第七章 内燃机的燃料供给与调节(1)
内燃机学教学大纲

《内燃机学》课程教学大纲课程编号:适用专业:汽车服务工程专业学时数:32学分数:2.0执笔者:编写日期:2013年9月一、课程的性质和目的《汽车发动机原理》是四年制本科生汽车服务工程专业的一门学科基础课。
本课程的任务是使学生获得发动机的基本工作循环和性能、发动机的换气过程与增压技术、发动机混合气形成和燃烧、发动机性能的评价、发动机特性及发动机性能试验方法等知识。
通过本课程的学习,使学生掌握发动机性能提高和合理使用的基本原理,以及发动机实验的基本技能,为本专业学生日后的工作打下坚实的基础。
二、课程的教学内容和学时分配第一章概论(2学时)教学内容:发动机的分类,对汽车动力装置的要求,新型汽车能源。
教学要求:了解发动机的分类和现代发动机的发展,了解对汽车动力装置的要求及汽车常用的能源。
重点:发动机的分类。
难点:无。
第二章发动机的工作循环和性能(4学时)教学内容:发动机理论循环,发动机的实际循环,指示指标,有效指标,指标测量,机械损失及测量,热平衡。
教学要求:了解发动机的理论循环和实际循环过程,掌握发动机理论循环与实际循环的差异,熟记指示指标、有效指标和机械损失,掌握发动机两类指标和机械损失的测量方法,了解发动机的热平衡。
重点:发动机的实际工作循环,指示指标、有效指标及机械损失。
难点:实际循环的各项损失,熟记各项性能指标。
第三章发动机的换气过程与增压(4学时)教学内容:增压技术基础,发动机的换气过程,充气效率,影响因素,换气损失,提高充气效率和降低换气损失的措施,废气涡轮增压器的组成及工作原理,车用发动机的增压系统。
教学要求:了解增压的基本概念和增压方式,掌握发动机的换气过程、充气效率及其影响因素,掌握提高发动机充气效率和降低换气损失的措施,了解废气涡轮增压器的组成及工作原理,了解车用发动机的增压系统。
重点:发动机的换气过程,充气效率及其影响因素,提高充气效率和降低换气损失的措施。
难点:提高充气效率和降低换气损失的措施。
柴油机燃油系统综述

柴油机燃料供给与调节综述摘要:柴油机因其独有的优越性,在我国国民经济各领域应用广泛。
燃油喷射系统作为柴油机的核心部件,直接影响和决定了柴油机技术水平和换代升级,被誉为柴油机的心脏。
本文重点介绍柴油机燃料供给与调节系统的主要结构及工作原理,还介绍了柴油机燃料供给与调节系统的电子控制。
关键词:柴油机、燃料供给与调节、电控1 柴油机燃料供给与调节系统概述柴油机相比于蒸汽机热效率高,经济性好,机动性好,因而对传播有很大的适应性,自问世以后就很快被作为船舶的推进动力。
起初,柴油机用空气喷射燃料,燃料的雾化质量无法的得到保证,并且附属装置庞大笨重,只能用于固定作业。
上世纪初,开始用于船舶。
1905年,制成第一台二冲程船用柴油机。
1922年,德国工程师Robert Bosh 发明了许波泵,使柴油机的用途扩大到汽车、拖拉机等移动机械,许波泵的成功对提高和改善柴油机的性能及各项指标起到了决定性的作用。
20世纪中期增压及增压中冷技术的研发成功,使柴油机性能获得新的飞跃。
20世纪70年代开始,电子技术引入柴油机控制系统,又是柴油机的一次重大技术革命,把柴油机的性能指标提高到一个新的水平。
柴油机是在气缸内部形成混合气,即在活塞接近上止点时,燃料供给与调节系统将燃料以高压、在极短的时间内喷入气缸,实现燃油与空气的混合和燃烧。
因此,对燃料供给与调节系统,无论是在制造与调整精度,还是在与整机的参数匹配方面均有十分严格的要求,为了保证压燃式内燃机在动力性、经济性、排放与噪声等方面达到优良的性能,对其燃料供给与调节系统提出的要求有:(1)能产生足够高的喷油压力,确保雾化、混合气形成和燃烧;(2)对每一个内燃机运转工况,精确控制每循环喷入气缸的燃油量,且喷油量能随工况变化而自动变化。
在工况不变时,各循环之间的喷油且应当一致。
对多缸内燃机而言,各缸的喷油量应当相等;(3)在内燃机所运转的工况范围内,尽可能保持最佳的喷油时刻、喷油持续时间与喷油规律,以保证良好的燃烧并取得优良的综合性能;(4)保证柴油机安全可靠的工作,防止飞车现象发生。
第七章 内燃机的燃料供给与调节汇总

每循环几何供油量与平均几何供油量既是设计喷油 泵的主要依据,也是评价喷油泵工作能力的重要指标。 16
喷油规律含意: 指喷油过程中,单位凸轮转角(或单位时间)内喷 入气缸内的燃油量,即喷油率dVb/dΦc ( dVb/dt )随凸 轮转角Φc (或单位时间t)的变化关系。
dVb f (c ) d c
按喷油泵结构以及高压油管连接长度不同,可分 为合成泵系统、分配泵系统及单体泵系统。
10
泵-喷嘴系统的特点: 1)将喷油泵与喷嘴合为一体; 2)由于省去了高压油管,大大增加了整个系统高 压部分的液力刚度,因此成为目前柴油机燃料供给 系统中喷油压力水平最高的结构形式;
11
共轨式系统(common rail system)的特点: 原理:
气体燃料的供给方式: 气体燃料有天然气、液化石油气、生物制气与各 种煤气等,由于它们在常温常压下以气体状态存在, 依靠气体分子的扩散作用可以很好地与空气混合。 其燃料供给系统大多是以混合器外部混合气形成方 式来工作的,如目前应用较广的压缩天然气与液化石 油气方案均是如此。
混合气的着火可以采用类似汽油机的电火花点火方 案,也可以采用类似柴油机的柴油引燃方案。
18
第四节 柴油机喷油泵评价指标和结构参数的确定 一,喷油泵的系列化与工作能力的评价指标: (一)最大循环供油量Vmax:
定义: 规定取喷油泵最大柱塞直径并设出油阀减压容积为零, 采用标准切线凸轮,以凸轮升程至最大几何速度前的 0.3mm处作供油终点,将依据7o凸轮转角供油持续期内 的柱塞有效行程计算所得的循环供应量,定义为喷油泵的 最大供应量。 最大供油量越大,表示喷油泵的尺寸越大,工作能力 越强,能满足更大功率柴油机的配套要求。
20
(三)最大许用泵端压力:
内燃机原理与构造

(4)、多缸发动机结构特点
4缸发动机曲轴 单缸发动机功率小,转速不均匀,工作振动大,现 代汽车发动机都是多缸发动机,用得最多的是4缸、 6缸、8缸发动机。 多缸发动机是由多个结构相同的气缸组成,它们共 用一个机体,一根曲轴。曲轴的曲柄布置应该使各 缸做功行程均匀分布在720°曲轴转角内。如,4 缸发动机曲轴(图1-5)相邻工作缸的曲柄夹角为 180°,曲轴每转180°便有一个气缸做功;又如, 6缸发动机,曲轴每转120°便有一个气缸在做功。 气缸数越多,发动机工作越平稳,但结构也越复杂。
性 能 着火方式 燃油消耗 热效率 工作平稳性 汽油机 点燃 高 30%左右 柔和 柴油机 压燃 低 40%左右 粗暴
发动机转速
升功率 起动性 制造维修成本
高(4000~6000r/min)
大 易 低
低(2500~3000r/min)
小放
小
短 CO、HC大,NOx 、黑烟 少
关于排放标准
1961年美国开始规定轿车的排气标准, 1970年美国加利福尼亚州决定对载重卡车 用柴油机排放的一氧化碳、碳氢化合物和氮 氧化合物从1973年和1975年起分两个阶段 进行限制,接着在欧洲、日本和我国都相应 制定了汽车排放法规,并且这些法规将越来 越严格。此外,由于从1973年10月开始, 石油输出国大幅度地提高石油价格,从而引 起各国对发动机燃油经济性的重视。
1.1.2
内燃机的分类
1、按工作循环所需行程数,按照完成一个工作循环所需的行程数来分,有四 冲程内燃机和二冲程内燃机,汽车和工程机械用内燃机多为四冲程内燃机。 2、按着火方式分,有压缩着火(压燃式)和强制点火(点燃式)两类。 3、按使用燃料种类分,有汽油机、柴油机、煤气机、气体燃料及多种燃料发 动机等。 4、按进气状态分,有非增压式内燃机和增压式内燃机之分。 5、按冷却方式分,有水冷式和风冷式两种。汽车和工程机械用内燃机多数是 水冷式的。 6、按气缸数及布置分,有单缸内燃机、多缸内燃机、立式内燃机、卧式内燃 机、直列式内燃机、V形内燃机(图1-1a)、对置气缸式内燃机(图1-1b)、斜 置式内燃机。 7、按用途分类,有汽车用、工程机械用、拖拉机用、船用、坦克用、摩托车 用、发电用、农用等内燃机。 8、其他,除以上方式分类外,还可按转速来分,有高速、中速和低速等几种。
柴油机基础知识(共65张PPT)精选全文

ε=Va/Vc=(Vc+Vh)/Vc =1+Vh/Vc
ε表示工质在缸内被压缩的程度,对运转可靠性和经济性有较大影响。 一般为ε=12~22,机车用ε=12~14.5。 (七)工作循环
(八)四冲程和二冲程
第15页,共65页。
二、柴油机的工作原理
(一)四冲程柴油机的工作原理 1、进气过程:
活塞从上止点移动到下止点,进气门开,排气门关。
进气过程开始时,活塞位于上止点位置,气缸内残留着上次循 环未排净的残余废气,它的压力稍高于大气压力,约为110~ 120KPa。
当曲轴旋转时,通过连杆带动活塞向下移动,同时进气门 打开,随着活塞下移,气缸内部容积增大,压力随之减少,当 压力低于大气压力时,外部新鲜空气开始被吸入气缸,直到活 塞移动到下止点位置,气缸内充满了新鲜空气。
第2页,共65页。
第一章 内燃机车柴油机的基本知识
第一节 柴油机的主要特点 第二节 柴油机的基本知识 第三节 柴油机的分类、型号及转向
第3页,共65页。
第4页,共65页。
返回
‹#3›
第5页,共65页。
船用中速柴油机
低速柴油机
第6页,共65页。
第一节 柴油机的主要特点
一、概述
发动机:将一种能量转变为机械能的机器。 根据能量转变方式不同,分为:风力机、水力机、热机等。
实现热能转化为机械能,工作行程。 Pz=10000~14000KPa T=1700~2100K
第19页,共65页。
4、排气过程
过程开始气缸内充满了燃料燃烧并膨胀作功的废气, 排气门打开后,废气随着活塞上移,被排出气缸之外。
排气门早开晚关。 排气提前角θe,排气滞后角θe′。
汽油机燃料供给系PPT课件

二、可燃混合气成分对发动机性能的影响
1、混合气的分类:
1)标准混合气=1 理论上能完全燃烧的混合气,其中所含的空气中的 氧正好使混合气中全部燃料燃烧完毕。
2)稀混合气>1 实际上可以完全燃烧的混合气,其中所含的空气中 的氧能保证混合气中燃料全部燃烧完毕。
3)浓混合气<1 混合气中燃料不能保证完全燃烧,但由于燃料分子 密集,火焰传播快,发动机的平均有效压力和功率 大。
进气饱和点
机械加浓系 统起作用的 时刻只受节 气门开度控 制与转速无 关。
.
2)真空式加浓系统
活塞式加浓系统 空气缸
活塞
通道
弹簧
主量孔
推杆
加浓量孔
加浓阀
.
真空加浓系统工作原理
真空加浓系统起作 用的时刻取决于节 气门后面真空度。
转速一定
节气门开 度一定
工作规律
节气门开度加大
节气门开度减小 转速加大 转速减小
2、现代调整法(SANTANA,AUDI)
单螺钉调整法:只动节气门开度调整螺钉至规定转速 850±50r/min。
.
§ 化油器的型式
一、化油器的分类: 1、按喉管气流方向:
名称
性能
进气管拐弯多、阻力大、进气流速
上吸式 低、汽油雾化不好,化油器的保养
和调整也不方便。趋于淘汰
进气弯道少,进气阻力较上吸式小,
下吸式 有利于提高气缸充气效率和发动机
功率。
平吸式
进气阻力小,可使发动机总体高度 尺寸降低。
.
2、按重叠的喉管数目
喉管大,增加充 气量,但汽油雾 化不良
多重喉管既可以 满足充气量的需 要,又可以使汽 油充分雾化
喉管小,汽油雾 化良好,但充气 量减少
内燃机学知识点
1.发动机的机械损失(1)活塞和活塞环的摩擦损失(2)轴承和气门机构的摩擦损失(3)驱动附属机构的功率消耗(4)风阻损失(5)驱动扫气泵和增压泵的损失2.机械损失的测定方法1示功图法2倒拖法3灭缸法4油耗线法3.排放指标1排放物的浓度mg/m32质量排放量g/km3比排放量g/kW.h4排放率g/kg4.提高动力性和经济性的途径1采用增压技术2合理组织燃烧过程,提高循环指示效率3改善换气过程,提高气缸的充量系数4提高发动机转速5提高机械效率6采用二冲程提高升功率5.提高理论循环热效率所受的限制结构强度的限制、机械效率的限制、燃烧的限制、排放的限制6.十六烷值定义正十六烷的十六烷值为100,α-甲基萘的十六烷值为0,当柴油的自然性同正十六烷和α-甲基萘混合燃料的自燃性相同时,正十六烷的体积百分比即为十六烷值;芳烃含量越高,十六烷值越低,排放性能越差;十六烷值一般在40-55;7.辛烷值异辛烷的辛烷值定为100,正庚烷为0,所含异辛烷的体积百分比;马达法辛烷值MON、研究法辛烷值RON8.内燃机实际循环工质的影响燃烧过程中,工质的成分和质量不断发生变化、传热损失理论循环中,工质和燃烧室壁面是绝热的,没有热交换、换气损失膨胀损失、活塞推出功损失、吸气损失、燃烧损失燃烧速度的有限性、不完全燃烧损失9.换气过程四冲程:从排气门开启到进气门关闭的整个过程;排气、气门叠开、进气二冲程:从排气口打开到关闭的整个过程;10.排气提前角:排气门在膨胀行程下止点前的某一曲轴转角位置提前开启,这一角度就叫排气提前角;一般在30-80°CA;排气迟闭角:排气门在上止点之后关闭的角度;一般在10-70°CA;排气过程分为:自由排气排气门打开到排气下止点和强制排气下止点到上止点、超临界排气和亚临界排气;11.进气提前角:进气门在吸气上止点前提前开启的角度,10-40°CA;进气迟闭角:进气门在吸气下止点后滞后某一曲轴转角后关闭,20-60°CA;提前与迟闭的目的:为了增加进排气过程的时面值或角面值,利用气体流动的惯性,增加进气充量或废气排出量;12.气门叠开在进排气上止点前后,由于进气门的提取开启和排气门的延迟关闭,使内燃机从进气门开启到排气门关闭这段曲轴转角内出现进排气门同时开启的状态,这一现象称为气门叠开;气门叠开角:排气迟闭角+进气提前角;增压柴油机:80-140°CA;13.换气损失:理论循环和实际循环的换气功之差;换气损失包括:排气损失、进气损失排气损失——从排气门提前开启到下止点,由于提前排气造成缸内压力下降,使膨胀功减小膨胀损失、活塞由下止点向上止点的强制排气行程消耗的功推出损失;措施:合理确定排气提前角,增加排气门数目,增加流通截面积;泵气功和泵气损失——泵气功是指缸内气体对活塞在强制排气行程和吸气行程所做的功;泵气损失是指与理论循环相比,发动机活塞在泵气过程所造成的功的损失;14.提高充量系数的技术措施充量系数是指内燃机每循环吸入气缸的新鲜充量与以进气管内状态充满气缸工作容积的理论充量之比;(1)降低进气系统的流动阻力加大进气门直径、增加进气门数目、合理设计进气道和气门结构(2)采用可变配气系统可变凸轮、可变气门正时(3)合理利用进气谐振(4)降低排气系统的流动阻力(5)减少对进气充量的加热15.内燃机增压方式机械增压、排气涡轮增压、气波增压、复合增压16.二冲程的换气过程:自由排气、扫气、过后排气或过后充气阶段;换气特点:换气时间短、进排气过程同时进行、扫气消耗功大、HC排放高;扫气方案:横流扫气、回流扫气、直流扫气17.换气过程质量评价参数扫气系数:换气过程结束后,留在气缸内的新鲜充量的质量m1与缸内气体总质量m0的比值;Φs=m1/m0扫气系数越大,扫气效果越好,一般在0.8-0.95之间;过量扫气系数:每循环流过扫气口的充量质量与扫气状态下气缸工作容积的充量之比;Φk=m k/m s较小好,一般在1.2-1.5之间;18.内燃机缸内的气体流动:涡流、挤流、滚流和斜轴涡流、湍流、热力混合;19.进气涡流定义:在进气过程中形成的绕气缸轴线有组织的气流运动;产生方法:采用带导气屏的进气门;切向气道、螺旋气道20.点燃式发动机点火过程:击穿阶段、电弧阶段、辉光放电阶段;燃烧阶段:(1)着火阶段是指电火花跳火到形成火焰中心阶段,着火阶段又称滞燃期;(2)急燃期是指火焰由火焰中心传播至整个燃烧室的阶段,又称火焰传播阶段;一般用压力升高率代表发动机工作粗暴程度、振动和噪声水平;(3)后燃期从急燃期终点至燃料基本上完全燃烧点为止21.滞燃期τi长短的影响因素(1)燃料本身分子结构和物化性能(2)开始点火时气缸内压力和温度,压缩比高,滞燃期短(3)过量空气系数,0.8-0.9时滞燃期最短(4)残余废气量增加,滞燃期增加(5)气缸内混合气运动强,滞燃期稍有增加(6)火花能量大,滞燃期缩短22.示功图中的燃烧特征参数缸内最高燃烧压力p max及对应的曲轴转角Φpmax;最高燃烧温度Tmax及其对应的曲轴转角;最大压力升高率;最高放热峰值等;23.不正常燃烧——爆燃定义:在某种条件下压缩比过高,汽油机燃烧会变的不正常,压力曲线出现高频大幅波动,火焰传播速度和火焰前锋形状发生急剧的变化,称为爆燃;1汽油机敲缸爆燃发生的原因:终燃混合气的快速自燃;终燃混合气在正常火焰未到达前,已经出现火焰中心,并传播直至将终燃混合气燃烧完毕;轻微爆燃时,发动机功率略有增加;强烈爆燃时,发动机功率下降,工作变得不稳定,转速下降,发动机有较大振动;爆燃时,冷却系统过热冷却水和润滑油温度上升,气缸体和气缸盖温度上升; 24.强烈爆燃的不利影响1输出功率、热效率低;2发动机过热;3零件应力增加;4促进积碳的形成,破坏活塞环、气门和火花塞的正常工作;5加速机件磨损在汽油中添加辛烷值高的含氧化合物增加其抗爆性;25.防止爆燃的方法使用抗爆性高的燃料;降低终燃混合气温度;提高火焰传播速度或缩短火焰传播距离;缩短终燃混合气暴露在高温中的时间;具体有:1推迟点火;2恰当布置火花塞及合理设计燃烧室形状,使火焰传播距离最小;3终燃混合气的冷却,如减小终燃混合气部分的余隙高度;4增加流动,使火焰传播速度增加,改善终燃混合气的散热;5燃烧室扫气26.柴油机燃料供给与调节系统的要求(1)足够的喷射压力,保证燃料良好的雾化、混合气形成于燃烧;(2)每一工况精确、及时地控制每循环喷油量,多缸柴油机,各缸喷油量要均匀;(3)整个工况范围内,尽可能保持最佳喷油时刻、喷油持续期与理想的喷油规律;(4)保证柴油机安全可靠地工作;27.柴油机燃料供给与调节系统按结构分类1泵-管-嘴系统;2泵-喷嘴系统;3共轨式系统28.几何供油规律几何供油规律是指从几何关系上求出的单位凸轮转角或单位时间内喷油泵供入高压油路中的燃油量;即供油率dVp/dΦc随凸轮转角Φc的变化关系;是完全由柱塞直径和凸轮型线的运动特性决定的;29.喷油规律喷油规律是指在喷油过程中,单位凸轮转角或单位时间内从喷油器喷入气缸的燃油量;即供油率dVb/dΦc随凸轮转角Φc的变化关系;确定方法:试验法、试验计算法或计算法;30.喷油和供油提前角31.压缩天然气:CNG液化石油气:LPG废气再循环:EGR均质可燃混合气压缩自燃方式:HCCI32.空燃比33.内燃机污染物CO:是碳氢燃料在燃烧过程中生成的主要中间产物;主要影响因素:可燃混合气的过量空气系数;点燃机怠速运转时,CO排放量大,全负荷时混合气较浓0.8-0.9,CO排放剧增;压燃机的CO排放比点燃机低很多,<1.5时,CO排放增加很快;HC:点燃式——排气、曲轴箱、蒸发排放物三种来源;产生原理:壁面淬熄、狭隙效应、润滑油膜的吸附和解析、燃烧室中沉积物的影响;柴油机HC完成由燃烧过程产生,没有曲轴箱、蒸发排放物;产生原理:燃油喷注与周围空气形成的混合气很不均匀,喷注外围,来不及着火就可能形成过稀混合气,燃料不完全燃烧形成HC排放;怠速和小负荷时HC排放大于大负荷;NOx:NOx中主要是NO,主要来源是参与燃烧的空气中的氮;主要影响因素:最高燃烧温度、含氧量;微粒:点燃式——含铅汽油燃烧产生的铅化物,硫酸盐和不完全燃烧产生的碳烟;柴油机碳烟主要由于燃料在高温下严重缺氧形成的;柴油机的微粒排放比汽油机大几十倍; 34.内燃机的负荷特性内燃机的负荷特性是指当内燃机的转速不变时,性能指标燃油消耗率be随负荷而变化的关系;测试时,变动测功机负荷大小,并相应调节内燃机的油量调节机构位置,以保持规定转速不变,稳定后得到一个试验点,不同负荷试验点相连得到负荷特性曲线;35.内燃机的速度特性内燃机的速度特性,是指内燃机在供油量调节机构柴油机是油量调节杆-油门,汽油机是节气门保持不变的情况下,性能指标转矩Ttq、功率Pe、燃油消耗率be和排气温度随转速变化的关系;速度特性测试时,将油门或节气门位置固定不动,调节测功器的负荷,内燃机的转速相应地发生变化,稳定后得到一个试验点,不同转速的试验点相连得到速度特性曲线;外特性:当柴油机的油门固定在标定位置,或汽油机的节气门全开时得到的速度特性,称为外特性;外特性反应了内燃机所能达到的最高动力性能,确定最大功率或标定功率、最大转矩及相应的转速;部分速度特性:油量低于标定位置时的速度特性,称为部分速度特性;36.万有特性万有特性一般是在以转速n为横坐标、平均有效压力p me或转矩T tq为纵坐标的坐标平面内绘出一些重要特性参数的等值曲线族燃油消耗率;。
内燃机学周龙保(第三版)期末考试知识点整理教学文案
内燃机学周龙保(第三版)期末考试知识点整理教学文案内燃机学周龙保(第三版)期末考试知识点整理《内燃机学》第二章《内燃机的工作指标》名词解释:1.示功图:指发动机气缸内工质压力P随气缸容积V(或曲轴转角φ)而变化的曲线。
2.指示性能指标:指工质对活塞做工为基础的指标。
1)动力性能指标:a)指示功Wi:指气缸内完成一具工作循环所得到的实用功(J)。
b)指示功率Pi:内燃机单位时刻内所做的指示功称为指示功率。
c)平均指示压力Pmi:单位气缸容积所做的指示功(Pa)。
2)经济性能指标:a)指示热效率:发动机实际循环指示功与所消耗的燃料热量的比值。
b)指示燃油消耗率bi:单位指示功的耗油量。
【g/(kW*h)】3.有效性能指标:指曲轴输出的相关指标。
1)动力性能指标:a)有效功率Pe:发动机轴上所净输出的功率。
b)平均有效压力Pme:单位气缸工作容积所做的有效功。
c)升功率Pl:在标定工况下,发动机每升气缸工作容积所发出的有效功率。
d)有效扭矩:曲轴的输出转矩。
2)经济性能指标:a)有效热效率:b)有效燃油消耗率:4.充量系数φc(容积效率):每缸每循环吸入缸内的新奇空气量与按进气系统前状态计算而得的理论充气量之比。
(75%-90%)5.过量空气系数φa:燃烧单位质量燃料的实际空气量与理论空气量之比。
6.压缩比:气体容积与燃烧室容积之比。
7.燃油消耗率:发动机每输出1kW*h的有效功所消耗的燃油量。
8.平均机械损失压力Pmm:发动机单位气缸工作容积一具循环所损失的功。
9.机械效率:有效功率与指示功率之比。
简答题:1.啥是发动机的机械损失?它由哪些损失组成?答:发动机曲轴输出的功或功率小于其气缸内气体膨胀所做的功或功率,两者之差称为发动机的机械损失。
1)活塞与活塞环的摩擦损失。
2)轴承与气门机构的摩擦损失。
3)驱动附属机构的功率损失。
4)风阻损失。
5)驱动扫气泵及增压器的损失。
2.机械损失测定的四种办法?动图法、倒拖法、灭缸法、油耗线法。
第七章内燃机燃料供给与调节总结
dVb
A d c 6n p
2 p 10 3 f
Δp=p-pZ为喷孔前油压及气缸 内的气体压力差
因此,测定某一工况的喷油规律.如
图那样,用压力传感器实测喷油器端
的油管压力pN,然后计算出盛油腔处 的压力p(或直接测出喷油器盛油腔处
的压力p)和气缸压力pz(示功图),用
位移传感器测出针阀升程的变化,在 专用试验台上实测不同升程下的油嘴
dVb dc
f (c )
dVb dt
f (t)
27
第三节 柴油机燃料喷射过程
二、几何供油规律和喷油规律
3.供油规律和喷油规律不同
(1)规律不同
供油规律是几何关系,可根据几 何参数关系求出;喷油规律受压 力波影响是曲线关系。 喷油规律受供油规律的影响
(2)供油始点不同
喷油始点迟于供油始点
喷油且应当一致。对多缸内燃机而言,各缸的喷油量应当相等。
3.在内燃机所运转的工况范围内,尽可能保持最佳的喷油时刻、喷油 持续时间与喷油规律,以保证良好的燃烧并取得优良的综合性能。
4.保证柴油机安全可靠的工作(防止飞车现象发生)
5
第二节 柴油机燃料供给系统的结构、分类和发展
二、燃料供给系统的组成 油箱
19
第三节 柴油机燃料喷射过程
一、泵-管-嘴喷射过程
二、几何供油规律和喷油规律
三、喷油规律的确定 四、喷油过程计算方法简介(自学)
20
第三节 柴油机燃料喷射过程
一、泵-管-嘴喷射过程 高压油管
出油阀 进油 柱塞
喷油器
凸轮
针阀
21
第三节 柴油机燃料喷射过程
一、泵-管-嘴喷射过程
内燃机学课后习题答案
2-4 平均有效压力和升功率在作为评定发动机的动力性能方面有何区别?答平均有效压力是一个假想不变的压力,其作用在活塞顶上使活塞移动一个行程所做的功等于每循环所做的有效功,升功率是在标定的工况下,发动机每升气缸工作容积所发出的有效功率。
区别:前者只反应输出转矩的大小,后者是从发动机有效功率的角度对其气缸容积的利用率作出的总评价,它与 Pme 和 n 的乘积成正比。
(Pl=Pme·n/30T)2-6提升途径:1)采用增压技术,2)合理组织燃烧过程,提高循环指示效率,3)改善换气过程,提高气缸的充量系数,4)提高发动机的转速,5)提高内燃机的机械效率,6)采用二冲程提高升功率,7)增加排量2-9 内燃机的机械损失由哪些部分组成?详细分析内燃机机械损失的测定方法,其优缺点与适用场合。
答(1)机械损失组成:1 活塞与活塞环的摩擦损失。
2 轴承与气门机构的摩擦损失。
3.驱动附属机构的功率消耗。
4 风阻损失。
5 驱动扫气泵与增压器的损失。
(2)机械损失的测定:1 示功图法:由示功图测出指示功率 Pi,从测功器和转速计读数中测出有效功率 Pe,从而求得 Pm,pm 与ηm 的值。
优:在发动机真实工作情况下进行,理论上完全符合机械损失定义。
缺:示功图上活塞上止点位置不易正确确定,多缸发动机中各缸存在一定的不均匀性。
应用:上止点位置能精确标定的场合。
2 倒拖法:发动机以给定工况稳定运行到冷却水,机油温度达正常值时,切断对发动机供油,将电力测功器转换为电动机,以给定转速倒拖发动机,并且维持冷却水和机油温度不变。
这样测得的倒拖功率即为发动机在该工况下的机械损失功率。
缺点:1 倒拖工况与实际运行情况相比有差别 2 求出的摩擦功率中含有不该有的 Pp 这一项。
3 在膨胀,压缩行程中,p-v 图上膨胀线与压缩线不重合。
4 上述因素导致测量值偏高。
应用:汽油机机械损失的测定。
3 灭缸法:在内燃机给定工况下测出有效功率 Pe,然后逐个停止向某一缸供油或点火,并用减少制动力矩的办法恢复其转速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
喷油规律:
dVb
dc
f (c )
dVb f (t) dt
每循环喷油量:
q
je js
(
dVb
dc
)dc
平均喷油率:
Qm
q
j
三、喷油泵系列化与工作能力评价指标
对一定转速和功率范围内的柴油机,采用外型尺寸、结构 型式、柱塞轴距相同的喷油泵,用增减柱塞数、更换不同柱塞 直径、改变凸轮型线、升程以及出油阀结构尺寸等措施,来满 足不同柴油机的配套要求,形成了相应的喷油泵系列。(表7-1)
图7-13 不同燃烧系统所要求的最大泵端 压力与最大平均供油速率之间的关系 a)直接喷射、增压、无或低涡流 b)直接喷射、增压、低涡流 c)直接喷射、有涡流 d)分隔式燃烧室
四、喷油泵主要参数的确定
1、柱塞直径dp和有效供油行程he
柱塞直径增大,供油速率增大,在相同供油量情况下,有 效行程减小,供油和喷油持续期缩短,从而缩短柴油机的燃烧 期,改善性能。但加大柱塞直径后初期喷油量大,柴油机运转 粗暴,此外凸轮承受接触应力也增大。
dVp
dc
f (c )
Ap wp
每循环几何供油量: qp
Ap
w d pe
ps p
c
dVp dt
f
(t)
Ap wp
平均几何供油率:
Qpm
(
dVp dc
)
m
qp p
Ap p
w d pe
ps p
c
图7-10 柱塞升程及供油率曲线
2、喷油规律:指在喷油过程中,单位凸轮转角(或单 位时间)内从喷油器喷入气缸的燃油量(即喷油率) 随 凸 轮 转 角 ( 或 时 间 ) 的 变 化 关 系 。 ( mm3/ºCaA ) (mm3/s)
Qmax Ap wp
3、喷油泵最高工作转速nPmax
油泵转速提高,压力增加,但往复惯性力加大,另 调速器也有转速限制。
4、最大许用泵端压力pPmax:指喷油泵所能承受的最大泵端压 力的峰值,提高泵端压力就是相应提高了喷油压力。但泵端压 力又受到了喷油泵凸轮、挺柱体、泵体等零件强度和刚度方面 的限制。
第三节 柴油机喷油泵结构参数的确定
一、泵-管-嘴系统的喷 油过程(图7-9)
二、几何供油规律和喷油规律
1、几何供油规律:指从几何关系上求出的单位凸轮 转角(或单位时间)内喷油泵供入高压油路中的燃油 量(即供油率)随凸轮转角(或时间)的变化关系。 (mm3/ºCaA)(mm3/s)
几何供油规律:
第二节 柴油机燃料供给与调节系统的结构与分类
对燃油系统要求: 保证柴油机动力性能指标的同时,满足对其在节能(经济性)
与环保(排放、噪声)指标方面要求。(具体要求P.155) 品质(高压喷雾与喷油规律) 数量(油量精确控制) 时间(喷油始点与延续期) 可靠性(防止柴油机超速发生)
特点:喷油泵与喷 嘴合为一体,系统 液力刚度增加,喷 油压力水平最高。 但属脉动式供油系 统,供油压力受工 况变化影响。低压 低负荷压力降低。
新型轿车泵喷嘴的 嘴端压力可达到 2050bar。
泵-喷嘴系统(UIS) 1-柴油机的顶置凸轮轴 2-泵-喷嘴柱塞 3-柴油机(气缸盖) 4-回油 5-喷嘴 6-电磁阀 7-进油
第七章 内燃机的燃料供给与调节
第一节 概述
功能:及时、优质地为内燃机气缸内提供适量的燃 料,以保证缸内混合气形成与燃烧的有效进行。对 动力性、经济性、排放与噪声、可靠性等有重要影 响,是内燃机的“心:内部混合气形成,压燃。质调节 点燃式内燃机:外部混合气形成,点燃。量调节
1、最大循环供油量Vmax :取喷油泵最大柱塞直径并设出油阀 减压容积为零,采用标准切线凸轮,以凸轮升程至最大几何速 度前的0.3mm处作为供油终点,将依据7º凸轮转角供油持续期 内的柱塞有效行程计算所得的循环供油量,定义为喷油泵的最 大循环供油量 Vmax ,它是喷油泵几何供油量的极限值。
2、最大平均供油速率Qmax:平均供油速率是指喷油泵在 供油持续期内每度凸轮转角的平均供油量,最高平均供 油速率是最大循环供油量的条件下,取7º凸轮轴转角供油 持续期作为计算依据求得的平均供油速率 。
合成泵(各缸供油单元在同个壳体中,直列泵,Inline Pump)
分配泵(少量柱塞对多缸的供油,轴向柱塞分配泵 VE泵,径向柱塞分配泵VR泵、VP泵)
单体泵系统(UPS,Unit Pump System,每缸配一 喷油泵)
二、泵-喷嘴系统(Unit Injection System,UIS)
典型柴油机燃料供给与调节系统:
喷油泵的有效供油行程
从柱塞顶面关闭进油孔到螺旋槽斜边打开回油孔之间的 柱塞行程。齿杆5转动齿圈以及柱塞,改变螺旋槽边缘开启 回油孔的相对位置,即改变了有效供油行程,从而改变了供 油量
一、泵-管-嘴系统
特点:喷油泵为往复式柱塞泵,由凸轮轴来驱动。喷油 泵与喷油器之间有高压油管连接。喷油泵的每次供油伴 随着一次喷油过程,是脉动式燃料供给系统。
三、共轨式系统(Common Rail System,CRS)
特点:与脉动式燃料供给系统不同,它不直接产生燃料喷 射,而是将高压燃料送入蓄压管道(亦称共轨)。燃料喷 射由ECU控制喷嘴上的电磁阀,接通高压共轨与喷嘴来实 现的。产生较高的喷油压力(150~200MPa),压力可保 持恒定而不受柴油机工况的影响,是恒压式燃料供给系统, 是按电磁阀开启的时间控制方式,易对喷油时刻与喷油持 续期进行调节,且能够实现较为理想的喷油规律,应用前 景广阔。
1-油箱 2-滤清器 3-输油泵 4-高压油泵 5-各种传感器 6-电控器(ECU) 7-喷嘴 8-限压阀 9-蓄压管道(共轨) 10-压力传感器
喷油量的调节方式:
位移控制方式:油量的变化通过改变柱塞、柱塞套、滑 套、分配器等上面的油槽或油孔的相对位置来实现的。如传 统的燃料供给系统(直列泵、单体泵以及老式的分配泵等) 均为机械式调节,采用位移控制方式。 时间控制方式:电控式燃料供给系统,绝大多数(包括 VE、VR分配泵、单体泵、泵-喷嘴以及共轨系统)均采用更 为精确与灵活的以电磁阀控制的时间控制方式。