2018高考文科数学圆锥曲线与方程专项100题(WORD版含答案)
2018年高考文数解析几何圆锥曲线精选试题及知识点分析

文数解析几何1.已知椭圆L:x2a2+y2b2=1(a>b>0)的一个焦点于抛物线y2=8x的焦点重合,点(2,2)在L上.(Ⅰ)求L的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,l与L有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.【答案】解:(Ⅰ)抛物线y2=8x的焦点为(2,0),由题意可得c=2,即a2−b2=4,又点(2,在L上,可得4a+2b=1,解得a=22,b=2,即有椭圆L:x28+y24=1;(Ⅱ)证明:设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),将直线y=kx+b代入椭圆方程x28+y24=1,可得(1+2k2)x2+4kbx+2b2−8=0,x1+x2=−4kb1+2k2,即有AB的中点M的横坐标为−2kb1+2k,纵坐标为−k⋅2kb1+2k+b=b1+2k,直线OM的斜率为k OM=y M xM=−12⋅1k,即有k OM⋅k=−12.则OM的斜率与直线l的斜率的乘积为定值.【解析】(Ⅰ)求得抛物线的焦点,可得c=2,再由点满足椭圆方程,结合a,b,c的关系,解方程可得椭圆的方程;(Ⅱ)设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),代入椭圆方程,运用韦达定理和中点坐标公式可得M的坐标,可得直线OM的斜率,进而得到证明.本题考查椭圆的方程的求法,注意运用点满足椭圆方程和a,b,c的关系,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,以及直线的斜率公式,考查化简整理的运算能力,属于中档题.2.设椭圆C:x2a+y2b=1(a>b>0),过点Q(2,1),右焦点F(2,0),(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=k(x−1)(k>0)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若CN=MD,求k值,并求出弦长|MN|.【答案】解:(Ⅰ)椭圆过点Q(1),可得2a+1b=1,由题意可得c=2,即a2−b2=2,解得a=2,b=2,即有椭圆C的方程为x24+y22=1;(Ⅱ)直线l:y=k(x−1)与x轴交点C(1,0),y轴交点D(0,−k),联立y=k(x−1)x2+2y2=4,消y得,(1+2k2)x2−4k2x+2k2−4=0,①设M(x1,y1),N(x2,y2),则x1+x2=4k21+2k2,CN=(x2−1,y2),MD=(−x1,−k−y1),由CN=MD,得:x1+x2=4k21+2k2=1,解得k=±22.由k>0得k=22代入①得2x2−2x−3=0,x1+x2=1,x1x2=−32,可得|MN|=2⋅(x1+x2)2−4x1x2=32⋅1+6=422.【解析】(Ⅰ)将Q的坐标代入椭圆方程,以及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)求出直线l与x,y轴的交点,代入椭圆方程,运用韦达定理,以及向量共线的坐标表示,可得k的值,运用弦长公式可得弦长|MN|.本题考查椭圆方程的求法,注意运用点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和向量相等的条件,同时考查弦长公式的运用,以及运算能力,属于中档题.3.在平面直角坐标系xOy中,已知椭圆x2a +y2b=1(a>b>0)的焦距为2,离心率为22,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(2,−2)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【答案】解:(1)由题意可知:椭圆x2a +y2b=1(a>b>0),焦点在x轴上,2c=2,c=1,椭圆的离心率e=ca =22,则a=,b2=a2−c2=1,则椭圆的标准方程:x22+y2=1;(2)证明:设P(x1,y1),Q(x2,y2),A(2,0),当直线PQ不存在时,不符合题意。
2018年全国各地高考数学试题及解答分类大全(圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类大全 (圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0) B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C:22214x ya+=的一个焦点为(20),,则C的离心率为()A.13B.12C.2D .224、答案:C解答:知2c=,∴2228a b c=+=,22a=,∴离心率22e=.5.(2018全国新课标Ⅰ理)已知双曲线C:2213xy-=,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN△为直角三角形,则|MN|=()A.32B.3 C.23D.45. 答案:B解答:渐近线方程为:2203xy-=,即3y x=±,∵OMN∆为直角三角形,假设2ONMπ∠=,如图,∴3NMk=,直线MN方程为3(2)y x=-.联立333(2)y xy x⎧=-⎪⎨⎪=-⎩∴33(,)22N-,即3ON=,∴3MONπ∠=,∴3MN=,故选B.6.(2018全国新课标Ⅰ理)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为23的直线与C 交于M,N两点,则FM FN⋅=()A.5 B.6 C.7 D.86. 答案:D解答:由题意知直线MN的方程为2(2)3y x=+,设1122(,),(,)M x y N x y,与抛物线方程联立有22(2)34y xy x⎧=+⎪⎨⎪=⎩,可得1112xy=⎧⎨=⎩或2244xy=⎧⎨=⎩,∴(0,2),(3,4)FM FN==,∴03248FM FN⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c ce a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)4644633b c a bb c a b c a c a c+-=⇒+-=⇒-=- 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________. 3.31;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为3113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m m e m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
【最新】高中数学-2018高考数学(文科)习题 第十章 圆锥曲线与方程 10-4 word版含答案

1.过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A 、B 两点,且|PA |=12|AB |,则点A 到抛物线C 的焦点的距离为( )A.53 B.75 C.97 D .2答案 A解析 设A (x 1,y 1)、B (x 2,y 2),分别过点A 、B 作直线x =-2的垂线,垂足分别为点D 、E .∵|PA |=12|AB |,∴⎩⎪⎨⎪⎧3x 1+2=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334 B.938C.6332D.94答案 D解析 由已知得F ⎝ ⎛⎭⎪⎫34,0,故直线AB 的方程为y =tan30°·⎝ ⎛⎭⎪⎫x -34,即y =33x -34. 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =33x -34, ①y 2=3x , ②将①代入②并整理得13x 2-72x +316=0,∴x 1+x 2=212,∴线段|AB |=x 1+x 2+p =212+32=12.又原点(0,0)到直线AB 的距离为d =3413+1=38. ∴S △OAB =12|AB |d =12×12×38=94.3.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )点击观看解答视频A.12 B.23 C.34 D.43答案 D解析 由题意可知准线方程x =-p2=-2,∴p =4,∴抛物线方程为y 2=8x .由已知易得过点A 与抛物线y 2=8x 相切的直线斜率存在,设为k ,且k >0,则可得切线方程为y -3=k (x +2).联立方程⎩⎪⎨⎪⎧y -3=kx +2,y 2=8x ,消去x 得ky 2-8y +24+16k =0.(*)由相切得Δ=64-4k (24+16k )=0,解得k =12或k =-2(舍去),代入(*)解得y =8,把y =8代入y 2=8x ,得x =8,即切点B 的坐标为(8,8),又焦点F 为(2,0),故直线BF 的斜率为43.4.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.10答案 B解析 设AB 所在直线方程为x =my +t .由⎩⎪⎨⎪⎧x =my +t ,y 2=x ,消去x ,得y 2-my -t =0.设A (y 21,y 1),B (y 22,y 2)(不妨令y 1>0,y 2<0), 故y 21+y 22=m ,y 1y 2=-t . 而OA →·OB →=y 21y 22+y 1y 2=2. 解得y 1y 2=-2或y 1y 2=1(舍去). 所以-t =-2,即t =2. 所以直线AB 过定点M (2,0).而S △ABO =S △AMO +S △BMO =12|OM ||y 1-y 2|=y 1-y 2,S △AFO =12|OF |×y 1=12×14y 1=18y 1,故S △ABO +S △AFO =y 1-y 2+18y 1=98y 1-y 2.由98y 1-y 2=98y 1+(-y 2)≥298y 1×-y 2=298×2=3, 得S △ABO +S △AFO 的最小值为3,故选B.5.在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.答案22解析 直线x -y +1=0与双曲线x 2-y 2=1的一条渐近线x -y =0平行,这两条平行线之间的距离为22,又P 为双曲线x 2-y 2=1右支上的一个动点,点P 到直线x -y +1=0的距离大于c 恒成立,则c ≤22,即实数c 的最大值为22. 6.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ |=2,则直线l 的斜率等于________.答案 ±1解析 设直线AB 方程为x =my -1(m ≠0),A (x 1,y 1),B (x 2,y 2),联立直线和抛物线方程,整理得,y 2-4my +4=0,由根与系数关系得y 1+y 2=4m ,y 1y 2=4.故Q (2m 2-1,2m ).由|FQ |=2知2m2+2m 2-1-12=2,解得m 2=1或m 2=0(舍去),故直线l 的斜率等于±1(此时直线AB 与抛物线相切,为满足题意的极限情况).7.已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,设AB 的中点为D ,求|QD ||AB |的取值范围.解 (1)由已知得,圆心为C (2,0),半径r = 3.设P (x ,y ),依题意可得|x +1|=x -22+y 2-3,整理得y 2=6x .故曲线E 的方程为y 2=6x .(2)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ). 将my =x -2代入y 2=6x 并整理可得y 2-6my -12=0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6m ,y 1y 2=-12,D (3m 2+2,3m ),|QD |=3m 2+3. |AB |=2 31+m23m 2+4,所以⎝ ⎛⎭⎪⎫|QD ||AB |2=3m 2+343m 2+4=14⎝ ⎛⎭⎪⎫1-13m 2+4∈⎣⎢⎡⎭⎪⎫316,14,故|QD ||AB |∈⎣⎢⎡⎭⎪⎫34,12. 8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.点击观看解答视频(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝ ⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.解 解法一:(1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).由⎩⎪⎨⎪⎧x =my -1,x 24+y22=1得(m 2+2)y 2-2my -3=0, 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 20=⎝ ⎛⎭⎪⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516.|AB |24=x 1-x 22+y 1-y 224=1+m2y 1-y 224=1+m2[y 1+y 22-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22m 2+2-31+m2m 2+2+2516=17m 2+216m 2+2>0,所以|GH |>|AB |2.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外. 解法二:(1)同解法一.(2)设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝ ⎛⎭⎪⎫x 1+94,y 1, GB →=⎝⎛⎭⎪⎫x 2+94,y 2.由⎩⎪⎨⎪⎧x =my -1,x 24+y22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而GA →·GB →=⎝ ⎛⎭⎪⎫x 1+94⎝ ⎛⎭⎪⎫x 2+94+y 1y 2=⎝ ⎛⎭⎪⎫my 1+54⎝ ⎛⎭⎪⎫my 2+54+y 1y 2=(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3m 2+1m 2+2+52m 2m 2+2+2516=17m 2+216m 2+2>0, 所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外. 9.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解 (1)设F (c,0),由条件知,2c =233,得c = 3.又ca =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设 4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 10.圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.解 (1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0,知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1,解得b 21=3.因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+23my -3=0,又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-23mm 2+2, ①y 1y 2=-3m 2+2. ②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m y 1+y 2+23=43m 2+2, ③x 1x 2=m 2y 1y 2+3my 1+y 2+3=6-6m 2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2). 由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0.⑤ 将①,②,③,④代入⑤式整理,得 2m 2-26m +46-11=0,解得m =362-1或m =-62+1.因此直线l 的方程为x -⎝ ⎛⎭⎪⎫362-1y -3=0或x +⎝ ⎛⎭⎪⎫62-1y -3=0. 11.如图,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.解 (1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x ,得A 1⎝⎛⎭⎪⎫2p1k 21,2p 1k 1, 由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝⎛⎭⎪⎫2p 2k 21,2p 2k 1. 同理可得B 1⎝⎛⎭⎪⎫2p 1k 22,2p 1k 2,B 2⎝ ⎛⎭⎪⎫2p 2k 22,2p 2k 2. 所以A 1B 1→=⎝⎛⎭⎪⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1 =2p 1⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.A 2B 2→=⎝⎛⎭⎪⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1 =2p 2⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2.(2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2.所以△A 1B 1C 1∽△A 2B 2C 2. 因此S1S2=⎝ ⎛⎭⎪⎫|A 1B 1→||A 2B 2→|2.又由(1)中的A 1B 1→=p 1p 2A 2B 2→知|A 1B 1→||A 2B 2→|=p 1p 2.故S 1S 2=p 21p 22.。
圆锥曲线高考真题专练(含答案),推荐文档

【解析】由已知得圆
的圆心为 ( -1 ,0), 半径 =1,圆 的圆心为 (1,0), 半径
=3.
设动圆 的圆心为 ( , ),半径为 R.
(Ⅰ)∵圆 与圆 外切且与圆 内切,∴ |PM|+|PN|=
=
=4,
由椭圆的定义可知,曲线 C是以 M, N为左右焦点,场半轴长为 2,短半轴长为
的椭圆 ( 左
由题设得 A( 1,0) , B(1,0) , | AB | 2 ,由椭圆定义可得点 E 的轨迹方程为:
x2 y2 1( y 0 ). 43
( II )当 l 与 x 轴不垂直时, 设 l 的方程为 y k( x 1)(k 0) ,M ( x1, y1) ,N ( x2 , y2 ) .
y k( x 1)
x02 3 p2
3p p
得: A(
3 p,
3p )
,直线
m:
y
2
2x p
x
3y
3p 0
2
3p 2
2
x2 2 py
x2 y
x y
3 x
3 p
3p p
切点 P(
,)
2p
p3
3
36
直线 n : y p
3 (x
3p )
3
x 3y
p0
63
3
6
坐标原点到 m, n 距离的比值为
3p : 3p 3。 26
已知 O 为坐标原点, F 为椭圆 C : x2 y2 1在 y 轴正半轴上的焦点, 过 F 且 2
则 x1
2, x2
2 ,直线 MA , MB 的斜率之和为 kMA kMB
y1
y2 .
x1 2 x2 2
2018年高考数学试题分类汇编之圆锥曲线解析版

2018年高考数学试题分类汇编之圆锥曲线(解析版)一、选择题1.(浙江卷)(2)双曲线221 3=x y -的焦点坐标是A .(0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)解:∵双曲线方程可得双曲线的焦点在x 轴上,且a 2=3,b 2=1, 由此可得222=+=b a c ∴该双曲线的焦点坐标为(±2,0)故选:B2.(天津文)(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:A3.(天津理)(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A221412x y -= B221124x y -= C 22139x y -= D 22193x y -=解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:C4.(全国卷一文)(4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 解:椭圆的一个焦点为(2,0),可得a 2-4=4,解得22=a ,故选:C5.(全国卷一理)(8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .8解:抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0联立直线与抛物线C :y 2=4x ,消去x 可得:y 2-6y+8=0, 解得y 1=2,y 2=4,不妨M (1,2),N (4,4),FM =(0,2), FN =(3,4).则 FM ∙FN =(0,2)•(3,4)=8. 故选:D6.(全国卷一理)(11)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .4故选:B7.(全国卷二文)(6)双曲线22221(0,0)x y a b a b-=>>A.y =B.y =C.y = D .y = 解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A.8.(全国卷二文)(11)已知1F ,2F 是椭圆C 的两个焦点,P 是C上的一点,若12PF PF ⊥,且2160PFF ∠=︒,则C 的离心率为 A.1 B.2C D 1-解:F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°, 可得椭圆的焦点坐标F 2(c ,0),所以P(c 23,21故选:D9.(全国卷二理)(5)双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y =解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A .10.(全国卷二理)(12)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14解:由题意可知:A (-a ,0),F 1(-c ,0),F 2(c ,0),直线AP 的方程为:)(a x y +=63,故选:D11.(全国卷三文)(10)已知双曲线22221(00)x y C a b a b-=>>:,(4,0)到C 的渐近线的距离为AB .2CD .故选:D12.(全国卷三理)(11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为A B .2 C D在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2-2|PF 2|•|F 1F 2|COS ∠PF 2O ,故选:C二、填空题1.(北京文)(10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.解:∵直线l 过点(1,0)且垂直于x 轴,∴x=1,代入到y 2=4ax ,可得y 2=4a ,显然a >0,∴y=±∴抛物线的焦点坐标为(1,0), 故答案为:(1,0)2.(北京文)(12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.解:双曲线的离心率为245422=+a a ,解得a=4. 故答案为:43.(北京理)(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.解:若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,4.(江苏卷)(8)在平面直角坐标系xOy中,若双曲线22221(0,0)x ya ba b-=>>的右焦点(,0)F c到一条渐近,则其离心率的值是.,故答案为:25.(浙江卷)(17)已知点P(0,1),椭圆24x+y2=m(m>1)上两点A,B满足AP=2PB,则当m=_______时,点B横坐标的绝对值最大.解:设A(x1,y1),B(x2,y2),由P(0,1),AP=2PB,可得-x 1=2x2,1-y1=2(y2-1),即有x1=-2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①-②得(y1-2y2)(y1+2y2)=-3m,可得y1-2y2=-m,即有m=5时,x22有最大值4,即点B横坐标的绝对值最大.故答案为:5.6.(全国卷三理)(16)已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.解:∵抛物线C :y 2=4x 的焦点F (1,0),∴过A ,B 两点的直线方程为y=k (x-1),联立⎩⎨⎧-==)1(42x k y xy 可得,k 2x 2-2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2),y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,∵M (-1,1),∴ MA =(x 1+1,y 1-1), MB =(x 2+1,y 2-1), ∵∠AMB=90°=0,∴MA *MB =0∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2-(y 1+y 2)+2=0,∴即k 2-4k+4=0, ∴k=2. 故答案为:2三、解答题1.(北京文)(20)(本小题14分)已知椭圆2222:1(0)x y M a b a b +=>>焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D和点71(,)42Q -共线,求k .解析(Ⅰ)由题意得2c =,所以c =3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-=,易得当20m =时,max ||AB =||AB(Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y , 则221133x y += ①,222233x y += ②, 又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.2.(北京理)(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,μλ==,,求证:μλ11+为定值.解析:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2). 由(I )知12224k x x k -+=-,1221x x k =. 直线P A 的方程为y –2=1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由μλ==,得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=211(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.3.(江苏卷)(18)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=, 所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+4.(天津文)(19)(本小题满分14分) 设椭圆22221(0)x y a b a b +=>> 的右顶点为A ,上顶点为B .||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.解析:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==从而3,2a b ==. 所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 5.(天津理)(19)(本小题满分14分) 设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B .,点A 的坐标为(,0)b ,且FB AB ⋅=.(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQAOQ PQ =∠(O 为原点) ,求k 的值. 解析(Ⅰ):设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB,由FB AB ⋅=ab =6,从而a =3,b =2. 所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ.由AQ AOQ PQ =∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =.易知直线AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221k y k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =.所以,k 的值为111228或. 6.(浙江卷)(21)(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.解析(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是7.(全国一卷文)(20)(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222y x k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k ++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM =∠ABN .8.(全国一卷理)(19)(12分) 设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A的坐标为或(1,. 所以AM的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<,直线MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得 121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.9.(全国二卷文)(20)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.10.(全国卷二理)(19)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =.因此l 的方程为1y x =-. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.11.(全国卷三文)(20)(12分) 已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA =-uu r .同理2||=22x FB -uu r . 所以1214()32FA FB x x +=-+=u u r u u r .故2||=||+||FP FA FB u u r u u r u u r . 12.(全国卷三理)(20)(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得 1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是 1||(22x FA x ==-. 同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则 1212||||||||||2FB FA x x d =-=-=②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.或。
2018年高考数学—圆锥曲线(解答+答案)

2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。
2018年全国高考近四年圆锥曲线题目

全国高考近四年圆锥曲线题目一.选择题(共14小题)1.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=2.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.3.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.4.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1 B.y=(x﹣1)或 y=﹣(x﹣1)C.y=(x﹣1)或 y=﹣(x﹣1)D.y=(x﹣1)或 y=﹣(x﹣1)5.椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.6.已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C 交于A ,B 两点,若,则k=( )A .B .C .D .27.已知F 1(﹣1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交椭圆于A 、B 两点,且|AB|=3,则C 的方程为( ) A .B .C .D .8.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A ,B 两点,则|AB|=( ) A .B .6C .12D .79.已知椭圆C :+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为4,则C 的方程为( ) A .+=1 B .+y 2=1 C .+=1 D .+=110.已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上,若|F 1A|=2|F 2A|,则cos ∠AF 2F 1=( ) A . B . C . D .11.双曲线C :﹣=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于( ) A .2B .2C .4D .412.设F 为抛物线C :y 2=4x 的焦点,曲线y=(k >0)与C 交于点P ,PF ⊥x 轴,则k=( ) A . B .1C .D .213.已知O 为坐标原点,F 是椭圆C :+=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.14.已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x 的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.12二.填空题(共2小题)15.已知g(x)=+x2+2a1nx在[1,2]上是减函数,则实数a的取值范围为.16.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为.三.解答题(共5小题)17.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.18.设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l 交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.19.在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N 两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)20.已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.全国高考近四年圆锥曲线题目参考答案与试题解析一.选择题(共14小题)1.(2013•新课标Ⅰ)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.2.(2013•新课标Ⅰ)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【分析】设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x 1+x 2=2,y 1+y 2=﹣2,利用斜率计算公式可得==.于是得到,化为a 2=2b 2,再利用c=3=,即可解得a 2,b 2.进而得到椭圆的方程.【解答】解:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,相减得,∴.∵x 1+x 2=2,y 1+y 2=﹣2,==.∴,化为a 2=2b 2,又c=3=,解得a 2=18,b 2=9. ∴椭圆E 的方程为.故选D .【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.3.(2013•新课标Ⅱ)设椭圆C :=1(a >b >0)的左、右焦点分别为F 1、F 2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选D.【点评】本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.4.(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1 B.y=(x﹣1)或 y=﹣(x﹣1)C.y=(x﹣1)或 y=﹣(x﹣1)D.y=(x﹣1)或 y=﹣(x﹣1)【分析】根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x﹣1),与抛物线方程联解消去x,得﹣y﹣k=0.再设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,从而得到直线l的方程.【解答】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1)由消去x,得﹣y﹣k=0设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4…(*)∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入(*)得﹣2y 2=且﹣3y 22=﹣4, 消去y 2得k 2=3,解之得k=∴直线l 方程为y=(x ﹣1)或y=﹣(x ﹣1)故选:C【点评】本题给出抛物线的焦点弦AB 被焦点F 分成1:3的两部分,求直线AB 的方程,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.5.(2013•大纲版)椭圆C :的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[﹣2,﹣1],那么直线PA 1斜率的取值范围是( ) A .B .C .D .【分析】由椭圆C :可知其左顶点A 1(﹣2,0),右顶点A 2(2,0).设P (x 0,y 0)(x 0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C :可知其左顶点A 1(﹣2,0),右顶点A 2(2,0).设P (x 0,y 0)(x 0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.6.(2013•大纲版)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F 且斜率为k的直线与C交于A,B两点,若,则k=()A.B. C.D.2【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.7.(2013•大纲版)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.【分析】设椭圆的方程为,根据题意可得=1.再由AB经过右焦点F2且垂直于x轴且|AB|=3算出A、B的坐标,代入椭圆方程得,两式联解即可算出a2=4,b2=3,从而得到椭圆C的方程.【解答】解:设椭圆的方程为,可得c==1,所以a2﹣b2=1…①∵AB经过右焦点F2且垂直于x轴,且|AB|=3∴可得A(1,),B(1,﹣),代入椭圆方程得,…②联解①②,可得a2=4,b2=3∴椭圆C的方程为故选:C【点评】本题给出椭圆的焦距和通径长,求椭圆的方程.着重考查了椭圆的标准方程和椭圆的简单几何性质等知识,属于基础题.8.(2014•新课标Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6 C.12 D.7【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.9.(2014•大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C 的方程为+=1.故选:A .【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(2014•大纲版)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上,若|F 1A|=2|F 2A|,则cos ∠AF 2F 1=( ) A . B . C .D .【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论. 【解答】解:∵双曲线C 的离心率为2, ∴e=,即c=2a ,点A 在双曲线上, 则|F 1A|﹣|F 2A|=2a , 又|F 1A|=2|F 2A|,∴解得|F 1A|=4a ,|F 2A|=2a ,||F 1F 2|=2c , 则由余弦定理得cos∠AF 2F 1===.故选:A .【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.11.(2014•大纲版)双曲线C :﹣=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2 B.2C.4 D.4【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(2016•新课标Ⅱ)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C 交于点P,PF⊥x轴,则k=()A.B.1 C.D.2【分析】根据已知,结合抛物线的性质,求出P点坐标,再由反比例函数的性质,可得k值.【解答】解:抛物线C:y2=4x的焦点F为(1,0),曲线y=(k>0)与C交于点P在第一象限,由PF⊥x轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D【点评】本题考查的知识点是抛物线的简单性质,反比例函数的性质,难度中档.13.(2016•新课标Ⅲ)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A 的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C 的离心率为()A.B.C.D.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),令x=﹣c,代入椭圆方程可得y=±b=±,可得P(﹣c,±),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得kBH =kBM,即为=,化简可得=,即为a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.14.(2015•新课标Ⅰ)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.【解答】解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.二.填空题(共2小题)15.已知g(x)=+x2+2a1nx在[1,2]上是减函数,则实数a的取值范围为(﹣∞,﹣] .【分析】求函数的导数,利用g′(x)≤0在[1,2]上恒成立,结合参数分离法进行求解即可.【解答】解:∵g(x)=+x2+2a1nx在[1,2]上是减函数∴等价为g′(x)≤0在[1,2]上恒成立,即g′(x)=﹣+2x+≤0,即≤﹣2x,则a≤﹣x2,设f(x)=﹣x2,则f(x)在[1,2]上是减函数,∴f(x)min=f(2)==﹣,即a≤﹣,故答案为:(﹣∞,﹣].【点评】本题主要考查导数的应用,根据函数单调性和导数之间的关系是解决本题的关键.16.(2015•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF 周长最小时,该三角形的面积.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三.解答题(共5小题)17.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为 x=﹣,S△PQF =|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF =|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴xN=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.18.(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.19.(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a (a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k 1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.20.(2014•新课标Ⅰ)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以,b2=a2﹣c2=1,故E的方程.….(6分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(2014•大纲版)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x,4),把点Q的坐标代入抛物线C的方程,求得x=,根据|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)设l的方程为 x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x=,∵点P(0,4),∴|PQ|=.又|QF|=x+=+,|QF|=|PQ|,∴+=×,求得 p=2,或 p=﹣2(舍去).故C的方程为 y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为 x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N 两点,把线l′的方程代入抛物线方程可得 y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得 m2﹣1=0,∴m=±1,∴直线l的方程为 x﹣y﹣1=0,或 x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。
2018年高考数学试题分类汇编之圆锥曲线解析版

FM = (0 , 2) , FN = (3 , 4) .
则 FM FN = (0 ,2 ) ? (3 , 4 ) =8 .
故选: D
x2 6.(全国卷一理)( 11)已知双曲线 C:
y2 1 ,O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的
3
两条渐近线的交点分别为 M、N.若 △ OMN 为直角三角形,则 |MN |=
2018 年高考数学试题分类汇编之圆锥曲线(解析版)
一、选择题
1.(浙江卷)( 2)双曲线 x2 3
2
y =1 的焦点坐标是
A . (- 2 ,0) ,( 2 , 0) B . (- 2, 0), (2, 0) C. (0, - 2 ), (0, 2 ) D. (0, - 2), (0, 2)
解:∵双曲线方程可得双曲线的焦点在
4)已知椭圆
C
:
x a2
y 4
1的一个焦点为 (2 ,0) ,则 C 的离心率为
1 A.
3
1 B.
2
2 C.
2
解:椭圆的一个焦点为( 2,0),可得 a2-4=4,解得 a
22 D.
3
2 2,
c c 2, e
a
2
.
2
故选: C
5.(全国卷一理)(
8)设抛物线
C: y2=4x 的焦点为
F,过点( –2, 0)且斜率为
故选: B
x2 7.(全国卷二文)( 6)双曲线 a2
y2 b2
1( a
0, b
0) 的离心率为
3 ,则其渐近线方程为
A . y 2x
B. y 3x
C. y
2x
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考文科数学圆锥曲线与方程专项100题(WORD 版含答案)一、选择题(本题共40道小题) 1.双曲线﹣=1(a >0,b >0)的右焦点为F ,过F 且垂直于x 轴的直线与双曲线的渐近线在第一象限交于点A ,点O 为坐标原点,点H 满足•=0, =4,则双曲线的离心率为( )A .B .C .2D .3 2.已知双曲线C :﹣=1(a >0,b >0)的左焦点为F ,A ,B 分别为双曲线C 左、右两支上的点,且四边形ABOF (O 为坐标原点)为菱形,则双曲线C 的离心率为( )A .B .2C . +1D .2 3.已知抛物线C :y 2=﹣8x 的焦点为F ,直线l :x=1,点A 是l 上的一动点,直线AF 与抛物线C 的一个交点为B ,若,则|AB|=( )A .20B .16C .10D .54.已知抛物线2:2(0)C y px p =>的焦点F 到其准线的距离为2,过点E(4, 0)的直线l 与抛物线C 交于A ,B 两点,则2AF BF +的最小值为A. 3+B. 7C. 3+D. 9 5. 已知双曲线22:1(0)1x y C m m m-=>+的左焦点F 在圆2226150x y x y +---=上,则双曲线C 的离心率为A.95 B. 94 D. 326.已知曲线y=x 2+2x ﹣2在点M 处的切线与x 轴平行,则点M 的坐标是( )A .(﹣1,3)B .(﹣1,﹣3)C .(﹣2,﹣3)D .(﹣2,3) 7.已知双曲线x 2﹣m y 2=1与抛物线y 2=8x 的准线交于点P ,Q ,抛物线的焦点为F ,若△PQF 是等边三角形,则双曲线的离心率为( )A .34 B .35 C .925 D .916 8.已知过双曲线﹣=1(a >0,b >0)右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心率e 的取值范围是( )A .(1,)B .(1,) C .(,) D .(,)9. 抛物线y 2=8x 与双曲线C :22a x ﹣22b y =1(a >0,b >0)有相同的焦点,且该焦点到双曲线C 的渐近线的距离为1,则双曲线C 的方程为( )A .x 2﹣3y 2=1B .y 2﹣3x 2=1C .9x 2﹣y 2=1D .3x 2﹣y 2=1 10.椭圆=1(a >b >0)的一个焦点为F 1,若椭圆上存在一个点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为( )A .B .C .D . 11. 双曲线=1(a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为( )A .B .C .D . 12.直线l 过抛物线C :y 2=4x 的焦点F 交抛物线C 于A 、B 两点,则的取值范围为( )A .{1}B .(0,1]C .[1,+∞)D . 13.已知抛物线C :y 2=6x 的焦点为F ,准线为l ,点P 在C 上,点Q 在l 上,若=,则直线PQ 的斜率为( )A .±1B .±C .±D .±2 14.已知双曲线﹣=1,则其渐近线方程为( )A .y=±x B .y=±x C .y=±x D .y=±3x 15.已知双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,P 为双曲线C 上一点,Q 为双曲线C 渐近线上一点,P ,Q 均位于第一象限,且=, •=0,则双曲线C 的离心率为( )A .﹣1 B . C . +1 D . +1 16.设F 1,F 2分别为双曲线C :的两个焦点,M ,N 是双曲线C 的一条渐近线上的两点,四边形MF 1NF 2为矩形,A 为双曲线的一个顶点,若△AMN 的面积为,则该双曲线的离心率为( )A .3B .2C .D . 17.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,4),C (0,﹣4),顶点B 在椭圆上,则=( )A .B .C .D .18.已知双曲线C 2:的一个顶点是抛物线C 1:y 2=2x 的焦点F ,两条曲线的一个交点为M ,|MF|=,则双曲线C 2的离心率是( )A .B .C .D .19.双曲线2221y x b -=的离心率e = )A .12y x =±B .15y x =± C. y =±2x D .y =±5x 20. 已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,点P 为双曲线左支上任一点,自点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH|= ( )A .1B .2 C.4 D .1221. 若双曲线3x 2﹣y 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3C .4D .42 22.已知椭圆,双曲线和抛物线y 2=2px (p >0)的离心率分别为e 1、e 2、e 3,则( )A .e 1e 2>e 3B .e 1e 2=e 3C .e 1e 2<e 3D .e 1e 2≥e 3 23.设F 1、F 2是双曲线C :﹣=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .x ±y=0 B .x ±y=0 C .x ±2y=0 D .2x ±y=0 24.过抛物线y 2=4x 的焦点且与x 轴垂直的直线交双曲线的两条渐近线于A 、B 两点,则AB=( )A .B .C .6D . 25.已知在椭圆方程+=1中,参数a ,b 都通过随机程序在区间(0,t )上随机选取,其中t >0,则椭圆的离心率在(,1)之内的概率为( )A .B .C .D .26.M 为双曲线C : =1(a >0,b >0)右支上一点,A 、F 分别为双曲线的左顶点和右焦点,且△MAF 为等边三角形,则双曲线C 的离心率为( )A .﹣1 B .2 C .4 D .6 27.在等腰梯形ABCD 中,AB ∥CD ,且|AB|=2,|AD|=1,|CD|=2x 其中x ∈(0,1),以A ,B 为焦点且过点D 的双曲线的离心率为e 1,以C ,D 为焦点且过点A 的椭圆的离心率为e 2,若对任意x ∈(0,1)不等式t <e 1+e 2恒成立,则t 的最大值为( )A .B .C .2D . 28.已知斜率为3的直线l 与双曲线C : =1(a >0,b >0)交于A ,B 两点,若点P (6,2)是AB 的中点,则双曲线C 的离心率等于( )A .B .C .2D . 29.已知椭圆C : +=1(a >b >0)的右焦点为F (c ,0),圆M :(x ﹣a )2+y 2=c 2,双曲线以椭圆C 的焦点为顶点,顶点为焦点,若双曲线的两条渐近线都与圆M 相切,则椭圆C 的离心率为( )A .B .C .D . 30.函数y=2x 2的焦点坐标为( )A .() B .(1,0) C .(0,) D .(0,) 31.已知F 1、F 2是双曲线E :﹣=1(a >0,b >0)的左、右焦点,点M 在E 的渐近线上,且MF 1与x 轴垂直,sin ∠MF 2F 1=,则E 的离心率为( )A .B .C .D .232.双曲线﹣=1的顶点到渐近线的距离为( )A .2B .3C .2D .过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 34.已知椭圆C :的离心率为,四个顶点构成的四边形的面积为4,过原点的直线l (斜率不为零)与椭圆C 交于A ,B 两点,F 1,F 2为椭圆的左、右焦点,则四边形AF 1BF 2的周长为( )A .4B .C .8D . 35.斜率为的直线l 与椭圆交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( )A .B .C .D . 36.过抛物线y 2=4ax (a >0)的焦点F 作斜率为﹣1的直线l ,l 与离心率为e 的双曲线1b y a x 2222=-(b >0)的两条渐近线的交点分别为B ,C .若x B ,x C ,x F 分别表示B ,C ,F 的横坐标,且C B 2F x x x ⋅-=,则e=( )A .6B .6C .3D .337. 已知椭圆C :2222by a x +=1(a >b >0)的离心率为22,双曲线 x 2﹣y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为8,则椭圆C 的方程为( )A .2y 8x 22+=1 B .6y 12x 22+=1 C .3y 6x 22+=1 D .5y 20x 22+=1 38. 若抛物线y 2=ax 的焦点到其准线的距离是2,则a=( )A .±1B .±2C .±4D .±839.抛物线y 2=4x 上有两点A ,B 到焦点的距离之和为7,则A ,B 到y 轴的距离之和为( )A .8B .7C .6D .5已知共线,则圆锥曲线+y2=1的离心率为()A.B.2 C.D.或2二、填空题(本题共13道小题)41.抛物线 M:y2=2px(p>0)与椭圆有相同的焦点F,抛物线M与椭圆N交于A,B,若F,A,B共线,则椭圆N的离心率等于.42.设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点.若AB的中点为(2,2),则直线l的方程为.43.两个正数a,b的等差中项为2,等比中项为,且a>b,则双曲线的离心率e等于.44.已知双曲线的一个焦点为,且渐近线方程为y=±x,则该双曲线的标准方程为.45.已知双曲线﹣=1(a>0,b>0)的渐近线被圆x2+y2﹣6x+5=0截得的弦长为2,则离心率e= .46.已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.47.设双曲线的右焦点是F,左、右顶点分别是A1,A2,过F做x轴的垂线交双曲线于B,C两点,若A1B⊥A2C,则双曲线的离心率为.48.抛物线 M:y2=2px(p>0)与椭圆有相同的焦点F,抛物线M与椭圆N交于A,B,若F,A,B共线,则椭圆N的离心率等于.49.双曲线17y ax 222=-(a >0)的右焦点为圆(x ﹣4)2+y 2=1的圆心,则此双曲线的离心率为 .50.若双曲线x 2﹣=1的离心率为,则实数m= .51. 直线y=2b 与双曲线22a x ﹣22by =1(a >0,b >0)的左支、右支分别交于B ,C 两点,A 为右顶点,O 为坐标原点,若∠AOC=∠BOC ,则该双曲线的离心率为 .52.定义:椭圆上一点与两焦点构成的三角形为椭圆的焦点三角形,已知椭圆C : +=1(a >b >0)的焦距为4,焦点三角形的周长为4+12,则椭圆C 的方程是 . 53.设双曲线的左、右焦点分别为F 1,F 2,过F 2的直线与双曲线的右支交于两点A ,B ,若|AF 1|:|AB|=3:4,且F 2是AB 的一个四等分点,则双曲线C 的离心率是( )A .B .C .D .5三、解答题(本题共47道小题)54.已知椭圆C 的左、右焦点分别为(﹣)、(),且经过点().( I )求椭圆C 的方程: ( II )直线y=kx (k ∈R ,k ≠0)与椭圆C 相交于A ,B 两点,D 点为椭圆C 上的动点,且|AD|=|BD|,请问△ABD 的面积是否存在最小值?若存在,求出此时直线AB 的方程:若不存在,说明理由.55.已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,﹣1),且其右焦点到直线的距离为3.(1)求椭圆的方程;(2)是否存在斜率为k (k ≠0),且过定点的直线l ,使l 与椭圆交于两个不同的点M、N,且|BM|=|BN|?若存在,求出直线l的方程;若不存在,请说明理由.56.已知椭圆C: +=1(a>b>0)离心率为,右焦点为F(c,0)到直线x=的距离为1(Ⅰ)求椭圆C的方程(Ⅱ)不经过坐标原点O的直线l与椭圆C交于A,B两点,且线段AB中点在直线y=x上,求△OAB面积的最大值.57.如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且经过点,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.(1)求椭圆C的方程.(2)求证:AP⊥OM.(3)试问:•是否为定值?若是定值,请求出该定值;若不是,请说明理由.58.已知椭圆C: +=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x+4y+6=0与圆x2+(y﹣b)2=a2相切.(1)求椭圆C的方程;(2)已知过椭圆C的左顶点A的两条直线l1,l2分别交椭圆C于M,N两点,且l1⊥l2,求证:直线MN过定点,并求出定点坐标;(3)在(2)的条件下求△AMN面积的最大值.59.已知椭圆2222:1(0)x yE a ba b+=>>的右焦点为F,上顶点为G,直线FG与直线x-=垂直,椭圆E经过点3 (1)2 P,.(1)求椭圆E 的标准方程;(2)过点F 作椭圆E 的两条互相垂直的弦AB ,CD. 若弦AB ,CD 的中点分别为M ,NM , 证明:直线MN 恒过定点. 60.已知椭圆C 的中心的中心在中心在坐标原点,焦点在x 轴上且过点12P ⎫⎪⎭,离心率是. (1)求椭圆C 的标准方程.(2)直线l 过点(1,0)E -且与椭圆C 交于A 、B 两点,若||2||EA EB =,求直线l 的方程. 61.已知椭圆C 的离心率为23,F 1,F 2分别为椭圆的左右焦点,P 为椭圆上任意一点,△PF 1F 2的周长为4+23,直线l :y=kx+m (k≠0)与椭圆C 相交于A ,B 两点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l 与圆x 2+y 2=1相切,过椭圆C 的右焦点F 2作垂直于x 轴的直线,与椭圆相交于M ,N 两点,与线段AB 相交于一点(与A ,B 不重合).求四边形MANB 面积的最大值及取得最大值时直线l 的方程. 62.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y=2与y 轴的交点为P ,与C 的交点为Q ,且|QF|=2|PQ| (Ⅰ)求C 的方程(Ⅱ)判断C 上是否存在两点M ,N ,使得M ,N 关于直线l :x+y ﹣4=0对称,若存在,求出|MN|,若不存在,说明理由. 63.如图,在平面平直角坐标系xOy 中,已知椭圆C :22a x +22by =1(a >b >0)的离心率e=23,在顶点为A (﹣2,0),过点A 作斜率为k (k≠0)的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)已知点P 为AD 的中点,是否存在定点Q ,对于任意的k (k≠0)都有OP ⊥EQ ?若存在,求出点Q 的坐标,若不存在,说明理由; (3)若过点O 作直线l 的平行线交椭圆C 于点M ,求|OM ||AE ||AD |+的最小值.64.已知F为抛物线C:y2=2px(p>0)的交点,直线l1:y=﹣x与抛物线C的一个交点横坐标为8.(1)求抛物线C的方程;(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A、B,若线段AB的中点为P,且|OP|=|AB|,求△FAB的面积.65.如图,在平面直角坐标系xOy中,A和B分别是椭圆C1: +=1(a>b>0)和C2: +=1(m>n>0)上的动点,已知C1的焦距为2,且•=0,又当动点A在x轴上的射影为C1的焦点时,点A恰在双曲线2y2﹣x2=1的渐近线上.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)若C1与C2共焦点,且C1的长轴与C2的短轴长度相等,求|AB|2的取值范围.66.已知椭圆C: +=1(a>b>0)的离心率为,右焦点到直线l1:3x+4y=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l2:y=kx+m(km≠0)与椭圆C交于A、B两点,且线段AB中点恰好在直线l1上,求△OAB 的面积S 的最大值.(其中O 为坐标原点). 67.已知椭圆的中心是原点O ,焦点在x 轴上,离心率为,短轴长为2,定点A (2,0).(Ⅰ)求椭圆方程;(Ⅱ)过椭圆右焦点F 的直线与椭圆交于点M 、N ,当|MN|最小时,求△AMN 的面积. 68.在平面直角坐标系xOy 中,椭圆C :22a x +22by =1(a >b >0)的左、右焦点分别为F 1、F 2,且离心率是21,过坐标原点O 的任一直线交椭圆C 于M 、N 两点,且|NF 2|+|MF 2|=4. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l :y=kx+m 与椭圆C 交于不同的两点A 、B ,且与圆x 2+y 2=1相切, (i )求证:m 2=k 2+1;(ii )求•的最小值. 69.已知椭圆C :+=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2且垂直于x 轴的直线与椭圆C 相交于A ,B 两点,|AB|=,点P 是椭圆C 上的动点,且cos ∠F 1PF 2的最小值为.(1)求椭圆C 的方程;(2)过点(﹣2,0)的直线l 与椭圆相交于M ,N 两点,求•的取值范围.70.已知点在抛物线C :x 2=2py (p >0)上.(1)求抛物线C 的方程;(2)设定点D (0,m ),过D 作直线y=kx+m (k >0)与抛物线C 交于M (x 1,y 1),N (x 2,y 2)(y 1<y 2)两点,连接ON (O 为坐标原点),过点M 作垂直于x 轴的直线交ON 于点G .①证明点G 在一条定直线上; ②求四边形ODMG 的面积的最大值.71.已知椭圆C n : +=n (a >b >0,n ∈N *),F 1、F 2是椭圆C 4的焦点,A (2,)是椭圆C 4上一点,且•=0;(1)求C n 的离心率并求出C 1的方程;(2)P 为椭圆C 2上任意一点,过P 且与椭圆C 2相切的直线l 与椭圆C 4交于M ,N 两点,点P 关于原点的对称点为Q ;求证:△QMN 的面积为定值,并求出这个定值.72.已知椭圆Γ:=1(a >b >0)的左顶点为A ,右焦点为F 2,过点F 2作垂直于x 轴的直线交该椭圆于M 、N 两点,直线AM 的斜率为. (1)求椭圆Γ的离心率;(2)若△AMN 的外接圆在点M 处的切线与椭圆交于另一点D ,△F 2MD 的面积为,求椭圆Γ的标准方程. 73.已知椭圆经过点M (﹣2,﹣1),离心率为.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (I )求椭圆C 的方程;(II )试判断直线PQ 的斜率是否为定值,证明你的结论. 74.已知椭圆C 的两个焦点为()1F 1,0-,()2F 1,0,且经过点E .(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若11AF 2F B =,求直线l 的斜率k 的值. 75.(14分)已知椭圆E :1by a x 2222=+(a >b >0)经过点A (2,3),离心率e=21.(1)求椭圆E 的方程;(2)若∠F 1AF 2的角平分线所在的直线l 与椭圆E 的另一个交点为B ,C 为椭圆E 上的一点,当△ABC 的面积最大时,求C 点的坐标. 76.(14分)已知椭圆22a x +22by =1(a >b >0)离心率为22.(1)椭圆的左、右焦点分别为F 1,F 2,A 是椭圆上的一点,且点A 到此两焦点的距离之和为4,求椭圆的方程;(2)求b 为何值时,过圆x 2+y 2=t 2上一点M (2,2)处的切线交椭圆于Q 1、Q 2两点,且OQ 1⊥OQ 2. 77.已知椭圆C :的右焦点为F 1(1,0),离心率为.(Ⅰ)求椭圆C 的方程及左顶点P 的坐标;(Ⅱ)设过点F 1的直线交椭圆C 于A ,B 两点,若△PAB 的面积为,求直线AB 的方程.78.已知椭圆C :,离心率为.(I )求椭圆C 的标准方程;(Ⅱ)设椭圆C 的下顶点为A ,直线l 过定点,与椭圆交于两个不同的点M 、N ,且满足|AM|=|AN|.求直线l 的方程. 79.如图,在矩形ABCD 中,|AB|=4,|AD|=2,O 为AB 中点,P ,Q 分别是AD 和CD 的中点,且直线AQ 与BP 的交点在椭圆E : +y 2=1(a >0)上.(Ⅰ)求椭圆E 的方程;(Ⅱ)设R 为椭圆E 的右顶点,T 为椭圆E 的上顶点,M 为椭圆E 第一象限部分上一点,求梯形ORMT面积的最大值.80.已知椭圆C:的离心率为,左、右焦点为F1,F2,点M为椭圆C上的任意一点,的最小值为2.(I)求椭圆C的标准方程;(II)已知椭圆C的左、右顶点为A,B,点D(a,t)为第一象限内的点,过F2作以BD 为直径的圆的切线交直线AD于点P,求证:点P在椭圆C上.81.已知抛物线的方程为C:x2=4y,过点Q(0,2)的一条直线与抛物线C交于A,B两点,若抛物线在A,B两点的切线交于点P.(1)求点P的轨迹方程;(2)设直线PQ与直线AB的夹角为α,求α的取值范围.82.已知椭圆的离心率为,且点在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若斜率为k的直线l交椭圆C于A,B两点,求△OAB面积的最大值.83.已知抛物线C:y2=4x,点M与抛物线C的焦点F关于原点对称,过点M且斜率为k的直线l与抛物线C交于不同两点A,B,线段AB的中点为P,直线PF与抛物线C交于两点E,D.(Ⅰ)判断是否存在实数k使得四边形AEBD为平行四边形.若存在,求出k的值;若不存在,说明理由;(Ⅱ)求的取值范围.84.(12分)已知点A 、B 分别是左焦点为(﹣4,0)的椭圆C :2222by a x =1(a >b >0)的左、右顶点,且椭圆C 过点P (23,235).(1)求椭圆C 的方程;(2)已知F 是椭圆C 的右焦点,以AF 为直径的圆记为圆M ,过P 点能否引圆M 的切线?若能,求出这条切线与x 轴及圆M 的弦PF 所对的劣弧围成的图形面积;若不能,说明理由. 85.已知点F 是拋物线C :y 2=2px (p >0)的焦点,若点M (x 0,1)在C 上,且|MF|=.(1)求p 的值;(2)若直线l 经过点Q (3,﹣1)且与C 交于A ,B (异于M )两点,证明:直线AM 与直线BM 的斜率之积为常数. 86.已知直线l 过点P (2,0),斜率为,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求: (1)点M 的坐标; (2)线段AB 的长|AB|. 87.已知椭圆的两个焦点分别为,,点M (1,0)与椭圆短轴的两个端点的连线相互垂直. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点M (1,0)的直线l 与椭圆C 相交于A ,B 两点,设点N (3,2),记直线AN ,BN 的斜率分别为k 1,k 2,求证:k 1+k 2为定值. 88.椭圆C :+=1(a >b >0)的短轴两端点为B 1(0,﹣1)、B 2(0,1),离心率e=,点P 是椭圆C 上不在坐标轴上的任意一点,直线B 1P 和B 2P 分别与x 轴相交于M ,N两点,(Ⅰ)求椭圆C 的方程和|OM|•|ON|的值;(Ⅱ)若点M 坐标为(1,0),过M 点的直线l 与椭圆C 相交于A ,B 两点,试求△ABN 面积的最大值.89.已知椭圆C :+=1(a >b >0)的右焦点为(1,0),离心率为.(1)求椭圆C 的标准方程;(2)过点P (0,3)的直线m 与C 交于A 、B 两点,若A 是PB 的中点,求直线m 的方程. 90.(14分)已知椭圆E :2222by a x =1(a >b >0)的右焦点为F ,离心率e=21,点D(0,3)在椭圆E 上.(Ⅰ) 求椭圆E 的方程;(Ⅱ) 设过点F 且不与坐标轴垂直的直线交椭圆E 于A ,B 两点,△DAF 的面积为S △DAF ,△DBF 的面积为S △DBF ,且S △DAF :S △DBF =2:1,求直线AB 的方程. 91.双曲线C :的左、右焦点分别为F 1,F 2,过F 2作x 轴垂直的直线交双曲线C 于A 、B 两点,△F 1AB 的面积为12,抛物线E :y 2=2px (p >0)以双曲线C 的右顶点为焦点.(Ⅰ)求抛物线E 的方程;(Ⅱ)如图,点为抛物线E 的准线上一点,过点PM作y 轴的垂线交抛物线于点,连接PO 并延长交抛物线于点N ,求证:直线MN 过定点.92.(14分)已知椭圆Ω:1by a x 2222=+(a >b >0),直线22x+y=1经过Ω的右顶点和上顶点.(1)求椭圆Ω的方程;(2)设椭圆Ω的右焦点为F ,过点G (2,0)作斜率不为0的直线交椭圆Ω于M ,N 两点.设直线FM 和FN 的斜率为k 1,k 2. ①求证:k 1+k 2为定值; ②求△FMN 的面积S 的最大值.93.(12分)已知椭圆 C :2222by a x +=1(a >b >0)的左,右焦点分别是F 1,F 2,点 D 在椭圆C 上,DF 1⊥F 1F 2,|F 1F 2|=43|DF|,△DFF 的面积为23. (1)求椭圆C 的方程;(2)圆x 2+y 2=b 2的切线l 交椭圆C 于A ,B 两点,求|AB|的最大值. 94.已知椭圆C : +=1(a >b >0),圆Q :(x ﹣2)2+(y ﹣)2=2的圆心Q 在椭圆C上,点P (0,)到椭圆C 的右焦点的距离为.(1)求椭圆C 的方程;(2)过点P 作互相垂直的两条直线l 1,l 2,且l 1交椭圆C 于A ,B 两点,直线l 2交圆Q 于C ,D 两点,且M 为CD 的中点,求△MAB 的面积的取值范围.95.已知椭圆C :2222by a x +=1(a >b >0)的离心率是22,且过点P(2,1).直线y=22x+m 与椭圆C 相交于A ,B 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求△PAB 的面积的最大值;(Ⅲ)设直线PA ,PB 分别与y 轴交于点M ,N .判断|PM|,|PN|的大小关系,并加以证明. 96.已知椭圆2222:1(0)x y C a b a b+=>>(1,0)M 为圆心,椭圆的短半轴长为半径的圆与直线10x y -+=相切. (1)求椭圆C 的标准方程;(2)已知点(3,2)N ,和平面内一点(,)(3)P m n m ≠,过点M 任作直线l 与椭圆C 相交于,A B 两点,设直线,,AN NP BN 的斜率分别为123,,k k k ,2313k k k =+,试求,m n 满足的关系式. 97.已知椭圆C :22a x +22by =1(a >b >0)的离心率为21,且椭圆C 与圆M :x 2+(y ﹣3)2=4的公共弦长为4 (1)求椭圆C 的方程;(2)已知O 为坐标原点,过椭圆C 的右顶点A 作直线l 与圆x 2+y 2=58相切并交椭圆C 于另一点,求•的值. 98.已知抛物线y 2=2px (p >0),过点C (﹣2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,且=12(Ⅰ)求抛物线的方程;(Ⅱ)当以AB 为直径的圆的面积为16π时,求△AOB 的面积S 的值. 99.已知椭圆Γ的中心在原点,焦点在x 轴,离心率为,且长轴长是短轴长的倍.(1)求椭圆Γ的标准方程;(2)设P (2,0)过椭圆Γ左焦点F 的直线l 交Γ于A ,B 两点,若对满足条件的任意直线l ,不等式恒成立,求λ的最小值.100.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在C 上,若|AO|=|AF|=23; (Ⅰ)求C 的方程;(Ⅱ)设直线l 与C 交于P ,Q ,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.试卷答案1.C【考点】双曲线的简单性质.【分析】利用射影定理,确定c=|OA|,可得∠AOF=60°,=tan60°=,即可求出双曲线的离心率.【解答】解:由射影定理可得,|OF|2=|OH|•|OA|,∵=4,∴c=|OA|,∴∠AOF=60°,∴=tan60°=,∴c==2a,∴e==2,故选:C.2.C【考点】双曲线的简单性质.【分析】利用四边形ABOF(O为坐标原点)为菱形,结合双曲线的对称性,求出A的坐标,代入双曲线方程然后求解离心率.【解答】解:双曲线C:﹣=1(a>0,b>0)的左焦点为F,A,B分别为双曲线C左、右两支上的点,且四边形ABOF(O为坐标原点)为菱形,不妨A在x轴上方,可知A(,),代入双曲线方程可得:.可得e4﹣8e2+4=0,e>1,可得e2=.可得e=.故选:C.【点评】本题考查双曲线的简单性质的应用,判断A的位置是解题的关键,考查计算能力.3.A【考点】抛物线的简单性质.【分析】设A (﹣1,a ),B (m ,n ),且n 2=﹣8m ,利用向量共线的坐标表示,由,确定A ,B 的坐标,即可求得.【解答】解:由抛物线C :y 2=﹣8x ,可得F (﹣2,0), 设A (1,a ),B (m ,n ),且n 2=﹣8m ,∵,∴1+2=﹣3(m+2), ∴m=﹣3,∴n=±2,∵a=﹣3n ,∴a=±6,∴|AB|==20.故选:A .【点评】本题考查抛物线的性质,考查向量知识的运用,考查学生的计算能力,属于基础题. 4.C由抛物线C 的焦点F 到其准线的距离为2,得p=2,设直线l 的方程为4x my =+,与24y x =联立得24160y my --=,设221212()()44y y A y B y ,,,,则1216y y =-,所以2212212(1)44y y AF BF +=+++221233342y y =++≥=+221242y y =,即22122y y =时,取等号),故选C. 5.C设(0)(0)F c c ->,,将(0)F c -,代入2226150x y x y +---=中得,22150c c +-=,解得c=3,所以2194m m c m ++===,,所以双曲线C 的离心率e == C. 6.B【考点】利用导数研究曲线上某点切线方程.【分析】设出M (m ,n ),求出导数,求得切线的斜率,由题意可得2m+2=0,解得m ,进而得到n ,即可得到切点坐标.【解答】解:y=x2+2x﹣2的导数为y′=2x+2,设M(m,n),则在点M处的切线斜率为2m+2,由于在点M处的切线与x轴平行,则2m+2=0,解得m=﹣1,n=1﹣2﹣2=﹣3,即有M(﹣1,﹣3).故选B.7.B【考点】双曲线的简单性质.【分析】由题意,x=﹣2,等边三角形的边长为,将(﹣2,)代入双曲线,可得方程,即可求出m的值.【解答】解:由题意,x=﹣2,等边三角形的边长为,将(﹣2,)代入双曲线,可得=1,∴,故选:B.8.B【考点】双曲线的简单性质.【分析】要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,即<tan45°=1,求得a和b的不等式关系,进而根据b=转化成a和c的不等式关系,求得离心率的一个范围,最后根据双曲线的离心率大于1,综合可得求得e的范围.【解答】解:要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,即<tan45°=1,即b<a,∴<a,整理得c<a,∴e=<∵双曲线中e>1∴e的范围是(1,).故选:B.9.D【考点】抛物线的简单性质;双曲线的简单性质.【分析】先求出抛物线的焦点坐标,即可得到c=2,再求出双曲线的渐近线方程,根据点到直线的距离求出b的值,再求出a,问题得以解决.【解答】解:∵抛物线y2=8x中,2p=8,∴抛物线的焦点坐标为(2,0).∵抛物线y2=8x与双曲线C:﹣=1(a>0,b>0)有相同的焦点,∴c=2,∵双曲线C:﹣=1(a>0,b>0)的渐近线方程为y=±x,且该焦点到双曲线C的渐近线的距离为1,∴=1,即=1,解得b=1,∴a2=c2﹣b2=3,∴双曲线C的方程为﹣y2=1,故选:D.10.D【考点】椭圆的简单性质.【分析】设线段PF1的中点为M,另一个焦点F2,利用OM是△FPF2的中位线,以及椭圆的定义求出直角三角形OMF1的三边之长,使用勾股定理求离心率.【解答】解:设线段PF1的中点为M,另一个焦点F2,由题意知,OM=b,又OM是△FPF1的中位线,∴OM=PF2=b,PF2=2b,由椭圆的定义知 PF1=2a﹣PF2=2a﹣2b,又MF1=PF1=(2a﹣2b)=a﹣b,又OF1=c,直角三角形OMF1中,由勾股定理得:(a﹣b)2+b2=c2,又a2﹣b2=c2,可得2a=3b,故有4a2=9b2=9(a2﹣c2),由此可求得离心率 e==,故选:D.11.D【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c 的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程得y=即M(c,)在△MF1F2中tan30°=即=解得e==故选:D.【点评】本题考查双曲线中三参数的关系:c2=a2+b2,注意与椭圆中三参数关系的区别;求圆锥曲线的离心率就是求三参数的关系.12.A【考点】抛物线的简单性质.【分析】根据抛物线方程可求得焦点坐标和准线方程,设过F的直线方程,与抛物线方程联立,整理后,设A(x1,y1),B(x2,y2)根据韦达定理可求得x1x2的值,又根据抛物线定义可知|AF|=x1+1,|BF|=x2+1代入答案可得.【解答】解:易知F坐标(1,0)准线方程为x=﹣1.设过F点直线方程为y=k(x﹣1)代入抛物线方程,得 k2(x﹣1)2=4x.化简后为:k2x2﹣(2k2+4)x+k2=0.设A(x1,y1),B(x2,y2),则有x1x2=1,根据抛物线性质可知,|AF|=x1+1,|BF|=x2+1,∴=+==1,故选A.13.C【考点】抛物线的简单性质.【分析】利用抛物线的定义,结合=,求出P的坐标,即可求解直线的斜率.【解答】解:抛物线Γ:y2=6x的焦点F(,0),=,|QF|=|PF|=|PA|,∵2p=6,P(,±3)∴直线PQ的斜率就是直线PF的斜率k PF=±=,故选:C.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.14.A【考点】双曲线的简单性质.【分析】根据题意,由双曲线的标准方程可得其焦点在x轴上,且a==2,b==2,将a、b的值代入焦点在x轴上的双曲线的渐近线方程计算可得答案.【解答】解:根据题意,双曲线的标准方程为:﹣=1,则其焦点在x轴上,且a==2,b==2,故其渐近线方程为y=±x;故选:A.【点评】本题考查双曲线的集合性质,注意分析双曲线的标准方程的形式,确定其焦点的位置.15.A【考点】双曲线的简单性质.【分析】利用已知条件可得P是Q,F2的中点,⊥,由条件求出Q坐标,由中点坐标公式,求出P的坐标,代入双曲线方程,即可求解双曲线的离心率.【解答】解:双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0),P为双曲线C上一点,Q为双曲线C渐近线上一点,P、Q均位于第一象限,且=,•=0,可知P是Q,F2的中点,⊥,Q在直线bx﹣ay=0上,并且|OQ|=c,则Q(a,b),则P(,),代入双曲线方程可得:﹣=1,即有=,即1+e=.可得e=﹣1.故选:A.16.D【考点】双曲线的简单性质.【分析】设M(x, x),由题意,|MO|=c,则x=a,∴M(a,b),利用△AMN的面积为,建立方程,即可求出双曲线的离心率.【解答】解:设M(x, x),由题意,|MO|=c,则x=a,∴M(a,b),∵△AMN的面积为,∴,∴4a2(c2﹣a2)=c4,∴e4﹣4e2+4=0,∴e=.故选D.17.C【考点】椭圆的简单性质.【分析】首先根据所给的椭圆的方程写出椭圆的长轴的长,两个焦点之间的距离,根据正弦定理得到角的正弦值之比就等于边长之比,把边长代入,得到比值【解答】解:∵△ABC的顶点A(0,4),C(0,﹣4),顶点B在椭圆上∴a=2,即AB+CB=2a,AC=2c∵由正弦定理知,∴则=.故选:C.【点评】本题考查椭圆的性质和正弦定理的应用,解题的关键是把角的正弦值之比写成边长之比,进而和椭圆的参数结合起来.18.C【考点】双曲线的简单性质.【分析】通过题意可知F(,0)、不妨记M(1,),将点M、F代入双曲线方程,计算即得结论.【解答】解:由题意可知F(,0),由抛物线的定义可知:x M=﹣=1,∴y M=±,不妨记M(1,),∵F(,0)是双曲线的一个顶点,∴=1,即a2=,又点M在双曲线上,∴=1,即b2=,∴e==,故选:C.19.C在双曲线2221yxb-=中,a=1,由e=5ac=,得c=5,故b=22ac-=2,故双曲线的渐近线方程为y=±2x,故选C.20.A21.C【考点】抛物线的简单性质;双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用双曲线的左焦点在抛物线y2=2px的准线上,即可求出p.【解答】解:双曲线的左焦点(﹣2,0)在抛物线y2=2px的准线x=﹣上,可得﹣2=﹣,解得p=4.故选:C.【点评】本题考查抛物线以及双曲线的简单性质的应用,是基础题.22.C【考点】K4:椭圆的简单性质;K8:抛物线的简单性质;KC:双曲线的简单性质.【分析】根据题意先分别表示出e1,e2和e3,然后求得e1e2的取值范围,检验选项中的结论即可.【解答】解:依题意可知e1=,e2=,e3=1∴e1e2=•=<1,A,B,D不正确.故选C.23.A【考点】KC:双曲线的简单性质.【分析】不妨设P为右支上一点,由双曲线的定义,可得,|PF1|﹣|PF2|=2a,求出△PF1F2的三边,比较即可得到最小的角,再由余弦定理,即可得到c=a,再由a,b,c的关系,结合渐近线方程,即可得到所求.【解答】解:不妨设P为右支上一点,由双曲线的定义,可得,|PF1|﹣|PF2|=2a,又|PF1|+|PF2|=6a,解得,|PF1|=4a,|PF2|=2a,且|F1F2|=2c,由于2a最小,即有∠PF1F2=30°,由余弦定理,可得,cos30==.则有c2+3a2=2ac,即c=a,则b==a,。