关于扩散与固态相变课件
合集下载
扩散与固态相变PPT课件

置换式固溶体中,溶质、溶剂原子大 小相近,具有相近的迁移率,在扩散 中,溶质、溶剂原子同时扩散的现象。
(二)根据扩散方向是否与浓度梯度的 方向相同
1、下坡扩散:是沿着浓度降低的方向 进行扩散,使浓度趋于均匀化。
2、上坡扩散:沿着浓度升高的方向进行扩散,
使浓度发生两极分化。如硅钢和碳钢焊接后热处 理后碳浓度的分布。
将一块黄铜(Cu-wZn 30%)放一铜盒中,两者的界面用钼丝包扎, 经过高温长时退火后,发现钼丝间的距离缩小了。 黄铜中的Zn原子通过界面向外扩散,铜盒内的Cu原子向黄铜内扩散,且 黄铜内流出的Zn原子数多,而铜盒中Cu原子流入黄铜内较少。 向纯铜的一方流入较多的Zn原子,要建立较多的新原子平面使体积胀大, 产生较多的空位反向流入界面内的黄铜,黄铜内的空位多了。
3. 复合机制 在扩散过程中,当间隙原子和空位相遇时,二者
同时消失,这便是间隙原子与空位的复合机制,如 图。这种扩散一般是在存在费仑克尔缺陷的晶体中
进行。
4. 易位机制
相邻原子对调位置或是通过循环式的对调位置,从 而实现原子的迁移和扩散。这种扩散机制称为易位 式扩散机制。此种扩散机制要求相邻的两个原子或 更多的原子必须同时获得足够大的能量,以克服其 它原子的作用才能离开平衡位置实现易位,因而这 种过程必然会引起晶格较大的畸变,所以实现的可
迁移
另一平衡位置
二、扩散机理
扩散的微观机制
晶体中的原子以它的平衡位置为中心做晶 格热振动,由于热运动的起伏,总有一些原子 在热振动中能获得足够大的能量,从原来的平 衡位置跃迁到另一个平衡位置。扩散现象正是 这种微观原子迁移的结果。
原子在晶体中扩散的微观机制可以分为 四种:
1. 空位机制
材料科学基础基本第六章 扩散与固态相变

第六章 扩散与固态相变
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
扩散定律及其应用 扩散机制 影响扩散的因素与扩散驱动力 几个特殊的有关扩散的实际问题 固态相变中的形核 固态相变的晶体成长 扩散型相变 无扩散相变
第一节 扩散定律及其应用
一. 扩散定律
(1)稳态扩散-菲克第 一定律 (Fick’s first law)
图5-6
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
合金元素对碳在-Fe中的扩散的 影响
菲克第二定律
当扩散处于非稳态,即各点的浓度随时间 而改变时,利用式(1)不容易求出。但通 常的扩散过程大都是非稳态扩散,为便于求 出,还要从物质的平衡关系着手,建立第二
对于一定的扩散系统D0及Q为常数。某些 扩散系统的D0及Q见表6-2。由表中的数 据可以看到,置换扩散的Q值较高,这是
渗金属比渗碳慢得多的原因之一。
影响扩散 的因素
合金元素的影响
影响扩散的因素
1)温度:由(5-5)式可知D与温度成指数关系,可见温度对扩散速度影响很大。 例如从表6-2中可以看到,当温度从500℃升高到900℃时,Fe在-Fe中的扩散 系数从3.010-21增加到1.810-15m2/s,增加了近六个数量级。
对于半无限固体其表面 浓度保持不变,例如对 于气体扩散问题,其表 面分压保持一定的情况 下,进行如下假设:
1)扩散前任何扩散 原子在体内的分布是均 匀的,此时的浓度设为C0
2)在表面的值设为 零且向固体内部为正方 向;
3)在扩散开始之前 的时刻确定为时间为零
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
扩散定律及其应用 扩散机制 影响扩散的因素与扩散驱动力 几个特殊的有关扩散的实际问题 固态相变中的形核 固态相变的晶体成长 扩散型相变 无扩散相变
第一节 扩散定律及其应用
一. 扩散定律
(1)稳态扩散-菲克第 一定律 (Fick’s first law)
图5-6
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
合金元素对碳在-Fe中的扩散的 影响
菲克第二定律
当扩散处于非稳态,即各点的浓度随时间 而改变时,利用式(1)不容易求出。但通 常的扩散过程大都是非稳态扩散,为便于求 出,还要从物质的平衡关系着手,建立第二
对于一定的扩散系统D0及Q为常数。某些 扩散系统的D0及Q见表6-2。由表中的数 据可以看到,置换扩散的Q值较高,这是
渗金属比渗碳慢得多的原因之一。
影响扩散 的因素
合金元素的影响
影响扩散的因素
1)温度:由(5-5)式可知D与温度成指数关系,可见温度对扩散速度影响很大。 例如从表6-2中可以看到,当温度从500℃升高到900℃时,Fe在-Fe中的扩散 系数从3.010-21增加到1.810-15m2/s,增加了近六个数量级。
对于半无限固体其表面 浓度保持不变,例如对 于气体扩散问题,其表 面分压保持一定的情况 下,进行如下假设:
1)扩散前任何扩散 原子在体内的分布是均 匀的,此时的浓度设为C0
2)在表面的值设为 零且向固体内部为正方 向;
3)在扩散开始之前 的时刻确定为时间为零
第七章扩散与固态相变

3、互扩散系数 在置换式固熔体中扩散系数与纯组元的扩散不同
20
第三节 影响扩散的因素与扩散驱动力 一、影响扩散的因素
Q D D0 exp( ) RT 1 S D0 2 Z exp( ) 6 R
S f S m 1 2 D0 exp( ) 6 k
D0的变化范围在5×10-6~5×10-4m2· s-1之间,而Q和T与扩散系 数成指数关系变化,影响要大很多。以铜为例:800℃时 DCu=5×10-9,Γ=5×105,20 ℃时DCu=5×10-34,Γ=5×10-20
第七章 扩散与固态相变
机械工程学院 谷万里
1
第一节
一、扩散第一定律
扩散定律及其应用
菲克(A· Fick)在1855年提出,在稳态条件下 dC/dt=0时,单位时间内通过垂直于扩散方向单位截 面的物质流量J与该处的浓度梯度成正比。
J Ddc / dx
D称为扩散系数
问题
这一规律在微观上如何解释?扩散系数的意义何在?
33
二、均匀形核与非均匀形核
1、均匀形核
总应变能为:
ΔG=-VΔGV+Aγ+VΔGS 于液态相变相比增加了一项 弹性应变能。仿照液-固相转 变可得出临界晶核形成功的 表达式
2 rk Gv Gs 16 3 Gk 3(Gv Gs ) 2
实际形核过程中ΔGk将趋于最小
34
2 exp( y )dy 0
Z
8
渗碳炉
9
RCWC无马弗渗碳炉 特点:连续自动生产效率高,炉内有特定的强制换气系统, 渗透快,渗层深,处理后的工件质量稳定,表面光洁。
10
半导体硅片的掺杂
分几个步骤进行,目的是为了精确控制B含量。该条件下 扩散第二定律的解为:
20
第三节 影响扩散的因素与扩散驱动力 一、影响扩散的因素
Q D D0 exp( ) RT 1 S D0 2 Z exp( ) 6 R
S f S m 1 2 D0 exp( ) 6 k
D0的变化范围在5×10-6~5×10-4m2· s-1之间,而Q和T与扩散系 数成指数关系变化,影响要大很多。以铜为例:800℃时 DCu=5×10-9,Γ=5×105,20 ℃时DCu=5×10-34,Γ=5×10-20
第七章 扩散与固态相变
机械工程学院 谷万里
1
第一节
一、扩散第一定律
扩散定律及其应用
菲克(A· Fick)在1855年提出,在稳态条件下 dC/dt=0时,单位时间内通过垂直于扩散方向单位截 面的物质流量J与该处的浓度梯度成正比。
J Ddc / dx
D称为扩散系数
问题
这一规律在微观上如何解释?扩散系数的意义何在?
33
二、均匀形核与非均匀形核
1、均匀形核
总应变能为:
ΔG=-VΔGV+Aγ+VΔGS 于液态相变相比增加了一项 弹性应变能。仿照液-固相转 变可得出临界晶核形成功的 表达式
2 rk Gv Gs 16 3 Gk 3(Gv Gs ) 2
实际形核过程中ΔGk将趋于最小
34
2 exp( y )dy 0
Z
8
渗碳炉
9
RCWC无马弗渗碳炉 特点:连续自动生产效率高,炉内有特定的强制换气系统, 渗透快,渗层深,处理后的工件质量稳定,表面光洁。
10
半导体硅片的掺杂
分几个步骤进行,目的是为了精确控制B含量。该条件下 扩散第二定律的解为:
第七章扩散与固态相变

碳原子从内壁渗入,外壁渗出达到平衡时,则为稳态扩散 单位面积中碳流量: J=q/(At)=q/(2πrLt) A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳 量 则 J=q/(At)=q/(2πrLt)=-D(dc/dx) =-D( dc/dr) 即-D= [q/(2πrLt)]×1/ ( dc/dr) = [q(dlnr)]/[( 2πLt ) dc]
稳态扩散下的菲克第一定律推导
x轴上两单位面积1和2,间距,面上原子浓度为年n1、n2 若原子平均跳动频率 B, dt时间内从平面1到平面2 的原子数为1/6 B n1,跳离平面2到平面1的原子数为 1/6 B n2,
稳态扩散下的菲克第一定律推导
沿一个方向只有1/2的几率则单位时间内两 者的差值即扩散原子净流量 J=(1/6) B (n1-n2) =(1/6) B C1 -(1/6) B C2 =1/6 B 2 dcB/dx 令D= 1/6 B 2 ,则
图2是典型的扩散问题。两根含有不同初始浓度溶 质原子的合金棒焊接在一起,经高温加热一段时间 后,溶质原子自浓度高的一侧流向浓度低的一侧, 使合金棒沿纵向的浓度梯度减小,溶质原子在合金 棒中分布趋于变得均匀。
根据扩散的定义和前面的分析,在图2的例子 中,有三个基本条件是扩散必需的: (1)扩散驱动力 使物质发生迁移(定向), 一定存在着某种力或场,如浓度梯度。 (2)温度 原子迁移所必需的基本条件, 温度越高,扩散越容易。 (3)时间 扩散是一个物质迁移的过程, 而过程的概念就体现在时间上。
x 2 Dt
2
,式(3)为
x Dt
C A 2 D exp( )d B A 2
0
exp( 2 )d B 0 0 exp ( 2 ) d 由高斯误差积分:
稳态扩散下的菲克第一定律推导
x轴上两单位面积1和2,间距,面上原子浓度为年n1、n2 若原子平均跳动频率 B, dt时间内从平面1到平面2 的原子数为1/6 B n1,跳离平面2到平面1的原子数为 1/6 B n2,
稳态扩散下的菲克第一定律推导
沿一个方向只有1/2的几率则单位时间内两 者的差值即扩散原子净流量 J=(1/6) B (n1-n2) =(1/6) B C1 -(1/6) B C2 =1/6 B 2 dcB/dx 令D= 1/6 B 2 ,则
图2是典型的扩散问题。两根含有不同初始浓度溶 质原子的合金棒焊接在一起,经高温加热一段时间 后,溶质原子自浓度高的一侧流向浓度低的一侧, 使合金棒沿纵向的浓度梯度减小,溶质原子在合金 棒中分布趋于变得均匀。
根据扩散的定义和前面的分析,在图2的例子 中,有三个基本条件是扩散必需的: (1)扩散驱动力 使物质发生迁移(定向), 一定存在着某种力或场,如浓度梯度。 (2)温度 原子迁移所必需的基本条件, 温度越高,扩散越容易。 (3)时间 扩散是一个物质迁移的过程, 而过程的概念就体现在时间上。
x 2 Dt
2
,式(3)为
x Dt
C A 2 D exp( )d B A 2
0
exp( 2 )d B 0 0 exp ( 2 ) d 由高斯误差积分:
第五章 金属扩散及固态转变

⑷原子扩散的影响
对于扩散型相变,新旧两相的成分不同,相变通过 组元的扩散才能进行。在此种情况下,扩散就成为 相变的主要控制因素。但原子在固态中的扩散速度 远低于液态,两者的扩散系数相差几个数量级。 当过冷度增加到一定程度时,扩散成为决定性 因素,再增大过冷度会使转变速度减慢,甚至 原来的高温转变被抑制,在更低温度下发生无 扩散相变。 例如共析钢从高温奥氏体状态快速冷却下来,扩 散型的珠光体相变被抑制,在更低温度下发生无 扩散的马氏体相变,生成亚稳的马氏体组织。
a)
b)
c)
d)
e)
图5-14 共析转变的形核与生长示意图
1 共析转变的形核
⑴假定富含B组元的β为领 先相,γ相需源源不断提供 B组元才能保证β相的生长。 ⑵由于B组元不断降低,这 样为富含A组元的α相的形 核创造了条件,于是便在B 元的侧面形成了α相。 ⑶ α相 β相就这样不断地交 替生长,并向γ相纵深发展, 最后形成层片状的共析领域。
所有元素在α-Fe 的扩散系数>γ-Fe 中的扩散系数
例:900℃时,置换原子Ni在α -Fe中的扩散系数比在γ -Fe 中约大 1400 倍 ;527℃时 , 间隙原子 N 在 α -Fe 中的扩散系数 比在γ -Fe 中约大1500倍。
表明:致密度大,扩散系数小. 应用:渗氮温度尽量选在共析转变温度以下(590 ℃),可 以缩短工艺周期。
应用举例 铸造合金消除枝晶偏析的均匀化退火
钢在加热和冷却时的一些相变
变形金属的回复与再结晶
钢的化学热处理
金属加热过程中的氧化和脱碳
固态扩散的实验(柯肯达尔效应) • 把Cu、Ni棒对焊,在焊接面上镶嵌上钨丝作为界面 标志。加热到高温并保温,界面标志钨丝向纯Ni一 侧移动了一段距离.
材料成形技术课件第七章扩散与固相反应

无论金属体系或离子化合物体系,空
位机构是固体材料中质点扩散的主要机构。
在一般情况下离子晶体可由离子半径不同 的阴、阳离子构成晶格,而较大离子的扩 散多半是通过空位机构进行的。
b-间隙机构:处于
间隙位置的质点从一间 隙位移入另一相邻间隙 位的过程,此过程必须 引起周围晶格的变形。 与空位机构相比, 间隙机构引起的晶格变 形大。因此间隙原子相 对晶格位上原子尺寸越 小,间隙机构越容易发 生。
处于对等位置上的二个或二个以上的结点原子同时跳动
进行位置交换,由此而发生位移。尽管这是一种无点缺
陷晶体结构中可能发生的扩散机构,但至今还未在实验
中得到证实。但据报导在CaO-Al2O3-SiO2三元系统熔体中 的氧离子扩散近似于依这种机构进行。
到目前为止已为人们所认识的
晶体中原子或离子的迁移机构主 要有:空位机构和间隙机构。
二、化学键的影响
不同的固体材料其构成晶体的化学键性质 不同,因而扩散系数也就不同。 在金属键、离子键或共价键材料中,空位 扩散机构始终是晶粒内部质点迁移的主导方式, 且因空位扩散活化能由空位形成能△Hf和原子 迁移能△HM构成,故激活能常随材料熔点升高 而增加。但当间隙原子比格点原子小得多或晶 格结构比较开放时,间隙机构将占优势。
Nerst-Einstein方程 或扩散系数的一般热力学方程
Ln i Di Bi RT (1 ) LnN i
理解:
Ln i 1 LnN i
扩散系数热力学因子
对于理想混合体系,活度系数
i 1
*
Di Di RTBi
*
Di 自扩散系数; 一种原子或离子通过由该种原子或离子所
三、结构缺陷的影响
晶界对离子扩散的选择性增强作用 ,例如在Fe2O3、
上海交大材料科学基础3固体中的扩散PPT课件

理化学过程与其有关,因此,扩散成为材料科学的主 要内容之一。
扩散的分类
(1)根据有无浓度变化 自扩散:原子经由自己元素的晶体点阵而迁移的扩散。 (如纯金属或固溶体的晶粒长大。无浓度变化。) 互扩散:原子通过进入对方元素晶体点阵而导致的扩散。 (有浓度变化)
(2)根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 造成浓度均匀化 上坡扩散:原子由低浓度处向高浓度处进行的扩散。 造成浓度差异
t3 t2 t1 C2
限 长
不同时刻
问
边 界 条 件 : t≥0 时 ,
扩散元素
题
浓度分布曲线
及
x=∞,C=C1,
t1< t2< t3
其 解
C1
x=-∞, C=C2
0
x
令 则
,x 代入
Dt c dc
c D 2 c
t
x 2
x dc
t dt 2 Dt3/2 d
c x
ddcxddc
1 Dt
2c ;;;;;;x2
(3) Fick第二定律的解
非稳态扩散方程是偏微分方程,解的形 式与边界条件、初始条件等有关。 一般需要数值求解; 但是,在边界条件、初始条件较简单时, 可以求出解析解。
误差函数解
设扩散系数D是常数;
初始条件:t=0时,
C 2>C 1的 扩 散 偶
A
C2
C1
B
x>0,C=C1,
扩散方向
一
维
C
无
x<0, C=C2
均匀化退火
C
若要将浓度起伏降低 C max
到原来的1/100,
C m ean
即
扩散的分类
(1)根据有无浓度变化 自扩散:原子经由自己元素的晶体点阵而迁移的扩散。 (如纯金属或固溶体的晶粒长大。无浓度变化。) 互扩散:原子通过进入对方元素晶体点阵而导致的扩散。 (有浓度变化)
(2)根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 造成浓度均匀化 上坡扩散:原子由低浓度处向高浓度处进行的扩散。 造成浓度差异
t3 t2 t1 C2
限 长
不同时刻
问
边 界 条 件 : t≥0 时 ,
扩散元素
题
浓度分布曲线
及
x=∞,C=C1,
t1< t2< t3
其 解
C1
x=-∞, C=C2
0
x
令 则
,x 代入
Dt c dc
c D 2 c
t
x 2
x dc
t dt 2 Dt3/2 d
c x
ddcxddc
1 Dt
2c ;;;;;;x2
(3) Fick第二定律的解
非稳态扩散方程是偏微分方程,解的形 式与边界条件、初始条件等有关。 一般需要数值求解; 但是,在边界条件、初始条件较简单时, 可以求出解析解。
误差函数解
设扩散系数D是常数;
初始条件:t=0时,
C 2>C 1的 扩 散 偶
A
C2
C1
B
x>0,C=C1,
扩散方向
一
维
C
无
x<0, C=C2
均匀化退火
C
若要将浓度起伏降低 C max
到原来的1/100,
C m ean
即
材料的凝固-气相沉积扩散与固态相变

温度
温度越高,扩散系数越大,扩散速率越快。T与D成指数关系,对 扩散影响较大。
例:碳在γ-Fe中扩散时,D0=2×10-5m2/s,Q=140×103J/mol。 D1200=1.61×10-11m2/s; D1300=4.74×10-11m2/s。
晶体缺陷
晶界和表面处原子排列不紧密,不规则,能量较高,扩散激活 能低,即QL>Qgb>Qs,故扩散系数关系为Ds>Dgb>Dl。 晶界扩散与体扩散的相对贡献以 Dgb 衡量。
Z
exp(S
f
S m ) R
通常其值为5×10-6~5×10-4m2·s-1,故对扩散过程影响较小。
扩散激活能Q
扩散机制:间隙扩散 Q H;空位扩散 Q H f H m 。 晶体结构:结构不太紧密的晶体中,原子扩散容易。
原子结合力:结合键强,熔点高,激活能大,扩散不易。
合金成分: 间隙固溶体:溶质浓度高,扩散容易; 置换固溶体:使熔点降低的元素,合金D升高, 反之亦然。
J1
x
(D
C x
)
x
dx
(J1
J
2)
dx
x
(D
C x
)
适用于:非稳态扩散
c D 2 c
t
x2
浓度随时间的变化与浓度分布曲线在该点的二阶导数成正比。
c D 2 c
t
x2
扩散第二定律应用
➢ 钢的渗碳
钢棒在富含一定浓度的CH4气氛中进行渗碳处理。(零件被看作是 无限长的棒,并假定碳在奥氏体中的扩散系数为一常数)
➢ Al-Cu合金的淬火时效
选用Al-WCu4%合金,加热至550℃,Cu原子全部溶入α固溶体 中,冷却进行时效处理 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 复合机制 在扩散过程中,当间隙原子和空位相遇时,二者
同时消失,这便是间隙原子与空位的复合机制,如 图。这种扩散一般是在存在费仑克尔缺陷的晶体中
进行。
4. 易位机制
相邻原子对调位置或是通过循环式的对调位置,从 而实现原子的迁移和扩散。这种扩散机制称为易位 式扩散机制。此种扩散机制要求相邻的两个原子或 更多的原子必须同时获得足够大的能量,以克服其 它原子的作用才能离开平衡位置实现易位,因而这 种过程必然会引起晶格较大的畸变,所以实现的可
一个在空位旁边的原子就有机会跳入空位之中,使 原来的位置变为空位,如图。另外的邻近原子也可 能占据这个新形成的空位,使空位继续运动。这就 是空位机制扩散。大多数元素固体的自扩散以空位 扩散为主。在离子化合物和氧化物中也常有这种扩 散。
2. 间隙机制 是原子在点阵的间隙位置间跃迁而导致的扩散,
如图。在间隙机制中,还有从间隙位置到格点位置 再到间隙位置的迁移过程,其特点是间隙原子取代 近邻格点上的原子,原来格点上的原子移到一个新 的位置。前种间隙机制主要存在于溶质原子较小的 间隙式固溶体中,而后种间隙机制主要存在于自扩 散晶体中。
即J=-D(dc/dx) 其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s
式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散,
一、扩散第一定律
Fick第一定律(Fick’ s first law)描述在稳态扩散(steady state diffusion)情况下 ,即各处浓度不随时间变化,只随距离 变化而变化. (一定时间内,浓度不随时间变化dc/dt=0)
置换式固溶体中,溶质、溶剂原子大 小相近,具有相近的迁移率,在扩散 中,溶质、溶剂原子同时扩散的现象。
(二)根据扩散方向是否与浓度梯度的 方向相同
1、下坡扩散:是沿着浓度降低的方向 进行扩散,使浓度趋于均匀化。
2、上坡扩散:沿着浓度升高的方向进行扩散,
使浓度发生两极分化。如硅钢和碳钢焊接后热处 理后碳浓度的分布。
四、扩散的分类
(一)根据扩散过程中是否发生浓度变 化
1、自扩散:不伴有浓度变化的扩散,它 与浓度梯度无关。(驱动力为表面能的 降低)
2、互(异)扩散:伴有浓度变化的扩 散,它与异类原子的浓度差有关。
二、互扩散和柯肯达尔效应
3、互扩散和柯肯达尔效应 溶质原子扩散的同时引起溶剂原子的反向扩散--互扩散。
另一平衡位置
二、扩散机理
扩散的微观机制
晶体中的原子以它的平衡位置为中心做晶 格热振动,由于热运动的起伏,总有一些原子 在热振动中能获得足够大的能量,从原来的平 衡位置跃迁到另一个平衡位置。扩散现象正是 这种微观原子迁移的结果。
原子在晶体中扩散的微观机制可以分为 四种:
1. 空位机制
在一定温度下,晶体总会存在一定的空位。
固态扩散的分类—补充
1、按浓度变化 自扩散(self-diffusion) 互(异)扩散(mutual diffusion)
2、按是否与浓度梯度(concentration gradient)一致 上坡扩散(uphill diffusion) 下坡扩散(downhill diffusion)
3、按是否出现新相 原子扩散(atomic diffusion) 反应扩散(reaction diffusion)
能性很小,在扩散中不可能起主导作用。
三、固态金属扩散的条件
一、温度要足够高。 二、时间要足够长。 三、扩散原子要固溶。 四、扩散要有驱动力。 扩散的驱动力是化学位梯度
固态金属扩散的条件—补充
1、温度(T)要足够高。只有T足够高,才能使原子具 有足够的激活能,足以克服周围原子的束缚而发生迁移。 如Fe原子在500℃ 以上才能有效扩散,而C原子在100℃ 以上才能在Fe中扩散
第二节 扩散定律
稳定扩散,是指扩散物质的浓度分布不随时间变化的 扩散过程,使用菲克第一定律可解决稳定扩散问题。
不稳定扩散,是指扩散物质浓度分布随时间变化 的一类扩散,这类问题的解决应借助于菲克第 二定律。
1. 稳态扩散下的菲克第一定律(一定时间内,浓度 不随时间变化dc/dt=0)
单位时间内通过垂直于扩散方向的单位截面积的扩 散物质流量(扩散通量)与该面积处的浓度梯度成 正比
扩散的本质是原子的热运动 固态扩散是大量原子无序跃迁的结果。
扩散(diffusion): 物质中原子或分子的迁移现象。
扩散的本质是原子依靠热运动从一个位置迁移到另一 个位置。
扩散是固体中原子迁移的唯一方式。
扩散的基本过程
能量起伏
迁移
热运动的原子
ቤተ መጻሕፍቲ ባይዱ
从一个平衡位置
获得足够的能量
实现了
原子迁移即扩散
(三)根据扩散过程中是否出现新相分
1、原子扩散:在扩散过程中基体晶格始终保持 不变,没有新相产生。
2、反应扩散:通过扩散使固溶体的溶质组元的 浓度超过固溶度极限而形成新相的过程。新相可 以是固溶体或化合物。特点:相界处产生浓度突 变,突变的浓度正好对应于相中的极限浓度。二 元系的扩散层中不可能存在两相区。
将一块黄铜(Cu-wZn 30%)放一铜盒中,两者的界面用钼丝包扎, 经过高温长时退火后,发现钼丝间的距离缩小了。 黄铜中的Zn原子通过界面向外扩散,铜盒内的Cu原子向黄铜内扩散,且 黄铜内流出的Zn原子数多,而铜盒中Cu原子流入黄铜内较少。 向纯铜的一方流入较多的Zn原子,要建立较多的新原子平面使体积胀大, 产生较多的空位反向流入界面内的黄铜,黄铜内的空位多了。
关于扩散与固态相变
第一部分 扩散
概述 扩散定律 影响扩散的因素
第一节 概述
一、扩散现象和本质
定义: 系统内部的物质在浓度梯度、化学位梯度
应力梯度的推动力下,由于质点的热运动而导致 定向迁移,从宏观上表现为物质的定向输送, 此过程叫扩散
扩散是物质中原子(或分子)的迁移现象,是物 质传递的一种方式。
2、时间(t)要足够长。扩散原子在晶格中每一次最多迁 移0.3~0.5nm的距离,要扩散1㎜的距离,必须迁移近 亿次。
3、扩散原子要能固溶。扩散原子在基体金属中必须有 一定的固溶度,能溶入基体组元晶格,形成固溶体,才能进行 固态扩散。
4、扩散要有驱动力(driven force)。实际发生的定 向扩散过程都是在扩散驱动力作用下进行的。