第十六届希望杯全国数学邀请赛
希望杯全国数学邀请赛获奖喜报

“希望杯”全国数学邀请赛获奖喜报
在2016年第二十七届中学“希望杯”全国数学邀请赛中,我校参赛同学成绩斐然,共获3金24银24铜共51枚奖牌,在此特向获奖的同学及指导老师表示祝贺!
获奖名单:
金奖:高二南山2班杜浩民
高一南山1班李锦锋
高一南山2班张昊熹
银奖:高二南山1班代雅萌
高二南山2班黄文皓、刘宇轩
高二4班樊骅
高二8班陈锦河
高一南山1班许佳敏、陈芷妍、何智健
高一南山2班周琦凡、黎世伦、杨春晓、庞颢然、李亮辉、
李培艺、黄克元、杜子睿、冯嘉诚、王佳欣
高一2班范竣乔
高一6班吴俊禄
高一11班岑展朋、黄毅成
高一16班黄子维
高一20班葛洪君
铜奖:高二南山1班胡亦凡、黄家和、邓兆昂、黄杨峻
高二8班何智睿、劳雅静、麦子涛、林文峰、
郑世豪、郑名礼、温敏聪、程宇锋
高二12班陈逸泓
高二14班罗海智
高一南山1班王奇琦
高一南山2班佘梓华、马铭芮、谭泽霖、邱衍衔
高一2班郑添元
高一3班黄思其
高一4班李润泽
高一8班莫戈泉
高一10班陈宇辉
指导老师:梁万峰、许作舟、先开萍、凌明灿、郭卫东、戴应超、沈源钦、
伍毅东、陈胜方、杨庆元、孟冬宏、吴建华、许瑞蓉、罗瑾、
陈珊丽、郑婷婷
广东实验中学数学科
2016年6月。
关于公布第十六届“希望杯”全国数学邀请赛高中福州赛区(初一年)获奖

闽侯淘江中学
福州华侨中学
福州第十一中林意君魏荣福清西山学校陈佳虹饶爱红林小峰陈龙锦闽侯竹歧中学陈成汉陈玉华吴津津庄芳芳闽侯青圃中学林茂宇施文坚陈鸿辉陈樟福州第十一中李钧霆陈勇陈卓诺王淋淋福州励志中学刘昕晨陈兴林福州第十八中
福州外国语学校
连江启明中学
闽侯实验中学
福州二十九中
长乐文武砂中
福清城头中学
连江启明中学
闽侯实验中学
永泰云山中学
福州黎明中学
福州第十五中
福州第十四中
福州民族中学
连江启明中学
闽侯淘江中学
闽侯尚干中学
师大二附中
长乐朝阳中学
福清文光中学吴彦李加良
林烨芳陈望忠
陈君豪魏正余
林升陈长春
兰进斌陈耀
王丁祥郑姗姗
陈晗翁孝团
张子钊江连顺
徐华泉刘春启
林良哲叶李花
陈志腾郑雪丽
林淑婷康萍
谢健江郑卫
林婷张立群
福州励志中学
师大文博附中
福州第七中学
福州二十九中
长乐长乐二中
长乐吴航中学
江兜华侨中学
福清临江中学
永泰城关中学
永泰二十一中
永泰第十五中
福州三十八中
福州铜盘中学陈源韬梁世旺
江友浜吴伟强
唐志洋王丹平
张玲珠温洪想
陈婷郑明辉
王锦波吴亚琼
林可馨陈兴林
许明侯素芳
陈志凌马利榕
谢周锦李旭辉
陈灵陈黎航
林子荐江秀英
翁松健翁英胜
福州教育学院二○○八年六月十二日附件:
获奖名单
七年级
一等奖
学校学生姓名指导教师学校学生姓名指导教师闽清天儒中学
福州十八中学林坚黄祥凤三中金山校区
第十六届“希望杯”全国数学邀请赛

第十六届“希望杯”全国数学邀请赛初一 第2试2005年4月17日 上午8:30至10:30一、选择题(每小题5分,共50分)以下每题的四个选择中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后后面的圆括号内.1. 如果)(b a +4)(22=--b a ,则一定成立的是A.a 是b 的相反数B.a 是-b 的相反数C.a 是b 的倒数D.a 是-b 的倒数2.当127-=x 时,式子)1)(1()22(2)2(2x x x x -+----的值等于 A.7223- B.7223 C.1 D.72493.从不同的方向看同一物体时,可能看到不同的图形.。
其中,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图。
由若干个(大于8个)大小相同的正方体组成一个几何体的主视图和俯视图如图1所示,则这个几何体的左视图不可能是4.如图2所示,在矩形ABCD 中,AE=BG=BF=,23121==AB AD E 、H 、G 在同一条直线上,则阴影部分的面积等于A.8B.12C.16D.205.In a triangle, if measures of three angles are x , 2x and 3x respectively, then the measure of is( )A.0150B.1200C.900D.600(英汉词典 trangle :三角形,Measure :量度,the largest angle :最大角。
)6.If we have 0 ba ,a -b<0 and a+b>0,then the points in real number axis, given by a and b,can be represented as(英汉词典 point :点,real number axis :实数轴,represented :表示)7.方程|x -2|+|x+3|=6的解的个数是10.若大于1的整数n 可以表示成若干个质数的乘积,侧这些质数称为n 的质因数。
英文题

1、 (2006年希望杯初二1试)Suppose that in Fig.1,the length of side of square ABCD is 1,E and F are mid -points of CD and AD respectively ,GE and CF intersect at a point P .Then the length of line segment CP is __________.(英汉词典:figure (缩写Fig.)图;length 长度;square 正方形;mid -point 中点;intersect 相交;line segment 线段)【答案】552、 (Figure 2)In the trapezium (梯形)ABCD ,AD ∥BC ,point E is midpoint(中点)of the AD ,point F is midpoint of the BC ,EF =21(BC -AD),the result ofthe ∠B +∠C is ( ) (A )90° (B )100° (C )110° (D )120°【答案】A3、 (第二十届“希望杯”全国数学邀请赛初二第一试)The figure on the right is composed of square ABCD and triangle BCE ,where ∠BEC is right angle .Suppose the length of CE is a ,and the length of BE is b ,then the distance between point A and line CE equals to .(be composed of 由…组成, right angle 直角, length 长度, distance 距离)【答案】(a+b )4、 (Figure )In a trapezoid ABCD ,AE=DE ,CE ⊥AD ,CE is a bisector to ∠BCD ,then the ratio of the area of a quadrilateral ABCE to that of a triangle CDE isFigure 2ABCDEFABCD E F P图1___ _(词典trapezoid :梯形;bisector :平分线;ratio :比值;quadrilateral :四边形)【答案】7:95、 There is a two —placed number 10ab a b =+ satisfying that ab ba + is a complete square number ,then total number of those like ab is ( )A 、4B 、6C 、8D 、10 (英汉词典:two-placed number 两位数;number 数,个数;to satisfy 满足;complete square 完全平方(数);total 总的,总数) 【解答】C6、 (第十九届“希望杯”全国数学邀请赛初一 第1试)Digits of the produet of 2517×233 is ( )A 、32;B 、34;C 、36;D 、38; (英汉小词典:digits 位数,product 乘积) 【答案】B7、 (第十九届“希望杯”全国数学邀请赛初一第2试)For each pair of realnumbersa ≠b ,define the operation ★ as (a ★b )=ba ba -+,then the walue of((1★2)★3)is ( )A 、32-; B 、51-; C 、0; D 、21;【答案】C8、 (第十六届“希望杯”全国数学邀请赛初一第2试)If we have 0<ba,0<-b a and 0>+b a ,then the points in real number axis ,given by a and b ,can be represented as ( )(英汉词典 point :点,real number axis :实数轴,represented :表示)【答案】A9、 (2007年希望杯初二1试)Let A abcd = be a four-digit number. If400abcd is a square of an integer, then A= 或 .(英汉词典:four-digit number 四位数;square 平方、平方数;integer 整数) 【答案】设2240004000000)2000(400x x x abcd ++=+=,则24000x x abc d +=,所以可知0<x ≤2,当1=x 时,4001=abcd ,当2=x 时,8004=abcd 。
希望杯全国数学邀请赛

希望杯全国数学邀请赛导言数学作为一门智力竞赛的代表科目,一直以来都备受人们的关注。
作为一项重要的形式之一,全国数学邀请赛是中国杯数学竞赛的重要组成部分。
希望杯全国数学邀请赛则是其中的一项具有广泛影响力和参与度的赛事。
本文将向读者介绍希望杯全国数学邀请赛的背景、规则和影响,并探讨对数学教育的积极意义。
一、背景介绍希望杯全国数学邀请赛是由中国希望之星教育基金会主办的一项国家级数学竞赛活动。
自2003年创办以来,该赛事已经成功举办多届,并吸引了来自全国各地的数学爱好者参与。
希望杯全国数学邀请赛不仅是一个展示学生数学才华的舞台,更是中国杯数学竞赛的重要组成部分。
二、竞赛规则希望杯全国数学邀请赛分为初赛和决赛两个阶段。
初赛采用在线方式进行,参赛者需要在规定的时间内完成试题,并提交答案。
而决赛则是通过线下形式举行,选取初赛中表现优异的选手进入决赛环节。
决赛阶段将围绕数学题目进行笔试和口试等环节,以全面检验选手的数学素养和解题能力。
希望杯全国数学邀请赛的题目设置不仅注重考查学科基础知识,还强调思维能力和创新思维的培养。
竞赛试题涵盖了数学的各个领域,包括代数、几何、概率等,旨在激发选手的兴趣,拓宽他们的数学视野。
三、影响与价值希望杯全国数学邀请赛作为一项有着广泛影响力的数学竞赛活动,对参与者起到了积极的推动作用。
首先,该赛事为数学爱好者提供了一个展示自身才华的舞台。
通过参加竞赛,选手可以充分展示自己的数学水平和解题能力,为自己赢得荣誉,并吸引更多人们对数学的关注。
其次,希望杯全国数学邀请赛的竞赛题目设置能够激发选手的学习兴趣和思维能力。
赛题涵盖了数学的各个领域,要求选手拥有扎实的数学知识和灵活的解题思路。
通过参与竞赛,选手能够提高自身的数学素养,并培养创新思维能力。
此外,希望杯全国数学邀请赛还为数学教育提供了宝贵的参考资源。
竞赛中涉及的数学题目和解题思路可以为教师们提供教学案例和教学方法。
通过研究竞赛中的优秀答题方法,教师们能够更好地引导学生,提升数学教学的质量。
关于公布第十六届“希望杯”全国数学邀请赛高中福州赛区(初一年)获奖

福州第三中学
永泰第二中学黄思辰范学基福清虞阳中学胡浩然汤小梅文理峰廖晓庆福州第八中学郑良栋宋长芬何培颖郑莎莎福州第三中学郑可明郑文祺阮悦葛晓杭福州第三中学林荔菲黄炳锋林登樟陈俊斌福州华侨中学林希聪郑笑容福州第八中学
福州第四中不
罗源第一中学
长乐华侨中学
福州格致中学
福州高级中学
闽侯第一中学
福州第八中学
周汀陈贻康
三等奖
8王振黄文艳游超男黄舜晖王曜张可奇许鹏辉陈翰轩黄嘉曌黄申石李秀青林巧燕陈洲平陈成铨林翔郑鑫范思乡石先兵陶文平连信榕
福州第一中学
福州第一中学
福州第三中学
福清第一中学
福州第八中学林健夫高东光福州第一中学曾溦马俊祥罗海韬黄炳锋罗源第一中学欧国标巫智杰徐刘彬黄炳锋长乐第一中学刘景泽陈永河周伟鹰陈贻康福建师大附中陈舒扬连信榕陈含涛陈文清长乐第一中学郑建潮许尚雄福建师大附中
福州黎明中学
长乐朝阳中学
长乐长乐二中江飞龙郑明辉师大文博附中郑垚朱本辉刘剑豪陈碧莺长乐营前中学林锦李增灵陈贤钦叶玉娟罗源三和中学陈文凯薛丹丹罗源第二中学王小平陈朝云福清宏路中学倪坤庄章勤福清宏路中学林凡超庄章勤福清文光中学张宇翔郭小荣福清第二中学
福清融城中学
福清西山学校
永泰城关中学
福州黎明中学
教院二附中
黄伟张金清
林嘉乐林文
欧江皓林礼贤
林芳婧郑娟
方舟郭小荣连江凤城中学
闽侯淘江中学
福州第七中学
长乐朝阳中学
福清高山中学
元洪高级中学
闽侯沪屿中学Leabharlann 永泰第一中学福州教院附中
福州英才中学
福州励志中学
福州第十八中
福清文光中学
闽侯白沙中学
中数学各类竞赛获奖一览表
王圣仕
第九届全国“华罗庚金杯”少年数学邀请赛决赛三等奖
王进敬
2003、12
04届4班
徐磊
2003年上海市数学竞赛二等奖
梁国胜
2003、12
05届5班
俞若诚
2003年上海市数学竞赛三等奖
涂斌祖
吕尤
第五届小学希望杯全国数学邀请赛六年级三等奖
王进敬
10届7班
左淳诚
第五届小学希望杯全国数学邀请赛六年级三等奖
王进敬
2007
10届6班
毛雁
2007年第七届“中环杯”中小学生思维能力训练活动(市级)决赛二等奖
王进敬
2007
10届6班
王诗伟
2007年第七届“中环杯”中小学生思维能力训练活动(市级)决赛三等奖
涂斌祖
徐驰
华中师范大学数统学院第九届全国中学生数学奥林匹克活动二等奖
涂斌祖
俞若诚
华中师范大学数统学院第九届全国中学生数学奥林匹克活动一等奖
涂斌祖
朱志尧
华中师范大学数统学院第九届全国中学生数学奥林匹克活动一等奖
涂斌祖
2004、12
05届5班
俞若诚
2004年上海初三数学竞赛二等奖
涂斌祖
朱志尧
2004年上海初三数学竞赛二等奖
11届6班
陈晓轩
第二十届“五羊杯”初中数学竞赛预备年一等奖
但水平
2009.2
11届6班
戎欣
第二十届“五羊杯”初中数学竞赛预备年三等奖
但水平
2009.2
11届6班
马大任
第二十届“五羊杯”初中数学竞赛预备年三等奖
但水平
2009.2
11届6班
刘唯楚
第8无理函数
无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值.4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值.2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 3.(原创题)函数f(x)=x 2+21x -的值域为 .4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 2.(典型题)函数y=x 21x -+x 2的值域是 .3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________.4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . ⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 .2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .3.(原创题)函数f(x)=5422+-x x -x 的值域为 .4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10, 则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 .⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值 4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:[评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .3.(典型题)函数y=4x+223x x -+的值域为 .4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 .9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值. [解析]:[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:1.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .2.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 . 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.Ⅰ.解法分析1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:函数f(x)的定义域为[5,8],且函数y=5-x 在定义域[5,8]内单调递减,y=x 324-在定义域[5,8]内单调递增⇒f(x)在定义域[5,8]内单调递增⇒f(x)的值域是[f(5),f(8)]=[-3,3].[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数 解:y=2+x -2-x =224-++x x 在[-2,2]上单调递减⇒有反函数,且反函数是减函数.3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值. 解:函数的定义域为[0,13],y=27+x -x =xx ++2727在[0,13]上单调递减⇒函数y=27+x +x -13-x 在[0,13]上单调递减⇒x=13时,y min =210-13,x=0时,y max =33+13. 4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值. 解:函数的定义域为[-27,,13],y=x -14-x -13=xx -+-14131在[-27,13]上单调递增⇒y=27+x +x -14-x -13在[-27,13]上单调递增⇒2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:令y=3-x +x -6,3≤x ≤6,则y 2=3+2)6)(3(x x --(或用二次函数)≤3+[(x-3)+(6-x)]=6,实数k 的最大值是6.[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .解:令x 2-3x=t,y=2+t +t -2.3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .解:f 2(x,y)=48y+676+222)10()33824(x y -+=48y+676+22222210169338338242)1024(⨯-+⨯⨯++y y ,y=13,x=0时,f(x)max=1026.4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .解:y=x+232+-x x ⇒y-x=232+-x x ≥0⇒(y-x)2=x 2-3x+2⇒(2y-3)x=y 2-2⇒y ≠23,x=3222--y y ⇒y ≥3222--y y ⇒1≤y <23,或y ≥2. 3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:(Ⅰ)t 2=2+221x -∈[2,4]⇒t ∈[2,2],f(x)=m(t)=21at 2-a+t; (Ⅱ)①当a=0时,m(t)=t ⇒g(a)=m(2)=2;②当a>0时,函数m(t)过定点(2,2),对称轴t=-a1⇒g(a)=m(2)=a+2;③当a<0时,函数m(t)过定点(2,2),对称轴t=-a1. 综上[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 解:令x -1=t,则t ≥0,且x=1-t 2,则y=1-t 2-t ≤1.2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 解:令x 311-=t,则t ≥0,且x=31(11-t 2),则3y=-2t 2+3t+7≤865⇒y 的最大值是2465. 3.(原创题)函数f(x)=x 2+21x -的值域为 .解:令21x -=t,则t ∈[0,1],且x 2=1-t 2,y=1-t 2+t.4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 解:令x-1=t,则f(x)=tt 1)1(2++.当t>0时,f(x)=2221t t ++>1;当t<0时,f(x)=-2221t t ++=-21)211(22++t ≤-22. 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:f(x)=2x-24x x -=2x-2)2(4--x ,设x-2=2cos α,α∈[0,π],则y=4cos α-2sin α+4=25cos(α+φ)+4,其中cos φ=52,φ为锐角,所以当α=0时,y max =8,当α+φ=π时,y min =4-25.[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 解:设x=cos α,且α∈[0,π].则y=2cos sin +αα,作P(cos α,sin α),A(-2,0),k AP =2cos sin +αα∈[0,33].2.(典型题)函数y=x 21x -+x 2的值域是 .解:设x=sin α(|α|≤2π),则y=sin αcos α+sin 2α=21+22sin(2α-4π),故所求函数值域为[21-22,21+22]. 3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________. 解:f(x)的定义域为[1,5],令x-3=2cos α,α∈[0,π],y=])3(4[)3(22---x x =αα22cos sin 16=2|sin2α|∈[0,2]. 4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . 解:f(x)=22)5(4--x -22)25(21--x ,令x-5=4cos α,x-25=21cos β,α,β∈[0,π],4cos α-21cos β=20,f(x)=4sin α+21sin β,f 2(x)+202=(4sin α+21sin β)2+(4cos α-21cos β)2=16+441-168cos(α+β)⇒f 2(x)=57-168cos(α+β)⇒cos(α+β)=-1时,f(x)max =16857+=15.⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________. 解:f(x)=2)23(41--x +2)25(41--x ,令x-23=21cos α,x-25=21cos β,α,β∈[0,π],cos α-cos β=2⇒f(x)=21(sinα+sin β)⇒4+4f 2(x)=2-2cos(α+β)≤4⇒f(x)=0.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:f(x)的定义域为[3,4],令x=(4-3)sin 2θ,θ∈[0,2π],则f(x)=sin θ+3cos θ=2sin(θ+3π),3π≤θ+3π≤65π⇒21≤sin(θ+3π)≤1⇒f(x)=3-x +x 312-的值域为[1,2].[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 . 2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.解:由-x 2+10x-23≥0⇒5-2≤x ≤5+2,令x=2cos α+5,α∈[0,π],则y=2cos α+7+2sin α=2sin(α+4π)+7,由 α∈[0,π]⇒α+4π∈[4π,45π]⇒sin(α+4π)∈[-22,1]⇒y ∈[7-2,9]. 6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:令x=tan α,α∈(-2π,2π),α≠4π,f(x)=ααcos sin 1-=)4sin(21πα-,α-4π∈(-43π,4π)⇒sin(α-4π)∈[-1,0)∪(0,22)⇒f(x)∈(-∞,-22]∪(1,+∞).[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .解:令x=2tan α,α∈(-2π,2π),则f(x)=22(sin α-cos α)=sin(α-4π)∈[-1,22). 2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .解:令x=tan α,α∈(-2π,2π),则f(x)=αcos 1-atan α=ααcos sin 1a -=a ααcos sin 1-a ,取单位圆上的点P(cos α,sin α),A(0,a 1),-k PA =ααcos sin 1-a ,f(x)递减⇔k PA 递增⇔a 1≤1⇔a ≥1. 3.(原创题)函数f(x)=5422+-x x -x 的值域为 . 解:f(x)=3)1(22+-x -12+x ,令x-1=26tan α,α∈(-2π,2π),则f(x)=αcos 3-26tan α-1=26ααcos sin 2--1,取单位圆上的点P(cos α,sin α),A(0,2),-k PA =ααcos sin 2-,k PA ≤-1⇒-k PA ≥1⇒f(x)≥26-1.4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 解:f(x)=x 21(1-x+2221x x +-)=21(x1-1+2212+-xx)=21[x 1-1+1)11(2+-x ],令1-x 1=tan α∈[21,43],则y=f(x)=21(-tan α+αcos 1)=21ααcos sin 1-,取单位圆上的点P(cos α,sin α),A(0,1),-k PA =ααcos sin 1-,k OA 递增,ααcos sin 1-递减,当tan α=21时,sin α=55,cos α=552⇒f(x)max =415-;当tan α=43时,sin α=53,cos α=54⇒f(x)min =41.7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10,则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 . ⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:取点P(x-23,232+-x x ),则点P 在x 2-y 2=41(y ≥0)上,u=x+y+23,直线x+y=u-23在x 轴上的截矩u-23满足-21≤u-23<0,u-23≥21⇔u ∈[1,23)∪[2,+∞). [评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 . 解:取点P(2-x ,x -5),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤6.2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .解:取点P(5-x ,x -8),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+3y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤23.3.(典型题)函数y=4x+223x x -+的值域为 .解:取点P(x,223x x -+),点P 在半圆圆弧C:(x-1)2+y 2=4(0≤y ≤2)上,u=4x+y,直线4x+y=u 在x 轴上的截矩u 满足:-1≤41u ≤217+1⇒-4≤u ≤4+217. 4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 . 解:f(x)的定义域为[-3,3],设y 1=212x x -+(y 1≥0),y 2=2215x x --(y 2≥0),则(x-21)2+y 12=(27)2,(x+1)2+y 22=42, 作此两圆,如图: B y 设直线x=t 与半圆C 1,C 2分别相交于A,B 两点,则有向线段BA 的数量, A即为x=t 时的函数值. C 2 C 1 显然,当x=-3时,y 取得最小值-23;当x=3时,y 取得最大值6. -5 -3 x=t O 3 4 x9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.[解析]:设a =(31,21,1),b =()13(3x -,x 2,27+x ),则|a |=666,|b |=66,ab =27+x +x -13+x ,其中0≤x ≤13,由(ab )2≤|a |2|b |2得y ≤66666=11,当且仅当a ∥b ,即x=9时,等号成立;又因()13(3x -)2+(x 2)2+(27+x )2=66⇒当且仅当b =(39,0,33),即x=0时,cos<a ,b >≥113313+⇒27+x +x -13+x =ab =|a ||b |cos<a ,b >≥13+33.[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:Y.P.M 数学竞赛讲座 71.(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .3.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 解:设a =(2,1,1),b =(1+x ,32-x ,x 315-),则|a |=6,|b |=13,ab =21+x +32-x +x 315-=|a ||b | cos<a ,b >=613cos<a ,b >.当b =(25,0,221),即x=23时,cos<a ,b >取得最大值⇒21+x +32-x +x 315-最大值=225+221<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]:由(x 1+x 2+…+x n )2=x 12+x 22+…+x n 2+2x 1x 2+2x 1x 3+…+2x n-1x n ≤x 12+x 22+…+x n 2+(n-1)(x 12+x 22+…+x n 2)=n(x 12+x 22+…+x n 2)⇒x 1+x 2+…+x n ≤n22221n x x x +⋅⋅⋅++,当且仅当x 1=x 2=…=x n 时取等号.21+x +32-x +x 315-=1+x +1+x +32-x +x 315-≤214+x ≤219,而等号不能成立.柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立; (21+x +32-x +x 315-)2=(m1m mx 44++n1n nx 32-+k1kx k 315-)2≤(m 1+n 1+k1)[(4mx+4m)+(2nx-3n)+ (15k-3kx)],令4m+2n=3k,y 5≤(m 1+n 1+k1)(4m-3n+15k),取[评注]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .解:f(x)=1)8)(8(2+-+x x x x =1)8)(8(22+-+x x x x ≤)1(2)8()8(22+-++x x x x =4,当且仅当x=2时等号成立,值域为[0,4].2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 解:设t=x1(t>0),y=21t t ++t+12≤2)1(2t t ++t+12=t t +12+t +12=2-t +12+t +12=2-2(t+11-22)2+22≤ 2+22=223,当且仅当t+11=22,即t=1时等号成立. 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 .解:函数f(x)的定义域为[-1,1],且为奇函数,设21x -=t,0≤t ≤1,f 2(x)=x 2(2+221x -)=2(1-t 2)(1+t)=(1+t)(1+t)(2-2t)≤[3)22()1()1(t t t -++++]3=2764,当且仅当1+t=2-2t,t=31时等号成立⇒f max (x)=938⇒值域为[-938,938]. 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.解:函数的定义域为[0,13],y=27+x +x -13+x =27+x +)13(213x x -+≥27+13=33+13,当且仅当x=0时等号成立;又由柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立;y 2= (27+x +x -13+x )2=(m1m mx 27++n1nx n -13+k1kx )2≤(m 1+n 1+k1)[(mx+27m)+(13n-nx)+kx],令m+k=n,且m1:m mx 27+=n 1:nx n -13=k 1:kx ⇒m 2x+27m 2=13n 2-n 2x=k 2x ⇒x=22222713m n m n +-=22213k n n +∈[0,13],取m=1⇒k=2,n=3,则y 5≤(m 1+n 1+k1)(27m+13n)=112.x=9时等号成立;Ⅱ.类型分析1.函数f(x)=ax+b+m dcx +2.函数f(x)=3.函数f(x)=nbax ++mdcx +4.函数f(x)=ax+b+m t qx px ++25.函数f(x)=6.函数f(x)=7.函数f(x)=8.函数f(x)=9.函数f(x)= 10.函数f(x)=3.函数f(x)=n b ax ++m d cx ++k q px +4.f(x)=ax+b+m t qx px ++25.f(x)=ax 2+bx+c+m t qx px ++26.f(x)=n c bx ax ++2+m t qx px ++27.f(x)=qpx cbx ax +++4.(原创题)函数f(x)=5422+-x x -12+x 的值域为 . 解:设y 1=5422+-x x ,y 2=12+x ⇒。
棋盘上的数学问题
希望杯
希望杯
学数
数学
竞 赛 题 竞 赛 题
(a)
(b)
图4
(要求 :每次移动网格中的字块时 ,只能
将字块滑动到相邻的空的网格中. )
(第 16 届“希望杯”全国数学邀请赛)
解 :将“希 、望 、杯 、数 、学 、竞 、赛 、题”八个
字分别记为 1 、2 、3 、4 、5 、6 、7 、8 ,则图 4 (a) 变为
③
a4 + a5 + a6 = 15.
④
①+ ②+ ③+ ④得
3 a5 + ( a1 + a2 + …+ a9 ) = 60 ,
即 3 a5 + 45 = 60 ,得 a5 = 5.
余下的 8 个数中有 4 个偶数 、4 个奇数.
若假设 a1 为奇数 ,则由式 ①知 a9 必为奇数.
分类讨论如下 :
14
综上 ,如图 8 所填的 3 ×3 棋盘 , 使 M 有最大 值 ,且最大值为 58.
注 :填数方法不唯一.
4 棋盘的覆盖问题
817 492 536
图8
这 里 的 覆 盖 问 题 是 指 最 简 单 的 一 类 覆
盖 ,即棋盘的完全覆盖 (在棋盘的覆盖中 ,各
个覆盖形的总格数等于棋盘的总格数) . 完全
在 3 ×3 网格的同一行中 ,按照要求调整 时 ,对应数字只能左右移动 ,移动前后的棋盘 所对应的八位数完全相同 ,相应的逆序的总 数不发生变化.
如果按照要求 ,将数字移动到相邻的行 中 ,相当于在对应的八位数中 ,将某个数字向 左 (或向右) 跳过了两个数字. 注意到在一个 多位数中 ,两个相邻数字交换位置 ,逆序总数 的变化量只能是 1 或 - 1 ,于是 ,将数字移动 到相邻的行时 ,对应的八位数的逆序总数的 变化量只能是 2 或 0 或 - 2.
希望杯数学大赛邀请函
希望杯数学大赛邀请函
尊敬的各位教师、家长和同学们:
大家好!我很荣幸在此向您发出希望杯数学大赛的诚挚邀请!希望杯数学大赛是我们学校一年一度的盛事,旨在激励学生对数学的兴趣和热爱,培养他们的数学思维能力和解决问题的能力。
希望通过这次比赛,可以为学生们提供展示自己才能的舞台,激发他们的学习激情,培养他们的竞争意识,为参赛选手们提供一个展示自己才华的机会。
比赛时间和地点
•时间:2021年10月15日(周五)上午8:00 - 12:00
•地点:学校体育馆
参赛对象
•小学组:一年级至三年级
•中学组:初中及高中
比赛内容
•小学组:加减法、乘除法等基础数学运算
•中学组:代数、几何等较复杂的数学题目
报名方式和截止时间
请各班级老师在10月1日前将参赛选手名单交至校办公室,报名费每位参赛选手为50元。
奖项设置
•特等奖:校长奖状一枚,奖金500元
•一等奖:奖状一枚,奖金300元
•二等奖:奖状一枚,奖金200元
•三等奖:奖状一枚,奖金100元
•优秀奖:奖状一枚
注意事项
1.请参赛选手提前十分钟到达比赛现场,准备好必备器材。
2.比赛中请确保不使用任何智能设备或通讯工具,违者取消比赛资格。
3.请各班级老师配合组织工作,确保比赛顺利进行。
让我们共同期待这场数学盛宴,让数学的魅力在希望杯数学大赛中得以展现!感谢您的支持和关注!
敬请各位莅临!
校长办公室敬启
日期:2021年9月20日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六届“希望杯”全国数学邀请赛
初一 第2试
2005年4月17日 上午8:30至10:30
一、选择题(每小题5分,共50分)以下每题的四个选择中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后后
面的圆括号内.
1. 如果)(b a +4)(2
2=--b a ,则一定成立的是
A.a 是b 的相反数
B.a 是-b 的相反数
C.a 是b 的倒数
D.a 是-b 的倒数
2.当12
7-
=x 时,式子)1)(1()22(2)2(2x x x x -+----的值等于 A.7223- B.7223 C.1 D.7249
3.从不同的方向看同一物体时,可能看到不同的图形.。
其中,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图。
由若干个(大于8个)大小相同的正方体组成一个几何体的主视图和俯视图如图1所示,则这个几何体的左视图不可能是
4.如图2所示,在矩形ABCD 中,AE=BG=BF=
,23121==AB AD E 、H 、G 在同一条直线上,则阴影部分的面积等于
A.8
B.12
C.16
D.20
5.In a triangle, if measures of three angles are x , 2x and 3x respectively, then the measure of is ( ) A.0150 B.1200 C.900 D.600
(英汉词典 trangle :三角形,Measure :量度,the largest angle :最大角。
)
6.If we have 0<b
a ,a -b<0 and a+b>0,then the points in real number axis, given by a and b,can be represented as
(英汉词典 point :点,real number axis :实数轴,represented :表示)
7.方程|x -2|+|x+3|=6的解的个数是
10.若大于1的整数n可以表示成若干个质数的乘积,侧这些质数称为n的质因数。
侧下面四个命题中正确的是
A.n的相反数等于n的所有质因数的相反数之积:
B.n的倒数等于n的所有质因数的倒数之积:
C.n的倒数的相反数等于n的所有质因数的倒数的相反数之积:
D.n的相反数的倒数等于n的所有质因数的相反数的倒数之积。
二填空题(每小题5分,前空3分,后空2分,弓50分)
12.张师傅加工一批同样类型的零件,他用A车床加工了这批零件的二分之一后,再用B车床加工余下的零件,共用了4小时,已知用B车床比用A车床每小时可以加工8个零件,后俩个小时多加工了12个零件,张师傅加工零件的总数的个。
16.小明的妈妈买了葡萄,苹果,雪梨和芒果果铺各若干袋,用了340元。
葡萄,苹果,雪梨和芒果果铺每袋售价分别为14元,22元,28元和42元。
小明的妈妈至少买了袋果铺,其中苹果果铺是袋
17.地球陆地总面积相当于海洋面积的41℅,,北半球的陆地面积相当于其海洋面积的65℅,那么,南半球的陆地面积相当于其海洋面积的℅(精确到个位数)
18.在公路上汽车A,B,C分别以每小时80,70,50公里的速度匀速行使,A从甲站开往乙站,同时,B,C从乙站开往甲站,A 在与B相遇后俩小时又与C相遇,侧甲,乙
相距公里。
19.我们用记号“1”表示俩个正整数间的整数关系,如表示3整数12,那么满足的正数组(X,Y)共有组。
20.用大小相同的正六边形瓷砖按如图所示的方式来铺设广场,中间的正六边行瓷砖记为A,定义为第一组,在它的周围用同样大小的正六边形瓷砖,定义为第二组,在第二组的外围用同样大小的正六边形瓷砖来铺满,定义为第三组,…,按这种方式铺下去,用现有的2005块瓷砖最多能完整地铺满组,此时还剩下余块瓷砖。