七年级数学线段的计算PPT优秀课件
合集下载
人教版七年级数学上册第四章复习(一)线段课件

3.线段的中点
A
MB
因为点M是线段AB的中点,所以 AM=BM= 1 AB
2
(反过来说也是成立的)
4.两点之间的所有连线中,线段最短;两点之间 线段的长度 ,叫做这两点之间的距离.
22.(10 分)如图,已知线段 AB = 10 cm,CD= 2 cm,点 E 是 AC 的中点,点 F 是 BD 的中点. (1)若 AC = 3 cm,求线段 EF 的长度. (2)当线段 CD 在线段 AB 上从左向右或从右向左运动时,试判断线段 E F 的长度是否发 生变化.如果不变,请求出线段 EF 的长度;如果变化,请 说明理由.
应用举例: 两点确定一条直线可以用来说明生活中的现象 1.植树时,只要定出两个树坑的位置就能确定同一 行的树坑所在的直线.
怎么表示直线?
m
C
E
用不同的方法表示上图中的直线
直线m,直线CE,直线EC
两个大写字母 (可交换顺序) 或一个小写字母
判断下列语句是否正确,并把错误的语句改正过来: ① 一条直线可以表示为“直线A”; ②一条直线可以表示为“直线ab”; ③一条直线既可以表示为“直线AB”又可以表示为 “直线BA”,还可以记为“直线m”.
第一步:画射线AF
a
第二步:在射线AF上截取AB=a
∴线段AB为所求 a
A
B
F 尺规作图:
基本作图(1): 作一线段等于已知线段
试比较线段AB、CD的长短.
a
A
B
(1) 度量法
b
C
D
(2) 叠合法 将一线段“移动”,使其一端点与另一线段的一 端点重合,两线段的另一端点均在同一射线上.
b
A a
BC
人教版数学七年级上册 4.2.2 线段的度量与比较 课件(共34张PPT)

AMN B
1 AM=MN=NB= 3 AB 或3AM=3MN=3NB=AB
若M、N、P是线段AB的四等分点
AMN P B
1
AM=MN=NP=PB= 4 AB或4AM=4MN=4NP=4PB=AB
练一练
(1)如果点P是AB的中
点,则AP=
1
_ 2_
AB
(2)如果点C,D三等分 A C P D B
AB,则AC=CD=
A
M
B
1
AM = MB = —AB 或2AM=2MB=AB
2
线段的中点的意义
我们来学习用几何符号语言来表示线段的中点
1.如图,如果点M把AB分成两条相等的线段,即 AM=BM,那么点M就是线段AB的中点。
这可以用符号语言表示为:
如图,点M在线段AB上,
∵AM=BM(或AM= 1AB,或AB=2AM)
作业布置
1、已知,如图,点C在线段AB上 ,线段AC=6厘米,BC=4厘米, 点M,N分别是AC,BC的中点, 求线段MN的长度。
A
M
CN
B
问题一
如图:从A地到B地有四条道路,除它们外能否再修一条从A地 到B地的最短道路?如果能,请你联系以前所学的知识,在图 上画出最短路线.
怎样走最近
• A
• B
变式2:如图,一只蚂蚁要从正方体的一个 顶点A沿表面爬行到B点,怎么爬行路线最 短?如果爬行到顶点C呢?说明理由。
AA · ·B ·C ·C
· ·
变式3:如图,一只蚂蚁要从长方体一 个顶点A沿表面爬行到顶点B,怎么爬
行路线最短?说明理由. 想一想: 有几种 情况?
A
B
·
变式4:如图,一只蚂蚁要从两圆点柱之体间底,面圆 上一点A沿表面爬行到B点,线怎段么最爬短行路。线
1 AM=MN=NB= 3 AB 或3AM=3MN=3NB=AB
若M、N、P是线段AB的四等分点
AMN P B
1
AM=MN=NP=PB= 4 AB或4AM=4MN=4NP=4PB=AB
练一练
(1)如果点P是AB的中
点,则AP=
1
_ 2_
AB
(2)如果点C,D三等分 A C P D B
AB,则AC=CD=
A
M
B
1
AM = MB = —AB 或2AM=2MB=AB
2
线段的中点的意义
我们来学习用几何符号语言来表示线段的中点
1.如图,如果点M把AB分成两条相等的线段,即 AM=BM,那么点M就是线段AB的中点。
这可以用符号语言表示为:
如图,点M在线段AB上,
∵AM=BM(或AM= 1AB,或AB=2AM)
作业布置
1、已知,如图,点C在线段AB上 ,线段AC=6厘米,BC=4厘米, 点M,N分别是AC,BC的中点, 求线段MN的长度。
A
M
CN
B
问题一
如图:从A地到B地有四条道路,除它们外能否再修一条从A地 到B地的最短道路?如果能,请你联系以前所学的知识,在图 上画出最短路线.
怎样走最近
• A
• B
变式2:如图,一只蚂蚁要从正方体的一个 顶点A沿表面爬行到B点,怎么爬行路线最 短?如果爬行到顶点C呢?说明理由。
AA · ·B ·C ·C
· ·
变式3:如图,一只蚂蚁要从长方体一 个顶点A沿表面爬行到顶点B,怎么爬
行路线最短?说明理由. 想一想: 有几种 情况?
A
B
·
变式4:如图,一只蚂蚁要从两圆点柱之体间底,面圆 上一点A沿表面爬行到B点,线怎段么最爬短行路。线
2024年秋人教版七年级数学上册 第六章 “几何图形初步”《线段的长短比较与计算》精品课件

【变式3】(教材P128T3)如图,点D是线段AB的中点,C是线段AD
的中点,若AB=4 cm,求线段CD的长度.
解:因为D是线段AB的中点,AB=4 cm,
所以AD=DB= AB= ×4=2(cm).
因为C是线段AD的中点,
所以AC=CD= AD=1
cm.
1.(2022·新丰县期末)把弯曲的河道改直,能够缩短航程,理由是
【变式2】如图,点B,C在线段AD上,AB=3,BD=9,CD=4,求
AD,BC的长.
解:AD=AB+BD=3+9=12.
BC=BD-CD=9-4=5.
知识点3 线段的中点及几等分点
【例3】如图,点D是AC的中点,BD=7,BC=3,求AD的长.
解:因为点D是AC的中点,
所以AD=DC=BD-CB=7-3=4.
因为两点之间,
两点的距离.
线段
③
最短.连接两点间的线段的
条路最近,这是
长度
,叫做这
(4)
名称
概念
图形
线 段 把一条线段分成 相
的 中 等 的两条线段的点
点
线段
的三
等分
点
叫做线段的中点
把一条线段分成
等
相
的三条线段的点
叫做线段的三等分点
几何语言
点M为AB的中点,
所以 AM=MB=AB
=2AM=2MB .
或 AB
因为点M,N是AB的三等分点,
所以
或
AM=MN=NB=AB
ቤተ መጻሕፍቲ ባይዱ
AB=3AM=3MN=3NB
.
知识点1 尺规作图作线段的和差
《直线射线线段》优秀ppt课件

知识点三:线段 7.如图,下列说法正确的是( C )
A.射线AB B.延长线段AB C.延长线段BA D.反向延长线段BA 8.如图,点C,D在直线AB上.
(1)图中射线CD与射线_C__B_表示同一条射线; (2)图中共有__1__条直线,__8__条射线,__6__条线段.
9.已知不在同一条直线上的三点A,B,C,请按下列要求画图. (1)作直线AB; (2)作射线AC; (3)作线段BC. 解:图略
13.同一平面内的三条直线两两相交最多有m个交点,最少有n个交点,则m -n的值为( C ) A.0 B.1 C.2 D.3
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
14.如图,完成下列填空: (1)直线a经过点__A__、点__C__,但不经过点_B___、点__D__; (2)点B在直线__b__上,在直线__a__外; (3)点A既在直线_a___上,又在直线__b__上.
D.2个
3.下列关于直线的说法:①直线是直的,向两端无限伸展;②直线 的长是可以量出来的;③直线有粗细之分;④直线只能向一个方向伸 展.其中正确的有( A ) A.1句 B.2句 C.3句 D.4句
知识点二:射线 4.关于射线的说法正确的是( B ) A.射线是直线的一半 B.射线是直线的一部分,只能向一个方向伸展 C.射线没有端点 D.射线比直线短
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
(1)5条直线相交,最多有_1_0__个交点,平面最多被分成_1_6__块; (2)n条直线相交,最多有n_(__n_2-__1_)_个交点,平面最多被分成_n_(__n_2+__1)__+__1_块; (3)一张圆饼切10刀(不许重叠),最多可得到多少块饼? 解:将圆饼切 10 刀,即 n=10,则10×2 11+1=56,所以最多可得到 56 块饼
2024年秋新青岛版七年级上册数学课件 6.3 线段的比较与运算

的三等分点有两个,线段的四等分点有三个,且 这些点都在线段上.
知3-练
例 4 如图6.3-10,已知点C在线段AB上, 线段AC=12, BC=8, 点M,N分别是AC,BC的中点, 求线段 MN的长度.
知3-练
解题秘方:先由点M,N分别是AC,BC 的中点求出CM, CN的长度,再由MN=CM+CN求出线段MN的长度.
知2-讲
知2-讲
(1)线段的和:作射线AE,在射线AE上截取AB=a,再在 线段AB的延长线上截取BC=b,线段AC就是线段a与b 的和,记作AC=a+b ,如图6.3-4 ① .
(2)线段的差:作射线PF,在射线PF上截取PM=a,再在 线段PM上截取MN=b,那么线段PN就是线段a与b的差, 记作PN=a-b,如图6.3-4 ② .
知识点 2 线段的画法和线段的和差
知2-讲
1. 画一条线段等于已知线段的方法 (1)方法一:利用刻度尺先量出已知线段a的长度,再画一 条等于这个长度的线段. (2)方法二:如图6.3-2,用直尺画射 线AC,再用圆规在射线AC上截 取AB=a(这就是“作一条线段等 于已知线段”的尺规作图).
2. 线段和、差的意义和画法 如图6.3-3 ,已知线段a,b(a > b),
线段的比较与运算
度量法 叠合法
线段的画法
线段的比 较与运算
线段的和差 线段的中点
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
知2-练
解:A. AD-CD = AB+BC,正确; B. AC-BC = AD-BD,正确; C. AC-BC = AB ,而AC+BD ≠ AB,故本选项错误; D. AD-AC = BD-BC,正确.故选C. 答案:C
知3-练
例 4 如图6.3-10,已知点C在线段AB上, 线段AC=12, BC=8, 点M,N分别是AC,BC的中点, 求线段 MN的长度.
知3-练
解题秘方:先由点M,N分别是AC,BC 的中点求出CM, CN的长度,再由MN=CM+CN求出线段MN的长度.
知2-讲
知2-讲
(1)线段的和:作射线AE,在射线AE上截取AB=a,再在 线段AB的延长线上截取BC=b,线段AC就是线段a与b 的和,记作AC=a+b ,如图6.3-4 ① .
(2)线段的差:作射线PF,在射线PF上截取PM=a,再在 线段PM上截取MN=b,那么线段PN就是线段a与b的差, 记作PN=a-b,如图6.3-4 ② .
知识点 2 线段的画法和线段的和差
知2-讲
1. 画一条线段等于已知线段的方法 (1)方法一:利用刻度尺先量出已知线段a的长度,再画一 条等于这个长度的线段. (2)方法二:如图6.3-2,用直尺画射 线AC,再用圆规在射线AC上截 取AB=a(这就是“作一条线段等 于已知线段”的尺规作图).
2. 线段和、差的意义和画法 如图6.3-3 ,已知线段a,b(a > b),
线段的比较与运算
度量法 叠合法
线段的画法
线段的比 较与运算
线段的和差 线段的中点
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
知2-练
解:A. AD-CD = AB+BC,正确; B. AC-BC = AD-BD,正确; C. AC-BC = AB ,而AC+BD ≠ AB,故本选项错误; D. AD-AC = BD-BC,正确.故选C. 答案:C
北师大版七年级数学上册 《线段的计算——方程的思想》课件

②
AC=AB-BC=6 cm,
MC=12AC=3 cm,CN=12BC=2 cm,MN=MC+CN=5 cm
6.如图,点C在数轴上,且AC∶BC=1∶5,求点C对应的数.
6.由数轴上两点间的距离得:AB=24
①
由AC∶BC=1∶5得:AC=
1 6
AB=4
cm,
即:C对应的数为-10+4=-6;
②
由AC∶BC=1∶5得:AC=
3.设AB的长为x,由AM∶MB=1∶3得:AM=14x, 由AN∶NB=5∶7得:AN=152x,由MN=2得:152x-14x=2, 解得x=12,即AB的长为12
4.已知线段AB=10 cm,直线AB上有一点C,且BC=4 cm,M是线段AC的中点,求AM的长.
4Байду номын сангаас①
AC=AB+BC=14 cm,
1 4
AB=
6,
即C对应的数为-10-6=-16
有古
一人
个云
在:
路“
上读
。万
”卷
从书
古,
至行
今万
,里
学路
习。
和”
旅今
行人
都说
是:
相“
辅要
相么
You made my day!
成读 的书
两,
件要
事么
。旅
。行
,
身
体
和
灵
魂
总
要
我们,还在路上……
因为M是AC中点,所以AM=12AC=7 cm;
②
AC=AB-BC=6 cm,
因为M是AC的中点,所以AM=12AC=3 cm
5.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若点M是AC的中点,点N是BC的中点,求线段MN的 长.
最新人教版初中七年级数学【第四章 4.2.3线段的等分点】教学课件
ACD
B
第3题
分析: 4
AB=4
课堂小结
1.定义 线段中点的定义可以用图形语言、文字语言、符号语言进行表述.
2.性质 线段的中点把一条线段分成相等的两条线段.
3.应用 结合图形审题,合理使用线段等分点的定义和性质;挖掘图形隐含 的条件,合理使用线段的加减进行求解.
一、问 题
1.如图1,怎样由一条线段得到一条直线? A
AMB
点M把线段AB分成相等的两条线段AM与MB, 点M叫做线段AB的中点.
符 号
因为AM=MB= ,
因为AM=MB,
或 且点M在线段AB上,
语
所以点M是线段AB的中点. 所以点M是线段AB的中点
形成概念
AMB
线段中点的定义
线段中点的性质
符 号
因为AM=MB= AB,
因为点M是线段AB的中点,
语 所以点M是线段AB的中点. 所以AM=MB= AB. 言
七年级—人教版—数学—第四章
4.2.3 线段的等分点
学习目标:
1.理解线段的中点(等分点)的意义; 2.会运用线段的中点(等分点)进行简单的线段
运算,初步感受简单推理,培养识图能力, 发展用文字、符号、图形三种语言互相转化的 能力.
学习重难点:
重点:结合图形理解线段的中点(等分点)的意义. 难点:用符号语言表述线段的中点.
CB=
2.结合图形审题,当线段的长不能直接 求出时,可考虑通过线段的加减求得;
3.尝试从不同的角度思考解题的方法.
巩固概念
练习二: 1.如图,若MP=NP,则点P是线段MN的 中点 ;若点P是线段
MN的中点,则MP = NP,MP= MN, MN= 2 NP.
秋七年级数学北师大版上册课件:4.1 线段、射线、直线.pptx (共23张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 3:16:09 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/192021/9/192021/9/192021/9/199/19/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月19日星期日2021/9/192021/9/192021/9/19 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/192021/9/19September 19, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/192021/9/192021/9/192021/9/19
•
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 3:16:09 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/192021/9/192021/9/192021/9/199/19/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月19日星期日2021/9/192021/9/192021/9/19 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/192021/9/19September 19, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/192021/9/192021/9/192021/9/19
人教版七年级数学上册教学PPT课件直线、射线和线段
2.下列给线段取名正确的是 ( B )
A.线段M
B.线段m
C.线段Mm
D.线段mn
3.下列四个图中的线段(或直线、射线)能相交
的是( A )
D C
D
D
C
C
AB 2
AB 3
A 4 B
A.(1) B.(2) C.(3) D.(4)
B
A 4.在挂窗帘时,只 要在两边钉两颗钉 子扯上线即可,这 是因为 两点确定一条直线。
C A
BD
点在直线上(直线经过点)
点与一条直线的位置关系 点在直线外(直线不经过点)
任务卡Ⅲ
(2)描述点与直线的位置关系: 点C和直线AB: 点C在直线AB外或直线AB不经过点C ; 点D和直线AB: 点D在直线AB外或直线AB不经过点D ; 点A和直线AB: 点A在直线AB上或直线AB经过点A ; 点B和直线AB: 点B在直线AB上或直线AB经过点B .
可度量 不可度量 不可度量
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
二、合作探究
任务卡Ⅰ 1、直线的性质
(1)经过一个已知点画直线,可 以画多少条?
无数条
(2)经过两个已知点画直线,可 以画多少条?
一条
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
人教版七年级数学上册教学PPT课件直 线、射 线和线 段
任务卡Ⅱ
1、直线的表示方法:
(1)阅读课本P125,
看下图(a)的直线表示: 直线l
新北师大版七年级数学上册课件第四章1 线段、射线、直线 (共36张PPT)
选B.
认真观察图形是基础,并且要注意语句叙述的正确 性.射线、直线都是由线段无限延长形成的,故看图形是 否相交时要确定其能否延伸以及延伸的方向.
直线的基本事实
内容
直 线 的 经过两点有且只有一 基 条直线,可以简述为:
图示
本 两点确定一条直线
事 实
内容 (1)直线没有端点,向两个 方向无限延长,不能测量; 其 (2)直线上有无穷多个点;
点的直线是线有两个公共点,那么这两 条直线互相重合.
经过三点或者三个以上的点画直线,总 可以转化为经过两点画直线的问题.
例2
怎样才能把树苗栽在一条直线上?请你想
个办法,并说明理由.
解:只要确定两个树坑的位置,就能确定同一行的
两条射线为同一条射线必须同时具备两个条件:
(1)端点相同;
(2)延伸的方向相同. 本题易忽略射线端点必须写在前面,而导致错误.
确定线段,射线的条数时,因考虑不全而 出错 例4 在图4-1-4中,有几条直线,几条射线,几条线 段?
图4-1-4
解:有1条直线,8条射线,6条线段.
没有弄清楚直线、线段、射线的概念,易
过平面上的三点可以画几条直线?
思路导图: 连接任意两点作 出直线,最后确 定直线的条数.
在平面内确
定三点的位 置关系.
解:因为题目中没有说明三点是否在同一条在线上, 所以,分两种情况讨论:
(1)当三点在同一条直线时,可确定过一条直线 ,如图
4-1-7(1); (2)当三点不在同一条直线上时,这三点可以确定3条 直线,如图4-1-7(2). 所以过平面内的三点可以画1条直线或者3条直线.
比较长短
巧记乐背 直线无边又无际, 更无端点在其间, 射线长又长, 端点站两旁, 线段定长两端点, 双向延长变直线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.如图,点C是线段AB上一点,且3AC=2AB.D是AB的中点,E 是CB的中点,DE=6. (1)求AB的长; (2)求AD:CB.
解:(1)设 AB=x,因为 3AC=2AB,所以 AC=32AB=23x,BC=31x, 因为 E 是 CB 的中点,所以 BE=16x,因为 D 是 AB 中点,所以 DB= x2,所以 DE=x2-x6=6.解得 x=18,即 AB=18 (2)因为 AD=12AB=9, CB=13AB=6,所以 AD:CB=9:6=3:2
15.线段AB=10,C,D为直线AB上的两点,且AC=6,BD=8,求 线段CD的长. 解:分四种情况:(1)当C,D都在线段AB上时,则AD=AB-BD=10 -8=2,所以CD=AC-AD=6-2=4 (2)当点C在线段AB上,点D 在线段AB的延长线上时,BC=AB-AC=10-6=4,所以CD=BC+ BD=4+8=12 (3)当点D在线段AB上,点C在BA的延长线上时,则 AD=AB-BD=10-8=2,所以CD=AC+AD=6+2=8 (4)当点D 在AB的延长线上,点C在BA的延长线上时,则CD=AC+AB+BD=6 +10+8=24
专题训练 线段的计算
一、用方程的思想解决线段的和、差、倍、分问题 1.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是 AC的中点,则AC的长等于( B )
A.3 cm C.11 cm
B.6 cm点P在线段AB上,且PA=4BP,M是AB 的中点,则PM的长为( B )
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
二、分类的思想 13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3, 1,若BC=2,则AC等于( D ) A.3 B.2 C.3或5 D.2或6
14.已知线段AB=14 cm,在直线AB上有一点C,且BC=4 cm, D是线段AC的中点,求线段AD的长.
解:分两种情况:(1)点 C 在线段 AB 上时,因为 D 是线段 AC 的 中点,所以 AD=21AC,又因为 AC=AB-BC=14-4=10(cm), 所以 AD=21AC=12×10=5(cm) (2)点 C 在线段 AB 的延长线上时, 因为 D 是线段 AC 的中点,所以 AD=12AC,又因为 AC=AB+BC =14+4=18(cm),所以 AD=12AC=12×18=9(cm).答:线段 AD 的长为 5 cm 或 9 cm
12.A,B两点在数轴上的位置如图所示,现A,B两点分别以1个 单位/秒、4个单位/秒的速度同时向左运动. (1)几秒钟后,原点O恰好在两点正中间? (2)几秒钟后,恰好有OA:OB=1:2?
解:(1)由图可知 OA=3,OB=12,设 x 秒钟后,原点 O 恰好在两点 正中间,则有 3+x=12-4x,解得 x=59 (2)设 x 秒钟后,恰好有 OA: OB=1:2,则 OB=2OA,分两种情况:①当 B 在点 O 的右边时,有 12-4x=2(3+x),解得 x=1;②当点 B 运动到点 A 的左边时,有 4x -12=2(3+x),解得 x=9
8.如图,点E,C,D,F在线段AB上,E,F分别是AC,BD的中点, CD=2 cm,EF=8 cm,那么AB的长为__1_4_cm.
9.如图,B,C是线段AD上的两点,且AB:BC:CD=3:2:5, 点E,F分别是AB,CD的中点,且EF=24,求线段AB,BC,CD的 长.
解:设 AB=3x,则 BC=2x,CD=5x.因为 E 是 AB 的中点,所以 BE=12AB=32x.因为 F 为 CD 的中点,所以 CF=12CD=52x,因为 BE+BC+CF=EF,所以32x+2x+25x=24,解得 x=4.所以 AB= 3x=12,BC=2x=8,CD=5x=20
三、动态问题 16.直线AB上有一点P,点M,N分别为PA,PB的中点,线段AB=14. (1)如图,若点P在线段AB上运动时,MN的长为__7__;
(2)若点P在直线AB上运动时,试说明线段MN的长度与点P在直线AB 上的位置无关.
17.如图,线段AB=24,动点P从A点出发,以每秒2个单位的速度沿射 线AB运动,M为AP的中点. (1)点P出发多少秒后,PB=2AM? (2)点P在线段AB上运动时,试说明2BM-BP为定值,并求出这个定值.
A.2
B.3
C.4
D.5
3.如图,D,E是线段AB的三等分点,F是BC的中点,若DE=2, AC=12,则EF的长为( )B
A.4 B.5 C.6 D.8
4.如果延长线段 AB 到 C,使 BC=21AB,延长 BA 到 D,使 AD= 2AB,则下列等式错误的是( D ) A.AC:AB=3:2 B.AB:CD=2:7
10.如图,线段AB上有两点P,Q,点P将AB分成两部分,AP:PB =2:3;点Q将AB也分成两部分,AQ:QB=4:1;且PQ=3 cm, 求AP,QB,AB的长.
解:设AP=2x cm,则PB=3x cm,所以AB=AP+PB=5x cm,因为 AQ:QB=4:1,所以AQ=4x cm,QB=x cm,因为AQ-AP=PQ, 所以4x-2x=3,解得x=1.5.所以AP=3 cm,QB=1.5 cm,AB=7.5 cm
C.BC=16BD D.AD=2BC
5.如图,C为线段AB的中点,D为线段AC上的一点,AC=4,BD =5,则CD=__1__,AD=__3__.
6.已知 C 为线段 AB 上的一点,AB=18 cm,AC=13AB,M 为 AB 的中点,则 MC=___3_c_m____. 7.在同一平面内,线段 AB=7 cm,C 为任意一点,则 AC+BC 的最 小值为__7_c_m_______.