七年级数学线段计算练习题资料
【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。
人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

线段的计算热点题型归纳一、直接计算例 如图,AB=40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB=5,求CD 的长。
解:因为AB=10.点C 为AB 的中点,所以CB=AB=×40=20.1212因为点E 为BD 的中点,EB=5,所以BD=2EB=10,所以CD=CB-BD=20-10=10巩固练习:1.如图,P 是线段AB 上一点,点M 、N 分别为AB 、AP 的中点,若AB=16,BP=6,求线段MN 的长2.如图,已知线段AD=6cm,线段AC=BD=4cm,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长。
二、方程思想例.如图,线段AB 上有两点M 、将AB 分成2:3两部分,点N 将AB分成4:1两部分,且线段MN=8cm,则AM 、NB 的长各为多少?解:依题意,设AM=2X,那么BM=3X,AB=5X.由AN:NB=4:1,得AN=AB=4X,BN=AB=x,4515即有4x-2x=8,解得x=4,所以AM=2x=2×4=8(cm),则AM 、BN 的长分别为8cm 、4cm.变式练习:如图,线段AB 上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB 的长。
巩固练习:1.如图,线段AB 被点C 、D 分成了3:4:5三部分,且AC 的中点M 和DB 的中点N 之间的距离是40cm,求AB 的长。
2.如图,已知线段AB 上有两点C 、D,AD=35,BC=44,AC=,求23BD 线段AB 的长。
三、分类讨论的思想例 已知线段AB=14cm,在直线AB 上有一点C,且BC=4cm,,M 是线段AC 的中点,求线段AM 的长。
解:(1)当点C 在线段AB 上时因为M 是线段AC 的中点,所以AM=AC,又因为C=AB-12BC,AB=14cm,BC=4cm,所以AM=(AB-AC)= (14-4)=5cm.1212(2)当点C 在线段AB 的延长线上时,如图因为M 是线段AC 的中点,所以AM=AC,又因为12AC=AB+C,AB=14cm,BC=4cm,所以AM=(AB+C)= (14+4)=9cm.1212变式练习已知线段AB 、BC 在同一直线上,AB=5,BC=2,求AC 的长。
七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
部编数学七年级上册专题11线段的计算专题复习(课堂学案及配套作业)(解析版)含答案

专题11 线段的计算专题复习(解析版)第一部分教学案类型一单中点1.(2020秋•开福区校级月考)已知线段AB=13cm,C为线段AB上一点,BC=5cm,点D 为AC的中点.求DB的长度.思路引领:根据线段图,先求出AC的长,再求出DC的长,就可以求出DB的长.解:∵AB=13cm,BC=5cm,∴AC=AB﹣BC=8cm.∵D是AC中点.∴CD=12AC=4cm,∴DB=DC+CB=9cm.总结提升:本题主要考查线段的长度计算,分别考查了线段的做差、中点、求和等问题.属于简单题.主要锻炼学生书写解题过程,和逻辑推理能力.2.已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,点E是DC的中点,则线段DE的长为 .思路引领:分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.解:∵AB=10cm,点D是线段AB的中点,∴DB=12AB=12×10=5(cm),①C在线段AB上,∵BC=2cm,∴DC=AB﹣BC=5﹣2=3(cm),∵点E是DC的中点,∴DE=12DC=12×3=32(cm),②C在线段AB延长线上,∵BC=2cm,∴DC=DB+BC=5+2=7(cm),∵点E是DC的中点,∴DE=12DC=12×7=72(cm),故答案为:32或72.总结提升:本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.3.(2019秋•潮阳区期末)如图,点C、D在线段AB上,D是线段AB的中点,AC=13 AD,CD=4,求线段AB的长.思路引领:根据AC=13AD,CD=4,求出CD与AD,再根据D是线段AB的中点,即可得出答案.解:∵AC=13AD,CD=4,∴CD=AD﹣AC=AD―13AD=23AD,∴AD=32CD=6,∵D是线段AB的中点,∴AB=2AD=12;总结提升:此题考查了两点间的距离公式,主要利用了线段中点的定义,比较简单,准确识图是解题的关键.类型二双中点4.(2019秋•秦淮区期末)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=4,BC=6,则线段MN= ;(2)若AB=m,求线段MN的长度.思路引领:(1)由已知可求得CM,CN的长,从而不难求得MN的长度;(2)由已知可得AB的长是NM的2倍,已知AB的长则不难求得MN的长度.解:(1)∵N是BC的中点,M是AC的中点,AC=4,BC=6,∴MC=2,CN=3,∴MN=MC+CN=2+3=5;(2)∵M是AC的中点,N是BC的中点,AB=m,∴NM=MC+CN=12AB=12m.故答案为:5.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.5.(2022春•垦利区期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.思路引领:(1)根据“点M是AC的中点”,先求出MC的长度,再利用BC=MB﹣MC,CN=12BC,MN=CM+CN即可求出线段BC,MN的长度.(2)先画图,再根据线段中点的定义得MC=12AC,NC=12BC,然后利用MN=MC﹣NC得到MN=12 acm.解:(1)∵M是AC的中点,∴MC=12AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN=12BC=3.5cm,∴MN=MC+NC=6.5cm;(2)如图1(或图2):∵M是AC的中点,∴CM=12 AC,∵N是BC的中点,∴CN=12 BC,∴MN=CM﹣CN=12AC―12BC=12(AC﹣BC)=12acm.总结提升:本题主要考查了两点间的距离,线段的中点定义,线段的中点把线段分成两条相等的线段.6.(2019秋•长兴县期末)如图,已知点C 为线段AB 上一点,AC =15cm ,CB =35AC ,点D ,E 分别为线段AC ,AB 的中点,求线段AB 与DE 的长.思路引领:根据线段的中点定义即可求解.解:∵AC =15cm ,CB =35AC ,∴BC =9,∴AB =AC +BC =24,∵点D ,E 分别为线段AC ,AB 的中点,∴AD =12AC =152AE =12AB =12∴DE =AE ﹣AD =92.答:线段AB 与DE 的长为24、92.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.7.已知A 、B 、C 三点在同一条直线上,AB =8,BC =4,M 、N 分别为AB 、BC 的中点,求线段MN 的长.思路引领:由题意将C 点位置分两种情况分别求解:①当C 点在AB 之间时,M 与C 点重合;②当C 在线段AB 延长线上时,MN =BM +BN .解:①当C 点在AB 之间时,由已知,M 与C 点重合,∵AB =8,BC =4,M 、N 分别为AB 、BC 的中点,∴MN =BN =2;②当C 在线段AB 延长线上时,MN =BM +BN =4+2=6;综上所述,MN 的长为2或6.总结提升:本题考查线段两点间距离;能够准确确定C 点的位置是解题的关键.类型三 方程思想8.(2019秋•克东县期末)如图,N 为线段AC 中点,点M 、点B 分别为线段AN 、NC 上的点,且满足AM :MB :BC =1:4:3.(1)若AN =6,求AM 的长.(2)若NB=2,求AC的长.思路引领:(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=1143×AC=1 8×12=32;(2)根据线段中点的定义得到AN=12AC,得到AB=14143AC=58AC,列方程即可得到结论.解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=1143×AC=18×12=32;(2)∵N为线段AC中点,∴AN=12 AC,∵AM:MB:BC=1:4:3,∴AB=14143AC=58AC,∴BN=AB﹣AN=58AC―12AC=18AC=2,∴AC=16.总结提升:本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.9.(2019秋•江夏区期末)如图,点B,D在线段AC上,BD=13AB,AB=34CD,线段AB、CD的中点E、F之间的距离是20,求线段AC的长.思路引领:设BD=x,求出AB=3x,CD=4x,求出BE=12AB=1.5x,DF=2x,根据EF=20得出方程1.5x+2x﹣x=5,求出x即可.解:设BD=x,则AB=3x,CD=4x,∵线段AB、CD的中点分别是E、F,∴BE=12AB=1.5x,DF=2x,∵EF=20,∴1.5x+2x﹣x=20,解得:x=8,∴AE+EF+CF=1.5x+20+2x=12+20+16=48.总结提升:本题考查了求两点之间的距离,能根据题意得出方程是解此题的关键.10.(鄂城区期末)已知A,B,C,D四点在同一条直线上,点C是线段AB的中点,点D 在线段AB上.(1)若AB=6,BD=13BC,求线段CD的长度;(2)点E是线段AB上一点,且AE=2BE,当AD:BD=2:3时,线段CD与CE具有怎样的数量关系?请说明理由.思路引领:(1)根据线段中点的性质求出BC,根据题意计算即可;(2)设AD=2x,用x表示出AB,根据题意用x表示出CD、CE,得到CD与CE的数量关系.解:(1)如图1,∵点C是线段AB的中点,AB=6,∴BC=12AB=3,∵BD=1 3,∴BD=1,∴CD=BC﹣BD=2;(2)如图2,设AD=2x,则BD=3x,∴AB=AD+BD=5x,∵点C是线段AB的中点,∴AC=12AB=52x,∴CD=AC﹣AD=12 x,∵AE=2BE,∴AE=23AB=103x,CE=AE﹣AC=56 x,∴CD:CE=12x:56x=3:5.总结提升:本题考查的是两点间的距离的计算,正确理解线段中点的概念和性质是解题的关键.11.(2019秋•樊城区期末)如图,AB=97,AD=40,点E在线段DB上,DC:CE=1:2,CE:EB=3:5,求AC的长度.思路引领:根据AB=97,AD=40,可得BD=AB﹣AD=57,由DC:CE=1:2,CE:EB=3:5,可以设DC=x,可得CE=2x,EB=10x3,进而列出等式解得x的值,再求AC的长即可.解:因为AB=97,AD=40,所以BD=AB﹣AD=57因为DC:CE=1:2,CE:EB=3:5,所以设DC=x,则CE=2x,EB=10x 3,因为BD=DC+CE+EB所以x+2x+10x3=57解得x=9所以AC=AD+DC=40+9=49.答:AC的长度为49.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段之间的关系列出等式.类型四整体思想12.如图,点P在线段AB的延长线上,点C为线段AB的中点.试探究PA+PB与PC之间的数量关系,并说明理由.思路引领:设AC=BC=x,PB=y,求出PA+PB的长,然后与PC的长进行比较即可发现它们之间的数量关系.解:PA+PB与PC之间的数量关系为:PA+PB=2PC.设AC=BC=x,PB=y,由图中所给信息可得:则PC=x+y,PA=2x+y,所以PA+PB=2x+y+y=2(x+y),所以PA+PB=2PC.总结提升:本题考查线段的和差问题,关键是正确表示出线段的长.13.(2021秋•覃塘区期末)如图,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=12,则线段AB的长为 .思路引领:设EC=x,根据点E为线段AC的中点,得AC=2EC=2x,再根据点C,D 为线段AB的三等分点,得AB=3AC,结合ED=12,求出x,进而得出线段AB的长.解:设EC=x,∵点E为线段AC的中点,∴AC=2EC=2x,∵点C,D为线段AB的三等分点,∴AC=CD=BD=2x,∵ED=EC+CD,ED=12,∴x+2x=12,解得x=4,∴AB=3AC=24,故答案为:24.总结提升:本题主要考查了两点间的距离,掌握线段三等分点的定义,线段之间的数量转化是解题关键.14.如图,已知C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.(1)若AB=24,CD=10,求MN的长.(2)若AB=a,CD=b,请用含,b的式子表示出MN的长.思路引领:(1)利用M,N分别是AC,BD的中点,可以得出MC=12AB,DN=12BD,再利用线段的和差关系表示即可求出答案;(2)和方法(1)一样,利用线段的和差关系表示出关系式即可.解:(1)∵M,N分别是AC,BD的中点,∴MC=12AB,DN=12BD,∴MN=MC+CD+DN=12AC+12BD+CD=12(AC+BD)+CD=12(AB―CD)+CD=12AB+12CD=12(AB+CD)=12(24+10)=17,故MN的长是17.答:MN的长是17.(2)由(1)可知,MN =12(AB +CD ),∵AB =a ,CD =b ,∴MN =12(a +b ),答:MN 的长是12(a +b ).总结提升:本题主要考查两点间的距离,熟练掌握中点的定义和线段的和差关系是解题的关键.类型五 分类讨论思想15.(聊城期末)已知A ,B ,C 三点在同一条直线上,若AB =60cm ,BC =40cm ,则AC 的长为 .思路引领:根据题意,分两种情况讨论:(1)C 在AB 内,则AC =AB ﹣BC ;(2)C 在AB 外,则AC =AB +BC .解:(1)C 在AB 内,则AC =AB ﹣BC =20cm ;(2)C 在AB 外,则AC =AB +BC =100cm .∴AC 的长为100cm 或20cm .总结提升:本题渗透了分类讨论的思想,体现了思维的严密性.灵活运用线段的和、差转化线段之间的数量关系.在今后解决类似的问题时,要防止漏解.16.( 永新县期末)已知线段AB =6,在直线AB 上取一点P ,恰好使AP =2PB ,点Q 为PB 的中点,求线段AQ 的长.思路引领:根据中点的定义可得PQ =QB ,根据AP =2PB ,求出PB =13AB ,然后求出PQ 的长度,即可求出AQ 的长度.解:如图1所示,∵AP =2PB ,AB =6,∴PB =13AB =13×6=2,AP =23AB =23×6=4;∵点Q 为PB 的中点,∴PQ =QB =12PB =12×2=1;∴AQ =AP +PQ =4+1=5.如图2所示,∵AP =2PB ,AB =6,∴AB =BP =6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.总结提升:本题考查了两点间的距离:两点的连线段的长叫两点间的距离,解题时注意分类思想的运用.17.如图,已知点C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.若AB=24,CD=10,求MN的长.思路引领:根据点M、N分别为AC、BD的中点,可求出MC+ND的值,进而求出MN 的值.解:∵点M、N分别为AC、BD的中点,∴MA=MC=12AC,NB=ND=12BD,∴MC+ND=12(AC+BD)=12(AB﹣CD)=12(24﹣10)=7(cm),∴MN=MC+ND+CD=7+10=17(cm),即MN的长为17cm.总结提升:本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.18.已知:线段AB=10,C、D为直线AB上的两点,且AC=6,BD=8,求线段CD的长.思路引领:因为C、D的位置不确定,需要分四种情况讨论,分别画出图形,即可求出线段CD的长.解:分四种情况:①图1中,CD=CB+BD=(AB﹣AC)+BD=4+8=12;②图2中,CD=AB﹣AD﹣BC=AB﹣(AB﹣BD)﹣(AB﹣AC)=10﹣2﹣4=4;③图3中,CD=CA+AB+BD=24;④图4中,CD=CA+AD=CA+(AB﹣BD)=6+2=8.综上可得:线段CD的长为12或4或24或8.总结提升:本题考查了两点间的距离,解答本题的关键是分类讨论C、D的位置,容易漏解.类型六动点问题19.如图,数轴上A、B所对应的数分别为﹣5、10,O为原点,点C为数轴上一动点且对应的数为x.点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动(不改变方向).设运动时间为t秒.(1)若点P、Q相向而行且OP=OQ,求t的值.(2)若点P、Q在点C处相遇,求出C点对应的数x.(3)当PQ=5时,求t的值.(4)若点P、Q相向,同时一只宠物鼠每秒4个单位长度从B点出发,与点P相向而行,宠物鼠遇到P后立即返回,又遇到Q点后立即返回,又遇到P后立即返回…直到A、B 相遇为止,求宠物鼠整个过程中的行驶路程.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程﹣10=Q的路程﹣5,列出关于t的方程求解即可;(2)求出P点运动的路程,进一步求解即可;(3)根据PQ=5,分三种情况列出关于t的方程求解即可;(4)根据路程=速度×时间,列式计算即可求解.解:(1)依题意有(2+3)t=10﹣(﹣5),解得t=3;或3t﹣10=2t﹣5,解得t=5.答:t的值是3或5.(2)﹣5+3×2=﹣5+6=1,或10﹣[10﹣(﹣5)]÷(3﹣2)×3=10﹣15÷1×3=﹣35.故C点对应的数是1或﹣35.(3)依题意有①(2+3)t=10﹣(﹣5)﹣5,解得t=2;②(2+3)t=10﹣(﹣5)+5,解得t=4;答:t的值是2或4.(4)4×3=12个单位长度.答:宠物鼠整个过程中的行驶路程是12个单位长度.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.如图,数轴上A、B所对应的数分别为﹣5,10,O为原点,点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动,设运动时间为t 秒.(1)若点P、Q相向而行,且OP=OQ,求t的值;(2)若P、Q相向而行,且PQ=5,求t的值;(3)若P、Q同时向左运动,且PQ=5,求t的值.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程−10=Q的路程−5,列出关于t的方程求解即可;(2)由于运动的时间为t秒,根据P、Q相向而行,且PQ=5,列出方程求得t的值即可;(3)根据P、Q同时向左运动,且PQ=5,列出关于t的方程求解即可.解:(1)依题意有(2+3)t=10−(−5),解得t=3;或3t−10=2t−5,解得t=5.答:t的值是3或5.(2)依题意有|15﹣3t﹣2t|=5,即15﹣3t﹣2t=5或15﹣3t﹣2t=﹣5,解得t=2或4;(3)依题意有|3t﹣15﹣2t|=5,3t﹣15﹣2t=5或3t﹣15﹣2t=﹣5,解得t=20或10,答:t的值是20或10.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(2020秋•西湖区期末)如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=5OB.(1)求a,b的值.(2)若动点P,Q分别从A,B同时出发,向数轴正方向匀速运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=3.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向数轴正方向匀速运动,当点M追上点Q后立即返回,以同样的速度向点P 运动,遇到点P后点M就停止运动.求点M停止时,点M在数轴上所对应的数.思路引领:(1)由AO=5OB可知,将12平均分成6份,AO占5份为10,OB占一份为2,由图可知,A在原点的左边,B在原点的右边,从而得出结论;(2)分两种情况:点P在原点的左侧和右侧时,OP表示的代数式不同,OQ=2+t,分别代入2OP﹣OQ=3列式即可求出t的值;(3)设点M运动的时间为t秒,分两种情况:点M追上点Q;点P与点M相遇时;列出方程即可解决问题.解:(1)∵AB=12,AO=5OB,∴AO=10,OB=2,∴A点所表示的数为﹣10,B点所表示的数为2,∴a=﹣10,b=2.故答案为:﹣10;2;(2)当0<t<5时,如图1,AP =2t ,OP =10﹣2t ,BQ =t ,OQ =2+t ,∵2OP ﹣OQ =3,∴2(10﹣2t )﹣(2+t )=3,解得t =3,当点P 与点Q 重合时,如图2,2t =12+t ,解得t =12,当5<t <12时,如图3,OP =2t ﹣10,OQ =2+t ,则2(2t ﹣10)﹣(2+t )=3,解得t =813,综上所述,当t 为3或813时,2OP ﹣OQ =3;(3)设点M 运动的时间为t 秒,点M 追上点Q ,3(t ―103)=2+t ,解得t =6,∴OP =2(t ﹣5)=2,此时OM =3(t ―103)=8;点P 与点M 相遇时,2t +3t =6,解得t =1.2,此时OM =8﹣3×1.2=4.4.故点M 停止时,点M 在数轴上所对应的数是4.4.总结提升:本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.第二部分 配套作业一.填空题(共3小题)1.(2006•鄂州)已知AB=8cm,若点C在AB的延长线上,且B为AC的一个三等分点,则AC= cm.思路引领:已知AB的长度,根据B为AC的一个三等分点,因B点不确定,要分类讨论.解:本题要分两种情况讨论:①如果,BC占线段AC的三分之一,则AC等于12cm;②如果AB占线段AC的三分之一,AC等于24cm.∴AC=12或24cm.总结提升:要分类讨论,以确定AC的长度.2.(2022•天河区校级模拟)如图,点C是线段AB的中点,点D在CB上,BC=4cm,BD =1.5cm,则线段AD= cm.思路引领:首先根据线段中点定义求出AC、BC长.再根据线段和差关系求出AD的长.解:∵点C是线段AB的中点,∴AC=BC=4(cm),∵BD=1.5cm,∴CD=2.5(cm),∴AD=AC+CD=6.5(cm),故答案为:6.5.总结提升:本题主要考查了两点间的距离,熟练掌握线段中点定义的应用,线段之间的数量转化是解题关键.3.(2021秋•宣化区期末)已知点P是射线AB上一点,当PAPB=2或PAPB=12时,称点P是射线AB的强弱点,若AB=6,则PA= .思路引领:分三种情况讨论,分别画出符合题意的图形,结合P的位置得到PA与PB的具体的数量关系,结合AB=6,从而可得答案.解:①如图,AB=6,当PAPB =12时,∴PA=13AB=13×6=2;②如图,AB=6,当PAPB=2且P在线段AB上时,∴PA =23AB =23×6=4;③如图,AB =6,当PA PB=2且P 在线段AB 的延长线上时,∴PA =2AB =2×6=12;综上:PA =2或4或12.故答案为:2或4或12.总结提升:本题考查的是线段的和差倍分关系,有理数的乘法运算,分类思想的运用,掌握线段的和差倍分是解题的关键.二.解答题(共15小题)4.已知点A ,B ,C 是同一条直线上的任意三点,如果AC =7,BC =3,求线段AC 和BC 的中点间距离.思路引领:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离;②当B 在线段AC 上时,那么AB =AC ﹣CB ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离.解:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,而AC =7,BC =3,∴AB =AC +BC =10,∴线段AC 和BC 的中点之间的距离为12AC +12BC =12(AC +BC )=5;②当B 点在线段AC 上,此时AB =AC ﹣BC ,而AC =7,BC =3,∴AB =AC ﹣BC =4,∴线段AC 和BC 的中点之间的距离为12AC ―12BC =12(AC ﹣BC )=2.故答案为:5或2.总结提升:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.(2020秋•盱眙县期末)如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.思路引领:作出图形后首先求得AC的长,然后求其一半的长,最后求线段BP的长即可.分点C在AB上和点C在AB的延长线上两种情况讨论即可.解:当点C在AB上时,如图:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵P为线段AC的中点,∴PC=12AC=12×6=3(cm),∴BP=PC+BC=3+4=7(cm);当点C在AB的延长线上时,如图:∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵P为线段AC的中点,∴PC=12AC=12×14=7(cm),∴BP=PC﹣BC=7﹣4=3(cm);∴BP的长为7cm或3cm总结提升:本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.(2021秋•钦北区期末)如图,线段AB=8,点C是AB的中点,点D是BC的中点,E 是AD的中点.(1)求线段BD的长;(2)求线段EC的长.思路引领:(1)由点C是AB的中点可得AC=BC=4cm,由点D是BC的中点可得BD=CD=2即可;(2)由(1)可知AE、AD的长,再根据EC=AC﹣AE,即可得出线段EC的长.解:(1)∵点C是AB的中点,AB=8,∴12AB=AC=BC=4,又∵点D是BC的中点,∴12BC=BD=CD=2.(2)由(1)得AC=4,AD=AC+CD=6,∵E是AD的中点,∴12AD=AE=ED=3,∴EC=AC﹣AE=4﹣3=1.总结提升:本题考查了两点间的距离以及线段中点的定义,利用线段的和差是解题关键.7.(2019秋•南关区校级期末)如图,延长线段AB至点D,使点B为线段AD的中点,点C在线段BD上,CD=2BC,若BC=3,求AD的长.思路引领:先由CD=2BC,BC=3,求得CD=6,进而得BD,再由点B为线段AD的中点,得AD.解:∵CD=2BC,BC=3,∴CD=6,∴BD=BC+CD=3+6=9,∵点B为线段AD的中点,∴AD=2BD=18.总结提升:本题主要考查了线段的和差计算,线段的中点定义,关键是弄清各线段之间的关系,正确运用线段和差和线段中点,进行解答.8.(2022秋•江都区月考)在直线m上取点A、B,使AB=10cm,再在m上取一点P,使PA=2cm,M、N分别为PA、PB的中点,求线段MN的长.思路引领:根据题意,正确画出图形,此题要分情况讨论:(1)当点P在线段AB上;(2)当点P在线段BA的延长线上.解:(1)如图,当点P在线段AB上时,PB=AB﹣PA=8cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PM+PN=12AP+12BP=1+4=5(cm);(2)如图,当点P在线段BA的延长线上时,PB=AB+PA=12cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PN﹣PM=12BP―12AP=6﹣1=5(cm).∴线段MN的长是5cm.总结提升:本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.要分情况进行讨论,以防遗漏.9.如图,点C是线段AB的中点,点D是线段AC上一点,CD=2AD.(1)若线段AB=12,求CD的长;(2)若E是线段BC上一点,CE:BE=1:5,且CD比CE的3倍长1,求BE的长.思路引领:(1)根据线段中点的定义可得AC=6,再根据已知可得CD=23AC=4,即可解答;(2)根据题意可设CE=x,则CD=3x+1,再根据已知可得BC=6x,AC=9x32,然后根据线段中点的定义列出关于x的方程,进行计算即可解答.解:(1)∵点C是线段AB的中点,AB=12,∴AC=12AB=6,∵CD=2AD,∴CD=23AC=4,∴CD的长为4;(2)如图:∵CD比CE的3倍长1,∴设CE=x,则CD=3x+1,∵CE:BE=1:5,∴BC=6CE=6x,∵CD=2AD,∴AC=32CD=9x32,∵点C是线段AB的中点,∴AC=BC,∴9x32=6x,∴x=1,∴BE=5CE=5,∴BE的长为5.总结提升:本题考查了两点间的距离,根据题目的已知条件并结合图形进行分析是解题的关键.10.(2022秋•高密市期中)如图所示,B,C两点把线段AD分成4:5:7的三部分,E是线段AD的中点,CD=14厘米.(1)求EC的长.(2)求AB:BE的值.思路引领:(1)由题意知,B,C两点把线段AD分成4:5:7三部分,则令AB,BC,CD分别为4x厘米,5x厘米,7x厘米.根据CD=14厘米,得出x=2.根据E是线段AD的中点,可得ED=12AD=16厘米,代入EC=ED﹣CD可求;(2)分别求出AB,BE的长后计算AB:BE的值.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米,∵CD=7x=14,∴x=2.(1)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=AB+BC+CD=8+10+14=32(厘米).∵E是线段AD的中点,∴ED=12AD=16厘米,∴EC=ED﹣CD=16﹣14=2(厘米);(2)∵BC=10厘米,EC=2厘米,∴BE=BC﹣EC=10﹣2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.总结提升:本题考查了两点的间的距离,通过设适当的参数,由CD=7x=14求出参数x =2后,再求出各线段的值,同时利用线段的中点把线段分成相等的两部分的性质.11.(2020秋•巴南区期末)已知点B、D在线段AC上,(1)如图1,若AC=20,AB=8,点D为线段AC的中点,求线段BD的长度;(2)如图2,若BD=13AB=14CD,AE=BE,EC=13,求线段AC的长度.思路引领:(1)由线段的中点,线段的和差求出线段DB的长度;(2)由线段的中点,线段的和差倍分求出AC的长度.解:(1)∵D为线段AC的中点∴DC=12AC=12×20=10,∵AB=8,∴BD=AD﹣AB=10﹣8=2;(2)设BD=x,∵BD=13AB=14CD,∴AB=3x,CD=4x,∴AC=3x+x+4x=8x,∵AE=BE,∴AE=12AB=1.5x,∴EC=8x﹣1.5x=13,解得x=2,∴AC=8x=16.总结提升:本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.12.(2022秋•南丹县期末)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.思路引领:(1)根据线段的和差,可得答案;(2)根据线段的和差,可得答案;(3)根据线段中点的定义和线段的和差即可得到结论.(1)设BC=xcm,则AC=3xcm.又∵AC=AB+BC=(20+x)cm,∴20+x=3x,解得x=10.即BC=10cm;(2)∵AD=AB=20cm,∴DC=AD+AB+BC=20cm+20cm+10cm=50cm;(3)∵M为AB的中点,∴AM=12AB=10cm,∴MD=AD+AM=20cm+10cm=30cm.总结提升:本题考查了求两点之间的距离的应用,主要考查学生的计算能力.13.(2020秋•喀喇沁旗期末)先画图,再解答:(1)画线段AB,在线段AB的反向延长线上取一点C,使AB=12AC,再取AB得中点D;(注:非尺规作图)(2)在(1)中,若C、D两点间的距离为6cm,求线段AB的长.思路引领:(1)直接根据题意画出图形即可;(2)根据中点的定义和已知条件求出CD=5AD,再根据CD=6cm,得出AD的长,再根据AD=12AB,即可得出答案.解:(1)根据题意画图如下:(2)∵点D是AB的中点,∴AD=12 AB,∵AB=12 AC,∴CD=5AD,∵CD=6cm,∴AD=65 cm,∴AB=125cm.总结提升:此题考查了两点间的距离,根据题意正确画出图形是解题的关键,比较简单.14.(2021秋•江阴市校级月考)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC =6,BC =4,则求线段AB 和线段MN 的长度;(2)若AB =a ,则线段MN = 12a ;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出线段MN 的长度.思路引领:(1)由点M 、N 分别是AC 、BC 的中点.可知MC =3,CN =2,从而可求得MN 的长度;(2)由点M 、N 分别是AC 、BC 的中点,MN =MC +CN =12(AC +BC )=12AB ;(3)由于点C 在直线AB 上,所以要分两种情况进行讨论计算MN 的长度.解:(1)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC +CN =5;(2)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC ,CN =12BC ,∴MN =MC +CN =12(AC +BC )=12AB =12a .故答案为:12a ;(3)当点C 在线段AB 内时,由(1)可知:MN =5,当点C 在线段AB 外时,此时点C 在点B 的右侧,∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC ﹣CN =1,综上所述,MN =5或1.总结提升:本题考查线段计算问题,涉及线段中点的性质,分类讨论的思想,属于基础题型.15.(2020秋•淮北月考)如图,已知B ,C 是线段AD 上的任意两点,M 是AB 的中点,N是CD 的中点.(1)若AB =4,BC =1,CD =6,求线段MN 的长度;(2)若AD=11,BC=1,求线段MN的长度;(3)请你说明:2MN=BC+AD.思路引领:(1)由已知可求得MB,CN的长,从而不难求得MN的长度;(2)由已知条件可知,MN=MB+CN+BC,AD=2(MB+CN)+BC,先求出MB+CN的值,则可求MN的长度;(3)由MN=MB+CN+BC,利用等式性质可得2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.解:(1)∵M是AB的中点,N是CD的中点,∴MN=MB+BC+CN=12AB+BC+12CD,∵AB=4,BC=1,CD=6,∴MN=12×4+1+12×6=6;(2)∵AD=AB+BC+CD=2(MB+CN)+BC,∵AD=11,BC=1,∴MB+CN=5,∴MN=MB+BC+CN=6;(3)∵MN=MB+BC+CN,∴2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.16.(2006秋•中山区期末)如图,线段AB=30cm,点O在AB线段上,M、N两点分别从A、O同时出发,以2cm/s,1cm/s的速度沿AB方向向右运动.(1)如图1,若点M、点N同时到达B点,求点O在线段AB上的位置.(2)如图2,在线段AB上是否存在点O,使M、N运动到任意时刻,(点M始终在线段AO上,点N始终在线段OB上),总有MO=2BN?若存在,求出点O在线段AB上的位置;若不存在,请说明理由.思路引领:(1)设AO的长度为xcm,则OB=(30﹣x)cm,根据时间相等建立方程求出其解即可;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由MO=2BN 建立方程求出其解即可.解:(1)设AO的长度为xcm,则OB=(30﹣x)cm,由图形,得30 2=30x1,解得:x=15,∴点O在AB的中点;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由题意,得y﹣2t=2(30﹣y﹣t),解得:y=20,∴AO=20cm时,MO=2BN.总结提升:本题考查了线段与行程问题的关系的运用,线段之间的数量关系的运用,一元一次方程的运用,解答时找到题意的等量关系是关键.17.(2016秋•和平区期末)已知A,B,C三点在同一条数轴上.(1)若点A,B表示的数分别为﹣2,4,且AC=13AB,则点C表示的数是 ﹣4或0 ;(2)若点A,B表示的数分别为m,n,且m<n.①点C在点A的右边,且AC=13AB,求点C表示的数(用含m,n的式子表示);②已知n﹣m=10,点P,Q分别是这条数轴上的两个动点,点P以每秒2个单位长度的速度从点A向左运动,同时点Q以每秒3个单位长度的速度从点B向左运动,当点Q追上点P后立即返回向点B运动,点P继续向左运动,当点Q到达点B时,点P,Q同时停止运动.在此运动过程中,点P的运动时间为多少秒时,BP=2BQ(P,Q两点的运动速度始终保持不变).思路引领:(1)由已知条件得到AB=6,设点C表示的数是x,列方程即可得到结论;(2)①设点C表示的数是x,根据题意列方程即可得到结论;②Ⅰ、当点Q没追上点P时,设点P的运动时间为t秒时,BP=2BQ,Ⅱ、设点P运动x秒时,点Q追上点P,列方程得到x=10,当点Q追上点P后,设点P再运动t秒时,BP=2BQ,根据题意列方程即可得到结论.解:(1)∵点A,B表示的数分别为﹣2,4,∴AB=6,设点C表示的数是x,∴AC=|﹣2﹣x|,∵AC=13 AB,∴|﹣2﹣x|=13×6,解得:x=﹣4或x=0,∴点C表示的数是﹣4或0;故答案为:﹣4或0;。
(2021年整理)七年级数学线段计算题

七年级数学线段计算题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学线段计算题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学线段计算题的全部内容。
[例1]已知:如图,C是线段AB上一点,M、N分别是线段AC、BC 的中点,AB=11,求MN.[例2]已知:C是线段AB的中点,D是CB上一点,E是DB的中点,若CE=4,,求线段AB的长。
[例3]如图,线段AB 上有C、D两点,点C将AB分成两部分,点D将线段AB分成两部分,若,求AB。
[例4] 已知:如图线段MN,P为MN中点,Q为PN中点,R是MQ中点,则。
[例5] 已知:B是线段AC上一点,且,又D是线段AC延长线上一点,且,若,求AB、BC的长。
[例6] 如图:,F是BC的中点,,求EF。
[例7]如图:E、F是线段AC、AB的中点,且,求线段EF的长。
[例8]已知A、B、C、D为直线上四点且满足,M、N 分别为AB和CD的中点,,求AB、AC、AD。
【模拟试题】(答题时间:30分钟)2。
如图,已知,CD的长为10cm,求AB的长.3。
如图,B、C两点,把AD分成三部分,E是线段AD中点,,求:(1)EC的长;(2)的值。
4。
如图,M是AC中点,N是BC中点,O为AB中点,求证:MC=ON。
5。
一条直线上顺次有A、B、C、D四点,且C为AD中点,,求的值。
6. 已知线段AB、CD的公共部分,线段AB、CD的中点E、F的距离是6cm,求AB、CD的长。
7. 已知线段,点C在直线AB上,点M、N分别是AC、BC 的中点,求MN的长度.8. 同一直线上A、B、C、D四点,已知,且,求AB的长。
七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算
七年级数学上成比例线段练习题

七年级数学上成比例线段练习题
题目1
已知线段AB = 3cm,CD = 4cm,且AB与CD成比例,求线段AB的比例系数。
解题思路1
由题可知,线段AB与CD成比例,设比例系数为k,则有AB = k * CD,代入AB和CD的长度,得到3 = k * 4,解得k = 0.75,所以线段AB的比例系数为0.75。
题目2
在平面直角坐标系中,已知A(-3,4)、B(x,2),若线段AB与x 轴正半轴成比例,求x的值。
解题思路2
由题可知,线段AB与x轴正半轴成比例,所以线段AB的比例系数等于x轴正半轴上的点到点B的距离与点A到点B的距离之比。
设线段AB的比例系数为k,则有AB = kx,AE = kx,DE = 2 - kx,由勾股定理可得:$AB^2$ = $AE^2$ + $DE^2$,即
($kx$)$^2$ = ($kx$)$^2$ + (2 - $kx$)$^2$,简化得到3$kx^2$ - 4kx + 4 = 0,解得x = 2/3或2,由于点B在第二象限,所以x = 2/3。
题目3
已知线段AB = 6cm,DE = 15cm,且线段AB与DE成比例,求线段DE的长度。
解题思路3
由题可知,线段AB与DE成比例,设比例系数为k,则有AB = k * DE,代入AB和DE的长度,得到6 = k * 15,解得k = 0.4,所以线段DE的长度为15 * 0.4 = 6cm。
七年级数学上册 第四章 线段和差计算习题练习 试题

欠风丹州匀乌凤市新城学校线段的和差计算知识要求:1会从图形中找出线段的和差关系2会利用中点的定义3会书写简单的推理过程一例题1. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。
2.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。
3.如图,线段AB 和CD 的公共局部BD=31AB=41CD,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长 二稳固1.如下列图,AB=12厘米,25AM AB =,13BN BM =,求MN 的长. 2.如图,C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。
3.如图,AB=20cm,C 是AB 上一点,且AC=12cm,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.4.如图,AB=8cm,O 为线段AB 上的任意一点, C 为AO 的中点,D 为OB 的中点,你能求出线段CD 的长吗?并说明理由。
5. 线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,假设CD =3cm ,求AB 的长. 6. 线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.7.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。
〔1〕求线段MN 的长;〔2〕假设C 为线段AB 上任一点,满足acm =+BC AC ,其它条件不变,你能猜想MN 的长度吗?并说明理由。
〔3〕假设C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学线段的计算练习题
例1 如图,已知AB= 40,点C 是线段AB 的中点,点D 为线段CB 上的一点,点E 为线段DB 的中点,EB=6,求线段CD 的长。
A
B
C
D
E
例2 如图,AE=21EB ,点F 是线段BC 的中点,BF=5
1
AC=1.5,求线段EF 的长。
A
B
E
F
例3 如图4-2-8,将线段AB 延长至C ,使BC=2AB ,AB 的中点为D ,E 、F 是BC 上的点,且BE :EF=1:2,EF :FC=2:5,AC=60cm ,求DE 、DF 的长.
A
B
C D
E
F
1、如图,把线段AB 延长到点C ,使BC=2AB ,再延长BA 到点D ,使AD=3AB ,则
① DC=_____AB=_____BC ② DB=_____CD=_____BC
2、如图,点M 为线段AC 的中点,点N 为线段BC 的中点
① 若AC=2cm ,BC=3cm ,则MN=_____cm ② 若AB=6cm ,则MN=_____cm ③ 若AM=1cm ,BC=3cm ,则AB=_____cm ④ 若AB=5cm ,MC=1cm ,则NB=_____cm
A
B
C
M
N
3、根据下列语句画图并计算
(1)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段BC
的中点,若AB=30cm ,求线段BM 的长
(2)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段AC 的中点,若AB=30cm ,求线段BM 的长
7、已知点C 是线段AB 的中点,现有三个表达式:
① AC=BC ② AB=2AC=2BC ③ AC=CB=2
1
AB 其中正确的个数是( )
A. 0
B. 1
C.2
D. 3
8、如图,C 、B 在线段AD 上,且AB=CD ,则AC 与BD 的大小关系是( )
A
C
B D
A. AC>BD
B. AC=BD
C. AC<BD
D. 不能确定
9、点A 、B 是平面上两点,AB=10cm ,点P 为平面上一点,若PA+PB=20cm ,则P 点( )
A. 只能在直线AB 外
B. 只能在直线AB 上
C. 不能在直线AB 上
D. 不能在线段AB 上
10、已知线段AB=5.4,AB 的中点C ,AB 的三等分点为D ,则C 、D 两点间距离为( )
A. 1.2
B. 0.9
C.1.4
D. 0.7
11、如图,在已知直线MN 的两侧各有一点A 和B ,在MN 上找出一点C ,使C 点到A 、B 的距离之和最短,画出图形,并说明为什么最短?
A
M N
B
12、知B、C是线段AD上的两点,若AD=18cm,BC=5cm,且M、N分别为AB、CD的中点,(1)求AB+CD的长度;(2)求M、N的距离。