函数及其物理意义Bloch 函数 行进波因子 表明在晶体中运动的电子已不再局域于某个原子周围,而是可以在整个晶体中运动的,这种电子称为共有化电子。

它的运动具有类似行进平面波的形式。

那么,周期函数 的作用则是对这个波的振幅进行调制,使它从一个原胞到下一个原胞作周期性振荡,但这并不影响态函数具有行进波的特性。

(4)波失k 的物理意义,态空间点阵,分布密度,简约区,k 取值总数波失k 的物理意义:表示不同原胞间电子波函数的位相变化。

不同的波矢量k 表示原胞间位相差不同,即描述晶体中电子不同的运动状态。

态空间点阵:k 取值不连续,在k 空间中,k 的取值构成一个空间点阵,称为态空间点阵。

分布密度:的分布密度为 简约区:(—— 简约区) k 取值总数:在简约区中波失k (5)金属,半导体电导率随温度变化的差异金属而言:Fermi 能级位于导带内,所以温度变化激发的载流子的贡献可以基本不用考虑;那么:随温度升高,晶格的振动加剧,从而导致载流子受到晶格振动所引起的散射,也就是声子的散射加强;从而电阻率增加,电导率下降;半导体而言:Fermi 能级位于导带和价带之间,温度变化激发的载流子的贡献必须考虑;随温度升高,从价带激发到导带的载流子数目增加,即有更多的载流子参与了导电,从而电阻率降低,电导率上升。

固体物理基础

固体物理基础

固体物理基础固体物理学是物理学的一个重要分支,研究的对象是固态物质以及其中发生的各种现象和性质。

本文将从晶体结构、电子结构以及热学性质等方面介绍固体物理基础。

一、晶体结构晶体是指固态物质中原子、分子或离子按照一定的规则排列形成的有序结构。

晶体结构对物质的性质和行为有着重要的影响。

晶体结构有三个基本要素:基元、晶格和晶胞。

1. 基元:基元是晶体中最小的具有周期性的结构单位。

晶体的基元可以是原子、分子或离子。

2. 晶格:晶体中基元的无限周期排列称为晶格。

晶格可以用一组矢量来表示,称为晶格常数。

3. 晶胞:晶胞是晶体中最小的具有完整晶体结构的单元,由基元和周围的晶格点组成。

二、电子结构固体中的电子结构对于物质的导电性、光学性质等有着重要的影响。

在固体物理学中,常用能带理论来描述电子在固体中的行为。

1. 能带理论:能带理论是描述固体中电子能量分布的理论。

根据能带理论,电子可以分为价带和导带。

价带是填满电子的能级,导带是未被填满电子的能级。

两者之间的能隙决定了物质的导电性质。

2. 能带结构:不同物质的能带结构不同,因而具有不同的电子性质。

导带和价带之间的能带宽度越小,材料越容易导电;反之,能带宽度越大,则材料越难导电。

三、热学性质热学性质是固体物理学研究的另一个重要方面,包括热传导、热膨胀等。

1. 热传导:热传导是指能量在物体中由高温区域向低温区域传递的过程。

在固体中,热传导主要通过晶格振动传递。

2. 热膨胀:热膨胀是指物质由于温度变化而引起体积或长度发生变化的现象。

固体的热膨胀与晶体结构、原子之间的相互作用有密切关系。

结语固体物理学作为研究固态物质性质和行为的重要分支,为我们深入了解材料的特性和应用提供了理论基础。

通过对固体物理基础的学习,可以更好地理解和应用固体物理学的原理和方法,促进相关领域的发展和应用。

固体物理各章节重点总结

固体物理各章节重点总结
6、紧束缚方法P173
7、S态紧束缚电子的能带为 Rn是最近邻格失
8、电子的平均速度
9、有效质量的分量
10、K空间内,电子的能量等于定值的曲面称为等能面。
11、在等能面与布里渊区边界相交处,等能面在垂直于布里渊区边界的方向上的梯度为零,即等能面与布里渊区边界垂直截交。费密面是一等能面,
12、布拉格反射结果:波失K落在布里渊区边界上的电子,其垂直于界面的速度分量必定为零。若电子的速度不为零,则它的速度方向与布里渊区界面平行。
8、某一方向上两相邻结点的距离为该方向上的周期,以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元,体积最小的重复单元,称为原胞或固体物理学原胞,它能反映晶格的周期性。
9、为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心。这种重复单元称作晶胞,惯用晶胞或布喇菲原胞
7、长声学波描述的是原胞的刚性运动,代表了原胞质心的运动
8、长光学波:原胞中不同原子作相对振动,质量大的振幅小,质量小的振幅大,保持质心不动的一种模式。
9、晶体内原子在平衡位置附近的振动可以近似看成是3N个独立的谐振子的振动
10、简正振动:每一个原子都以相同的频率作振动,是最基本最简单的振动方式
11、声子是晶格振动能量的量子P80
2、一维简单格子:由质量为m的全同原子构成,相邻原子平衡位置的间距,即晶格常数为a,用un表示序号为n的原子在t时刻偏离平衡位置的位移
3、色散关系P67
4、一维复式格子:由质量分别为m和M的两种不同原子所构成。这种晶格也可视为一维分子链。P69
5、声学波、光学波P70
6、长声学波,相邻原子的位移相同,原胞内的不同原子以相同的振幅和相位作整体运动。

固体物理学整理要点

固体物理学整理要点

固体物理复习要点第一章1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。

说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。

3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

4、试述固体物理学原胞和结晶学原胞的相似点和区别。

答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。

它反映了晶体结构的周期性。

(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。

特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。

其体积是固体物理学原胞体积的整数倍。

5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。

答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。

答:7.密堆积结构包含哪两种?各有什么特点?答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。

第二层:占据1,3,5空位中心。

第三层:在第一层球的正上方形成ABABAB······排列方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很大差异?同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同2.固体分为晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的宏观特性有哪些?晶体有哪些分类?晶体长程有序,非晶体短程有序,准晶体具有长程取向性,没有长程的平移对称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性,对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进行分类。

原胞是一个晶格中最小的重复单元,体积最小,格点只在顶角上,面上和内部不含格点。

晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。

3.简单晶格与复式晶格的区别?简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同的网格,这些网格的相对位移形成复式晶格。

4.假设体心立方边长是a,格点上的小球半径为R ,求体心立方致密度。

1=81=28N ⨯+ 单胞中原子所占体积为33148=33V N R R ππ⋅=4R = 体心立方体体积为32V a =致密度为3312423=8V V aπρ⎫⨯⎪⎝⎭== 5.晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征(把基矢看做单位矢量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的余弦来表示。

晶面的法线方向与三个坐标轴的夹角的余弦之比,等于晶面在三个轴上的截距的倒数之比。

晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。

6.简立方[110]等效晶向有几个,表示成什么?110随机排列,任意取负,共12种,表示为<110>。

7.倒格子矢量Kh=h1b1+h2b2+h3b3 的大小,方向和意义(矢量Kh 这里h 为下标,h1, b1, h2, b2, h3, b3里的数字均为下标,b1, b2, b3 为倒格子原胞基矢),提示:从倒格子性质中找答案。

大小为2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立叶空间的周期性排列8.倒格子和正格子之间的关系有哪些?1.正格子基矢与倒格子基矢点乘2.正格矢与倒格矢的点乘为定值3.倒格子原胞体积反比于正格子原胞体积4.倒格矢与正格中晶面族正交5.正格子与倒格子互为对方的倒格子9.证明面心立方晶体的倒格子是体心立方晶体面心立方正格基矢()()()123222a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格子基矢()()()()()()113231312222222b a a i j k a b a a i j k a b a a i j k a ππππππ⎧=⨯=-++⎪Ω⎪⎪=⨯=-+⎨Ω⎪⎪=⨯=+-⎪Ω⎩ ()312314a a a a Ω=⋅⨯=面心立方的倒格子基矢正好是体心立方的正格子基矢,证明面心立方晶体的倒格子是体心立方晶体10.n 重对称轴的定义是什么?有哪几种对称轴,为什么?若晶体绕某一固定轴转2π/n 以后自身重合,则此轴称为n 次旋转对称轴,n 只能取1.2.3.4.6度轴。

正五边形沿着竖直轴每旋转72度恢复原状,但它不能重复排列充满一个平面而不出现空隙,因此晶体的旋转对称轴中不存在五次轴,只有1.2.3.4.6次旋转对称轴。

11.独立对称操作有几种?是哪些?有8种,C1 C2 C3 C4 C6 Ci Cs S412.点群有多少个?多少种空间群?32种点群 230种空间群13.计算饶某轴转动θ角度时的操作矩阵是什么?试着证明正交矩阵 ''''''''cos sin sin cos x x y y x yθθθθ⎧=⋅-⋅⎪⎨=⋅+⋅⎪⎩ ''''''cos sin sin cos x x y y θθθθ⎛⎫⎛⎫-⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22cos sin cos sin 1sin cos A θθθθθθ-⎛⎫==+= ⎪⎝⎭14.立方体的对称操作有几种?正四面体的对称操作又有多少种?立方体有48种,正四面体有24种15.根据不同的对称性,晶系分为几种?有多少种布拉菲格子?七大晶系,十四种布拉菲格子16.离子晶体结合是靠哪两种力达到稳定平衡的?离子间库伦吸引力和相互接近到电子云发生交叠时的排斥力17.马德隆常数的定义,引入它是为了计算哪个物理量?定义:在一个晶体内,其中一个离子的总电势能,可表示为它与距离最近的另一个离子的电势能的M 倍,E=ME0,其中E0为两个离子的系统的电势能,。

M 称为马德隆常数 目的是计算库伦吸引能18.离子晶体的内能是哪两项之和,利用内能可以求出系统的哪些物理量? 内能是吸引力和排斥力之和,可计算平衡体积,晶格常数,结合能和弹性模量19.何为分子轨道,两个相同原子共价结合时可形成那两种分子轨道? 分子轨道是原子轨道的线性组合,可形成成键轨道和反键轨道。

20.共价键具有哪两个特点?C 原子形成的轨道杂化是共价键的哪个特点的体现?饱和性和方向性。

轨道杂化体现了方向性21.简述8-N 定则N 是价电子数目,由于四到六族价电子由一个ns 轨道和3个np 轨道组成,共包含8个量子态,价电子壳层为半满或超半满,未配对电子数目为8-N22.金属性结合是依靠哪两种力达到平衡的?金属性结构的原胞一般是哪几种?为什么?金属性结合依靠共有的电子云与沉浸在负电子云里的离子实间的库伦吸引作用以及共有化电子的排斥力; 金属性结合原胞一般是面心立方,六角密排结构,体心立方; 原子越紧凑,库伦能就越低,所以很多采用最紧密结合。

23.简述范德瓦尔斯结合方式?它与离子性结合、共价性结合以及金属性结合的最大区别是什么?范德瓦尔斯是一种瞬时的电偶极矩的感应作用。

离子性、共价性、金属性结合都改变了原有电子结构,而范德瓦尔斯结合基本保持原来的电子结构。

24.勒让德琼斯势是描述什么的势?描述范德瓦尔斯结合中两原子之间的势能25.简述原子电负性在周期表中的规律,电负性强弱与离子性强弱的关系,与导电性的关系原子的负电性在一个周期内同样从左到右不断增强; 周期表由上到下,负电性逐渐减弱; 周期表越往下,一个周期内负电性的差别也越小;负电性越强,获得电子能力越强,越容易形成共价键,因此离子性越弱;电负性越弱,导电性越强。

26.简述引入简正坐标的意义,原子位移坐标和简正坐标变换式的物理意义 消除交叉项,简化问题,任意原子在任意方向上的位移量与所有的Q 有关27.简述声子概念声子是格波(晶格振动)的能量量子,它反映的是晶格 原子集体运动状态的激发单元。

声子只是晶格中原子集体运动的激发 单元。

声子并不携带真实动量。

28.力与内能表达式是什么?简谐近似下,力的表达式是什么?002322312nk nk nk r r du d u d u f x x dr dr dr ⎛⎫⎛⎫=-=--+⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 简谐近似下:22nk nk r d u f x dr ⎛⎫=- ⎪⎝⎭ 29.一维单原子链色散关系计算步骤是什么?建立模型,写出运动方程,求试探解,得到色散关系30.一维色散关系是什么,具有哪些特点?周期性、反演对称性、倒格矢的平移对称性31.什么是波恩卡门条件,其关系式是什么,利用它可求出什么物理量?波恩卡门条件是晶体中任一个原子,当其原胞标数增加N (N 为晶体中原胞的个数)后,其振动情况复原。

关系式:xn=xn+N ,可以求出波矢q32.一维单原子链中的波矢数目为多少?波矢数目就是原胞个数具有N 个原胞的一维双原子的波矢数和振动模式数(或频率数)分别有多少个?波矢是N 个 振动模式数2N 个33.长光学波和长声学波的物理意义及它们的大小关系?长声学波代表了原胞质心的运动。

长光学波代表原胞中两个原子的相对振动。

前者相邻原子振动方向是相同。

后者相邻原子振动方向是相反。

长光学波大于长声学波。

34.一维双原子确定试探解需要注意什么?(1) 空间相位k r q r ⋅→⋅ (k 和q 都表示波矢,k 在电子波使用,q 在晶格振动波使用)(2) 同种原子振幅相同,不同院子其振幅不同。

(3) 相隔一个晶格常数2a 的同种原子,相位差为2aq 。

35.一维双原子链色散关系具有什么特点?周期性和反演对称性36.简述波矢的密度的定义及其在三维情况下的表达式,波矢的矢量表达式是什么?波矢密度就是波矢空间中单位体积中的波矢数目。

三维表达式为:()32cV π 波矢的矢量表达式为:312123123b b b q N N N μμμ=++ (123b b b 为倒格基矢) 37.如果一个三维体系有N 个原胞,每个原胞包含n 个原子,那么体系的波矢数,振动模式数,格波数分别为多少,每个格波有几支声学波几支光学波波矢数目为N ,振动模式数目为3Nn ,格波支数为3n ,有3支声学波,3n-3支光学波。

38.如何理解吸收和发射声子?电子从晶格获得hw 能量为吸收一个声子,电子给晶格hw 能量,称为发射一个声子。

29.简述声子的性质。

1. 声子是晶格振动的能量量子。

2. 声子不是真实的粒子称为准粒子,它反映的是晶格原子集体运动状态的激发单元,声子只存在于晶体中脱离晶体就没有意义。

3. 声子是玻色型的准粒子,温度越高声子数越多。

4. 当电子或光子与晶格振动相互作用时,有吸收光子和发射光子两种情况。

30.简述长光学波可称之为极化波的理由在半波长范围内,正负离各向板的方向运动,电荷不再均匀分布出现以波长为周期的正负电药集中的区域。

由于波长很大,使晶体呈现出宏观上的极化因此长光学波又称为极化波。

31.黄昆方程的表达式,两个式子分别表示的物理意义是什么?()()1112212112W b W b E P b W b E =+=+(1)式代表振动方程,右边第一项为准弹性恢复力,第二项表示电场附加了恢复力。

(2)式代表极化方程,第一项表示离子位移引起的极化,第二项表示电场附加了极化。

32.LST 关系式是什么,为什么长光学纵波频率总大于长光学横波的频率?P10733.晶格振动谱测量的时候主要用到的两个守恒定律是什么,表达式是什么?P11534.解释布里渊区散射,拉曼散射,斯托克斯散射和反斯托克斯散射(1)布里渊散射( Brillouin scattering)光子与长声学波声子作用,吸收或放出声子的过程(2)拉曼散射( Raman scattering):光子与长光学波声子作用,吸收或放出声子的过程(1)斯托克斯散射:散射频率低于入射频率的情况。

(2)斯托克斯散射:散射频率高于入射频率的情况。

相关文档
最新文档