三角恒等变换题型归纳
三角恒等变换常考题型及解析

。 ? 则 t n . t n 卢 的 值 为
因 为 A、 B是 锐 角三 角 形 的 内角, 所 以 一 <
A 2 ; B吉 ; c詈 ; D_ 詈 - 析由 c o 一 詈 一s ( a + — 1
( ) .
f c o s ( a - p ) 一 善,
c o s ( a +卢 ) 一 ,
c o s [ - ( A- -B) -A] 一2 s i n As i n ( A- -B) ,
故 c o s ( A- -B) C O S A—s i n As i n ( A—B) 一0 , 即
…
二 & 例4 已知函数 , ( z ) 一2 c o s 2 +s i n z 一4 c o s z .
求, ( z ) 的最 大值 和最 小值 .
,( z ) 一2 ( 2 c o s 一1 ) +( 1 一c o s 。 z ) 一4 c o s z一
所以 t a n a ・ t a n : = = 1
SI n A
一t a n B, 则有 (
) .
A s i n 2 A —C O S B 一 0:
三角恒 等 变换是 三 角 函数 部分 常 考 的 知识 点 , 是
求三 角 函数极值 与最 值 的一 个 过 渡步 骤. 有 时 求 三角 函数 周期 、 对称轴等, 需 要 将 三 角 函 数 式 化 成 一 个 角 的三 角 函数形 式 , 其 中化 简 的过 程 就用 到 三 角 恒等 变 换. 有关 三角 恒等变 换 的常考 题 型及解 析 总结如 下.
拉角
3 借 助切 、 弦 互化解 决 三角 函数求值 问题
三角恒等变换(知识、题型、训练及答案)

三角恒等变换知 识 梳 理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β.tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.tan 2α=2tan α1-tan α. 3.辅助角公式函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2·cos(α-φ).(其中,ab =ϕtan )注意:1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.在三角求值时,往往要借助角的范围求值.基础自检测1.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.792.若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.453.tan 20°+tan 40°+3tan 20°·tan 40°=________.4.sin 347°cos 148°+sin 77°·cos 58°=________.题型解析题型一 三角函数式的化简【例1】(1)化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.(2)化简:(1+sin α+cos α)·⎝ ⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.【训练1】 cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β)B.sin αC.cos(α+2β)D.cos α题型二 三角函数式的求值【例2】(1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=________.(2)若sin ⎪⎭⎫ ⎝⎛-απ3=14,则cos ⎪⎭⎫ ⎝⎛+απ23=________.(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.【训练2】 (1)已知x ∈(0,π),且cos ⎪⎭⎫ ⎝⎛-22πx =sin 2x ,则tan ⎪⎭⎫ ⎝⎛-4πx =( )A.13B.-13C.3D.-3(2)已知α∈⎥⎦⎤⎢⎣⎡20π,,cos ⎪⎭⎫ ⎝⎛+3πα=-23,则cos α=________.题型三 三角变换的简单应用【例3】 △ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B 2的最大值.【训练3】已知函数f (x )=3cos ⎪⎭⎫ ⎝⎛-32πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡-4,4ππ时,f (x )≥-12.答案诊 断 自 测1.A2.D3.34.22【例1】 (1)sin(α+γ) (2)cos α 【训练1】 D 【例2】(1)6 (2)-78 (3)-3π4【训练2】(1)A (2)15-26【例3】解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A-cos A ),则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3.(2)y =2sin 2 B +cos C -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1=sin ⎝ ⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,B +A >π2,所以π6<B <π2, 所以2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值, 此时B =π3,y max =2.【训练3】 (1)解 f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x =32cos 2x +32sin 2x -sin 2x=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, 所以f (x )的最小正周期T =2π2=π.(2)证明 由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6, ∴当2x +π3=-π6,即x =-π4时,f (x )取得最小值-12. ∴f (x )≥-12成立.。
专题18 三角恒等变换 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】高中数学53个题型归纳与方法技巧总结篇专题18三角恒等变换知识点一.两角和与差的正余弦与正切①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±= ;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式①sin 22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-;知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα==sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,).【方法技巧与总结】1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±;1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;;2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3.拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-;④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明题型二:给式求值题型三:给值求值题型四:给值求角题型五:正切恒等式及求非特殊角【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+;②倍角公式(2)S α,(2)C α,(2)T α.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数22sin 26cos 3426cos34+ ;22sin 39cos 2139cos 21+ ;()()22sin 52cos 11252cos112-+- ;22sin 30cos 3030cos30+ .(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论.例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=()ABCD例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为()A .13B .13-C .23D .23-例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为().A .14B .78C .14±D .78±(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=()AB .12C .12-D.例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos 25β=,()4cos 5αβ+=,则cos α=___________.例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭sin 2α的值为_____________.例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin 2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+()A .12B .12-C .2D .-2例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭()A .78-B .78C .D 例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=()A .B .C .12D 例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .2325B .2325-C D .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α()A .2425B .2425-C .725D .725-例17.(2022·广东茂名·模拟预测)已知1sin 62πθ⎛⎫-= ⎪⎝⎭,则cos 3πθ⎛⎫+= ⎪⎝⎭()A .B .12-C .12D(多选题)例18.(2022·江苏·高三专题练习)已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+=则()A .cos α=B .sin cos αα-=C .34πβα-=D .cos cos αβ=【方法技巧与总结】给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.题型四:给值求角例19.(2022·全国·模拟预测)已知263ππα<<,sin 4sin cos tan 15315315πππππαα⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭则α=______.例20.(2022·河南·南阳中学高三阶段练习(文))已知3sin 44ππαβ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭3,,0,444πππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,求αβ-的值为_____.例21.(2022·河北石家庄·一模)已知角π0,2α⎛⎫∈ ⎪⎝⎭,πsin sinπ12tan π12cos cos 12αα-=+,则α=______.例22.(2022·上海市大同中学高三开学考试)若()0,απ∈,且cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则α的值为___________.例23.(2022·全国·高三专题练习)若sin 2α=()sin βα-=且ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是______.例24.(2022·吉林·延边州教育学院一模(理))若sin 2α=,()sin βα-=且π,π4α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+=()A .7π4B .π4C .4π3D .5π3例25.(2022·上海交大附中高三开学考试)已知α、β都是锐角,且223sin 2sin 1αβ+=,3sin 22sin 20αβ-=,那么α、β之间的关系是()A .4παβ+=B .4αβ-=πC .24παβ+=D .22παβ+=例26.(2022·江苏省江阴高级中学高三开学考试)已知11tan ,tan ,37αβ==-且,(0,)αβπ∈,则2αβ-=()A .4πB .4π-C .34π-D .34π-或4π【方法技巧与总结】给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.题型五:正切恒等式及求非特殊角例27.(2022·湖北·襄阳四中模拟预测)若角α的终边经过点()sin 70,cos70P ︒︒,且tan tan 2tan tan 2m αααα++⋅=,则实数m 的值为()A.B.CD例28.(2021·重庆八中高三阶段练习)sin10︒︒=()A .14B C .12D例29.(2020·=()A .1BC D .例30.(2022·全国·高三专题练习)()tan 30tan 70sin10︒+︒︒=___________.例31.(2022·江苏南通·高三期末)若11sin α=,则α的一个可能角度值为__________.例32.(2022·江苏扬州·模拟预测)1tan 751tan 75-︒=+︒___________.例33.(2022·贵州黔东南·一模(文))若()1tan 3αβ+=,()1tan 6a β-=,则tan 2α=___________.例34.(2022·山东·青岛二中高三开学考试)tan10tan 35tan10tan 35︒+︒+︒︒=______.【方法技巧与总结】正切恒等式:当A B C k π++=时,tan tan tan tan tan tan A B C A B C ++=⋅⋅.证明:因为tan tan tan()1tan tan A BA B A B++=-,tan tan ()C A B =-+,所以tan tan tan (1tan tan )A B C A B +=--故C B A C B A tan tan tan tan tan tan ⋅⋅=++.【过关测试】一、单选题1.(2022·四川省泸县第二中学模拟预测(文))已知角α与角β的顶点均与原点O 重合,始边均与x 轴的非负半轴重合,它们的终边关于x 轴对称.若3cos 5α=,则()()cos cos αβαβ+-=()A .725-B .15C .15-D .7252.(2022·全国·模拟预测(理))已知sin cos 1αβ+=,cos sin αβ+=,则cos()αβ-=()A .0B .12C D .13.(2022·青海·大通回族土族自治县教学研究室三模(文))已知πtan 34α⎛⎫+= ⎪⎝⎭,()1tan 3αβ+=,则tan β=()A .17-B .17C .1D .2或64.(2022·湖北·黄冈中学模拟预测)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为2sin18m =︒,若24m n +=,=()A .-4B .-2C .2D .45.(2022·山东烟台·三模)若21π2cos cos 23αα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .BC .D 6.(2022·全国·模拟预测(文))设角α,β的终边均不在坐标轴上,且()tan tan tan αββα-+=,则下列结论正确的是()A .()sin 0αβ+=B .()cos 1αβ-=C .22sin sin 1αβ+=D .22sin cos 1αβ+=7.(2022·河南·通许县第一高级中学模拟预测(文))已知15αβ+= ,则1tan tan tan tan 1tan tan tan tan αβαβαβαβ++-=---()A .BC .1D8.(2022·全国·高三专题练习)若10,0,cos ,cos 224342ππππβαβα⎛⎫⎛⎫<<-<<+=-= ⎪ ⎪⎝⎭⎝⎭cos 2βα⎛⎫+=⎪⎝⎭()A B .C D .二、多选题9.(2022·海南海口·二模)已知(),2αππ∈,tan sin tan 22αβα==,则()A .tan α=B .1cos 2α=C .tan β=D .1cos 7β=10.(2022·河北邯郸·二模)下列各式的值为12的是().A .sin17π6B .sinπ12cos π12C .22cossin 121π2-πD .2πtan 8π1tan 8-11.(2022·重庆·西南大学附中模拟预测)已知α,β,0,2πγ⎛⎫∈ ⎪⎝⎭,且2παβγ++=,则()A.若sin cos αα+=,则tan 1α=B .若tan 2α=,则sin()βγ+=C .tan α,tan β可能是方程2670x x -+=的两根D .tan tan tan tan tan tan 1αββγβα++=12.(2022·重庆巴蜀中学高三阶段练习)已知()4cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是()A .3sin 25α=B .()cos αβ-=C.cos cos αβ=D .1tan tan 3αβ=三、填空题13.(2022·浙江·高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.14.(2022·山东师范大学附中模拟预测)已知ππ0sin 24αα⎛⎫<<-= ⎪⎝⎭sin 1tan αα=+________.15.(2022·3cos()cos()12παπα-++=-,则cos(23α2π-=_____________.16.(2022·陕西·宝鸡中学模拟预测)()()()sin 75cos 4515θθθ++++=__________.四、解答题17.(2022·江苏南京·模拟预测)已知02πα<<,1cos 43πα⎛⎫+= ⎪⎝⎭.(1)求sin α的值;(2)若02πβ-<<,cos 24βπ⎛⎫-= ⎪⎝⎭αβ-的值.18.(2022·江西·高一期中)已知角α为锐角,2πβαπ<-<,且满足1tan23=α,()sin βα-=(1)证明:04πα<<;(2)求β.19.(2022·河南·唐河县第一高级中学高一阶段练习)(1)已知tan 2θ=-,求sin (1sin 2)sin cos θθθθ++的值;(2)已知1tan()2αβ-=,1tan 7β=-,且α,(0,)βπ∈,求2αβ-.20.(2022·江西·高一阶段练习)在①4tan 23α=,②sin α补充到下面的问题中,并解答.已知角α是第一象限角,且.(1)求tan α的值;(2)求()π3πsin 2cos πcos 22ααα⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭的值.注:如果选择两个条件分别解答,按第一个解答计分.21.(2022·北京市第九中学高一期中)已知1tan 2α=,π0,2α⎛⎫∈ ⎪⎝⎭,π,π2β⎛⎫∈ ⎪⎝⎭,求(1)求sin α的值;(2)求()()()2212sin πcos 2π5πsin sin 2αααα+---⎛⎫--- ⎪⎝⎭的值;(3)若()sin αβ+cos β的值.22.(2019·黑龙江·哈尔滨三中高三阶段练习(文))()1的值;()2已知30,,,242ππαβπ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,()1tan 2αβ-=,17tan β=-,求2αβ-的值.23.(2020·全国·高三专题练习)在ABC ∆中,满足222sin cos sin cos A B A B C -=-.(1)求C ;(2)设()()2cos cos cos cos cos A B A B ααα++=,tan α的值.。
三角恒等变换题型总结(超给力)

三角恒等变换一、两角和、差的三角函数公式βα-C cos (α-β)=cos αcos β+sin αsin ββα+C cos (α+β)=cos αcos β-sin αsin β.βα+S sin (α+β)=sin αcos β+cos αsin ββα-S sin (α-β)=sin αcos β-cos αsin ββα+T tan (α+β)=tan tan 1tan tan αβαβ+-βα-T tan (α-β)=tan tan 1tan tan αβαβ-+二、二倍角公式cos 2α=cos 2α-sin 2αsin 2α=2sin αcos αtan 2α=22tan 1tan αα-变形公式:cos 2α=1-2sin 2α=2cos 2α-1cos 2α=1-2sin 2α2sin 2α=1-cos 2αsin 2α=1cos 22α-.降幂公式cos 2α=2cos 2α-12cos 2α=cos 2α+1cos 2α=cos 212α+.降幂公式sin 2α半角公式cos 2α半角公式ααααcos 1cos 12cos 2sin 2tan +-±==αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=三、辅助角公式a sin x ±b cos x (x ±ϕ),其中tan ϕ=ba 四、万能公式ααα2tan 1tan 22sin +=ααα22tan 1tan 12cos +-=ααα2tan 1tan 22tan -=五、同角的三大关系①倒数关系tan α•cot α=1②商数关系sin cos αα=tan α;cos sin αα=cot α③平方关系22sin cos 1αα+=六、积化和差与和差化积积化和差)]sin()[sin(cos sin βαβαβα-++=;)]sin()[sin(sin cos βαβαβα--+=;)]cos()[cos(cos cos βαβαβα-++=;)]cos()[cos(sin sin βαβαβα--+=.和差化积2cos 2sin 2sin sin ϕθϕθϕθ-+=+2sin 2cos 2sin sin ϕθϕθϕθ-+=-2cos 2cos 2cos cos ϕθϕθϕθ-+=+2sin 2sin 2cos cos ϕθϕθϕθ-+=-七、方法总结1、三角恒等变换方法、三变(变角、变名、变式)(1)“变角”主要指把未知的角向已知的角转化,是变换的主线,.(2)“变名”指的是切化弦(正切余切化成正弦余弦sin cos tan ,cot cos sin αααααα==),(3)“变式’形公式展开和合并等。
高考数学热点:三角恒等变换

高考数学热点:简单的三角恒等变换【考点梳理】1、两角和与差的三角函数公式sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ−=−cos()cos cos sin sin αβαβαβ+=−cos()cos cos sin sin αβαβαβ−=+tan tan tan()1tan tan αβαβαβ−−=+ tan tan tan()1tan tan αβαβαβ++=− 2、二倍角公式sin 22sin cos ααα= 22cos2cos sin ααα=− 2cos22cos 1αα=−2cos212sin αα=− 22tan tan 21tan ααα=−3、辅助角公式sin cos )a x b x x ϕ±=±(其中tan b aϕ=) 4、降幂公式21cos2cos 2αα+=21cos2sin 2αα−=【典型题型讲解】 考点一:两角和与差公式【典例例题】例1.(2022·广东汕头·高三期末)已知πsin (,π)2αα=∈,则cos()6πα−=( )A .-1B .0C .12D【答案】B 【详解】∵πsin (,π)22αα=∈,∴2π3α=,故ππcos()cos 0.62α−== 故选:B例2.(2022·广东湛江·一模)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )ABC.D.【答案】B 【详解】由4cos 5α=,02πα<<,得3sin 5α=,所以34sin 422252510πααα⎛⎫+=+=⨯+= ⎪⎝⎭,故选:B.例3.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−, 整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B【方法技巧与总结】1.三角函数式化简的方法:化简三角函数式常见方法有弦切互化,异名化同名,异角化同角,降幂与升幂等.2.给值求值:解题的关键在于“变角”,把待求三角函数值的角用含已知角的式子表示出来,求解时要注意对角的范围的讨论. 【变式训练】 1.已知5π1tan()45−=α,则tan =α__________. 【答案】32【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα−−⎛⎫−=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 2.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫−=∈+= ⎪⎝⎭,则tan β=__________. 【答案】17【详解】因为()sin 0,2ππαα⎛⎫−=∈ ⎪⎝⎭,所以sin α=,所以cos α=,所以sin 1tan cos 3ααα==. ()()()11tan tan 123tan tan .111tan tan 7123αβαβαβααβα−+−=+−===⎡⎤⎣⎦+++⨯又 故答案为:173.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ−=B .()tan 1αβ+=C .()tan 1αβ−=−D .()tan 1αβ+=−【答案】C 【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++−=−, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ−++=, 即:()()sin cos 0αβαβ−+−=, 所以()tan 1αβ−=−, 故选:C 4.已知sin α=()cos αβ−=304πα<<,304πβ<<,则sin β=( )A.35BC.35D.35【答案】A 【解析】易知()()sin sin βααβ=−−,利用角的范围和同角三角函数关系可求得cos α和()sin αβ−,分别在()sin 5αβ−=和5−两种情况下,利用两角和差正弦公式求得sin β,结合β的范围可确定最终结果. 【详解】2sin 72α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴−<−<,()sin 5αβ∴−=±.当()sin 5αβ−=时,()()()()sin sin sin cos cos sin βααβααβααβ=−−=−−−57==304πβ<<,sin 0β∴>,sin β∴=当()sin αβ−=sin β.综上所述:sin β= 故选:A .5.已知sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13−C .23D .23−【答案】A 【解析】根据题意得到sin 152α⎛⎫︒−= ⎪⎝⎭进而得到26cos 1529α⎛⎫︒−= ⎪⎝⎭,()1cos 303α︒−=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒−︒−=︒−⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒−=︒=︒+︒=︒= ⎪⎝⎭,则226cos 151sin 15229αα⎛⎫⎛⎫︒−=−︒−= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒−=︒−−︒−= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒−︒−⎣⎦ ()1cos 303α=︒−=,故选A.考点二:二倍角公式【典例例题】例1.(2022·广东中山·高三期末)若2sin 3α=,则cos2α=___________. 【答案】19【分析】根据余弦的二倍角公式即可计算.【详解】2221cos212sin 1239αα⎛⎫=−=−⨯= ⎪⎝⎭.故答案为:19.例2.(2022·广东清远·高三期末)已知tan 2α=,则sin cos 44sin 2⎛⎫⎛⎫−+ ⎪ ⎪⎝⎭⎝⎭=ππααα________. 答案】18−【详解】1sin cos (sin cos )(cos sin )442sin 22sin cos ⎛⎫⎛⎫−+−− ⎪ ⎪⎝⎭⎝⎭=ππααααααααα222sin cos 2sin cos tan 12tan 14sin cos 4tan 8−−+−−+===−ααααααααα.故答案为:18−例3.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪−⎝⎭,则tan α=( )ABCD【答案】A 【详解】cos tan 22sin ααα=−2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===−−,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=−−,解得1sin 4α=, cos 4α∴=sin tan cos 15ααα∴==. 故选:A.【方法技巧与总结】三角恒等变换的基本思路:找差异,化同角(名),化简求值.三角恒等变换的关键在于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系. 【变式训练】1.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】.B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−,整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B2.(2022·广东韶关·二模)已知 1sin cos 5αα+=,则()2tan 12sin sin 2πααα++=+( )A .17524−B .17524C .2524−D .2524【答案】.C【详解】由题知1sin cos 5αα+=,有242sin cos 25αα=−,所以()2tan 12sin sin 2πααα+++()tan 12sin sin cos αααα+=+()sin cos 1cos 2sin sin cos αααααα+=⨯+1252sin cos 24αα==−, 故选:C .3.(2022·广东佛山·二模)已知sin πα43⎛⎫−= ⎪⎝⎭,则sin 2α=___________.【答案】59【详解】sin sin 443ππαα⎛⎫⎛⎫−=−−=⎪ ⎪⎝⎭⎝⎭所以sin 4πα⎛⎫−= ⎪⎝⎭所以225sin 2cos 2cos 212sin 122449πππαααα⎛⎡⎤⎛⎫⎛⎫⎛⎫=−=−=−−=−⨯= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 故答案为:594.(2022·广东肇庆·二模)若sin cos 5θθ+=−,则sin 2θ=______. 【答案】45【详解】∵sin cos θθ+= ∴()29sin cos 12sin cos 5θθθθ+=+=, 所以4sin 22sin cos 5θθθ==. 故答案为:45.5.(2022·广东深圳·二模)已知tan 3α=,则cos 2=α__________. 【答案】45−【详解】解:由题意可知:2214cos 22cos 121tan 15ααα=−=⨯−=−+ .6.若3sin 5α=−,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα−=+( )A .12B .12−C .2D .−2【答案】D 【详解】3sin 2sincos225ααα==−,故2222sincos2tan32225sin cos tan 1222αααααα==−++, 可解得1tan23α=−或tan 32α=−,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=−,故1tan 221tan2αα−=−+, 故选:D7.已知1sin 64x π⎛⎫−= ⎪⎝⎭,则cos 23x π⎛⎫−= ⎪⎝⎭( )A .78−B .78C.4−D.4【答案】B 【详解】因为sin sin 66x x ππ⎛⎫⎛⎫−=−− ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫−=− ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=−−= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.8.已知,22ππα⎛⎫∈− ⎪⎝⎭,且1cos 42πα⎛⎫−= ⎪⎝⎭,则cos2α=( )A. B. C .12D【答案】D 【详解】 因为22ππα−<<,所以3444πππα−<−< 又1cos 42πα⎛⎫−= ⎪⎝⎭,所以43ππα−=−,所以12πα=−所以cos 2cos cos 66ππα⎛⎫=−==⎪⎝⎭故选:D9.已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫−= ⎪⎝⎭( )A .2325B .2325−C D .5−【答案】B 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=−=−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=⨯−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .10.已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α( )A .2425B .2425−C .725D .725−【答案】B 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==−,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯−=− ⎪⎝⎭。
三角恒等变换问题归纳

三角变换问题 特殊角
观察角度之间的关系
和、差关系
倍、半关系 互余或互补关系 同名三角函数
观察函数之间的关系 不同名三角函数 观察运算结构的关系 恰当选择公式求解或证明 切化弦
一、给值求值(角)问题
1 (1)已知0<< <<,且 cos( ) , 2 2 9 2 sin( ) ,求 cos( )的值; 2 3 1 1 (2)已知, (0, ),且 tan( ) , tan , 2 7 求2 的值.
(3)求函数f ( x)= x 1 2 x的值域。
24 2.若一个等腰三角形的顶角的正弦值为 ,求它的底角的余弦值。 25
A 2cos A 2 3.已知A,B,C是 ABC的三个内角,y tan . 2 sin A cos B C 2 2 若任意交换两个角的位置,y的值是否变化?
五:函数问题
练习:设函数f ( x) 2cos x sin( x ) 3 sin 2 x sin x cos x, 3 当x [0, ]时,求函数f ( x)的最值。 2
1 求证: cos 2 cos 2 . 2
说明:除了三角恒等式证明外,还有一类三角等 式的证明,即条件三角恒等式的证明.其解题策略为: 首先应观察条件与结论之间的差异(角、函数名、式 子结构),从解决某一差异入手,将条件转化或将条 件代入,从而得证.
练习:
五、三角形与三角恒等变换
1、A,B,C为 ABC的内角,求证: tan A tan B tan C tan Atan Btan C
【评析】(1)证明三角恒等式的关键在于“统一观”: 从三角恒等式两端的角度关系入手,统一函数名与运 算结构. (2)三角恒等式的证明和一般等式相似,重在化繁为 简,从左证到右,或从右证到左,或从两边化到中间。 (3)注意证明过程的书写。
三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换基础知识及题型分类汇总一、知识点:一)公式回顾:cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta $,简记为C($\alpha\pm\beta$)sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,简记为S($\alpha\pm\beta$)sin2\alpha=2\sin\alpha\cos\alpha$,简记为S2cos2\alpha=\cos^2\alpha-\sin^2\alpha$,简记为C2tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$,其中$\alpha\neq\frac{k\pi}{2}$,简记为T2二)公式的变式1\pm\cos2\alpha=2\cos^2\alpha$,简记为1±C2frac{1\pm\cos\alpha}{2}=\sin^2\frac{\alpha}{2}$,简记为S2/2sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac {\alpha\mp\beta}{2}$,简记为S±Scos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\al pha-\beta}{2}$,简记为C+Ccos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$,简记为C-Ctan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}$,简记为T1辅助角(合一)公式:begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}-\alpha)=\cos\alpha\\\cos(\frac{\pi}{2}-\alpha)=\sin\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}+\alpha)=\cos\alpha\\\cos(\frac {\pi}{2}+\alpha)=-\sin\alpha\end{cases}$begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$二典例剖析:基础题型例1:已知$\sin2\alpha=\frac{5\pi}{13}$,$\alpha\in\left(0,\frac{\pi}{2}\right)$,求$\sin4\alpha$,$\cos4\alpha$,$\tan4\alpha$。
高中数学必修四三角恒等变换题型归纳及训练题

三角恒等变换一、知识概括:1.两角和与差的三角函数公式2.二倍角公式: sin 2α=2sin αcos α; tan 2α=2tan α1-tan 2α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;3.公式的变形与应用(1)两角和与差的正切公式的变形tan α+tan β=tan(α+β)(1-tan αtan β); tan α-tan β=tan(α-β)(1+tan αtan β).(2)降幂公式:sin 2α=1-cos 2α2;cos 2α=1+cos 2α2.二、方法归纳总结:1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.三、典例剖析:题型一、【公式顺用、逆用、变用】例1、sin 75= ; cos15= ; 2、sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32 C .-12 D.123.设sin 2sin ,(,)2παααπ=-∈,则tan 2α的值是________.4、若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625专题二:【凑角应用】例3、已知0<β<π4<α<34π,135)43sin(,53)4cos(=+=-βπαπ,求)sin(βα+的值.注:常见的配角技巧:α=2·α2;α=(α+β)-β;α=β-(β-α);α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)];π4+α=π2-()4πα-变式1、若0<α<π2,π2<β<3π2,14cos(),cos(),43425ππβα+=-=则cos()2βα+=________.变式2、已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.题型三、【三角恒等变换的综合运用】1.已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间[,]34ππ-上的最大值和最小值.2.已知函数()sin(),4f x A x x R π=+∈,且53()122f π=. ①求A 的值; ②若f (θ)+f (-θ)=32,(0,)2πθ∈,求3()4f πθ-3.已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.三角恒等变形课后训练题1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A. 0B. 12C.D. 12-2. =+-)12sin 12(cos )12sin12(cosππππ( )A. 23-B. 21-C. 21D.23 3.设1tan 2,1tan xx +=-则sin 2x 的值是 ( )A. 35B. 34-C. 34D. 1-4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A. 47-B. 47C. 18D. 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A. 3365B.1665C. 5665D. 63656.)4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A. 725-B. 2425-C. 2425D. 7257.cos 23x x a +=-中,a 的取值域范围是 ( )A. 2521≤≤aB. 21≤aC. 25>aD. 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A.1010 B. 1010- C. 10103 D. 10103-9. 函数sin22x xy =的图像的一条对称轴方程是 ( ) A. x =113π B. x =53π C. 53x π=- D. 3x π=-10.在ABC ∆中,tan tan tan A B A B +=,则C 等于 ( )A.3π B. 23π C. 6π D. 4π11.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于 . 12. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = . 13. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为 .14. 关于函数()cos2cos f x x x x =-,下列命题:①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 .(注:把你认为正确的序号都填上)三、解答题:15.在ABC ∆中,已知的值求sinC ,135B c ,53cosA ==os .16.已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.17. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18已知tan α=2,tan β=-13,其中0<α<π2,π2<β<π.(1)求tan(α-β)的值;(2)求α+β的值.19.已知函数)0)(6sin(2)(>-=ωπωx x f 的最小正周期为π6(1)求)0(f (2)设56)23(,1310)23(0,2,2,0=+=+⎥⎦⎤⎢⎣⎡-∈⎥⎦⎤⎢⎣⎡∈πβπαπβπαf f ,求)cos(βα+的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 两角和与差的正弦、余弦和正切公式及二倍角公式❖ 基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z . 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.❖ 常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例](1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. (2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3.[答案] (1)-12 (2) 3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β;(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b . 2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45.答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦. [题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( )A .1B.12C.32 D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12. 2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( )A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79. 3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B. 2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718. 6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2.(1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.第六节 简单的三角恒等变换考点一 三角函数式的化简[典例](1)sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α(2)化简:sin (2α+β)sin α-2cos(α+β).[解] (1)选D 原式=-sin 2α·cos 2α2cos 2α(-sin α)=-2sin αcos α·cos 2α2cos 2α(-sin α)=cos α.(2)原式=sin (2α+β)-2sin αcos (α+β)sin α=sin[α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin[(α+β)-α]sin α=sin βsin α.[题组训练]1.化简:sin 2α-2cos 2αsin ⎝⎛⎭⎫α-π4=________.解析:原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.答案:22cos α2.化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α.解:原式=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=cos 2αsin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1.考点二 三角函数式的求值考法(一) 给角求值 [典例]cos 10°(1+3tan 10°)cos 50°的值是________.[解析] 原式=cos 10°+3sin 10°cos 50°=2sin (10°+30°)cos 50°=2sin 40°sin 40°=2.[答案] 2[解题技法] 三角函数给角求值问题的解题策略一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换转化为求特殊角的三角函数值问题,另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.考法(二) 给值求值[典例] 已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求:(1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值. [解] (1)由sin ⎝⎛⎭⎫α+π4=210, 得sin αcos π4+cos αsin π4=210,化简得sin α+cos α=15,①又sin 2α+cos 2α=1,且α∈⎝⎛⎭⎫π2,π② 由①②解得cos α=-35.(2)∵α∈⎝⎛⎭⎫π2,π,cos α=-35,∴sin α=45, ∴cos 2α=1-2sin 2α=-725,sin 2α=2sin αcos α=-2425,∴sin ⎝⎛⎭⎫2α-π4=sin 2αcos π4-cos 2αsin π4=-17250.[解题技法] 三角函数给值求值问题的基本步骤(1)先化简所求式子或已知条件;(2)观察已知条件与所求式子之间的联系(从三角函数的名及角入手); (3)将已知条件代入所求式子,化简求值. 考法(三) 给值求角 [典例] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4C.5π4或7π4D.5π4或9π4[解析] ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π, ∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255. 又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2, ∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos [(β-α)+2α] =cos(β-α)cos 2α-sin(β-α)sin 2α =⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又∵α+β∈⎣⎡⎦⎤5π4,2π,∴α+β=7π4. [答案] A[解题技法] 三角函数给值求角问题的解题策略(1)根据已知条件,选取合适的三角函数求值.[题组训练]1.求值:cos 20°cos 35°1-sin 20°=( )A .1B .2 C. 2D. 3解析:选C 原式=cos 20°cos 35°|sin 10°-cos 10°|=cos 210°-sin 210°cos 35°(cos 10°-sin 10°)=cos 10°+sin 10°cos 35°=2⎝⎛⎭⎫22cos 10°+22sin 10°cos 35°=2cos (45°-10°)cos 35°=2cos 35°cos 35°= 2.2.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 法一:因为sin α+cos α=33,所以(sin α+cos α)2=13,即2sin αcos α=-23,即sin 2α=-23. 又因为α为第二象限角且sin α+cos α=33>0, 所以sin α>0,cos α<0,cos α-sin α<0,cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α- sin α)<0. 所以cos 2α=-1-sin 22α=-1-⎝⎛⎭⎫-232=-53. 法二:由cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α),且α为第二象限角,得cos α-sin α<0, 因为sin α+cos α=33, 所以(sin α+cos α)2=13=1+2sin αcos α,得2sin αcos α=-23,从而(cos α-sin α)2=1-2sin αcos α=53,则cos α-sin α=-153,所以cos 2α=33×⎝⎛⎭⎫-153=-53. 3.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4C.π4D .2k π+π4(k ∈Z)解析:选C 由sin α=55,cos β=31010,且α,β为锐角, 可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.考点三 三角恒等变换的综合应用[典例] (2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. [解] (1)因为f (x )=sin 2x +3sin x cos x=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1, 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.[解题技法]三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(5)反思回顾,查看关键点、易错点和答题规范. [题组训练]1.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( ) A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos 2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32 解析:选D 因为f (x )=sin ωx cos ωx +3cos 2ωx -32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎫2ωx +π3,所以T =2π2ω=π,所以ω=1,所以f (x )=sin ⎝⎛⎭⎫2x +π3.对于A ,因为f ⎝⎛⎭⎫π3=0,所以不正确;对于B ,当x ∈⎣⎡⎦⎤π12,7π12时,2x +π3∈⎣⎡⎦⎤π2,3π2,所以函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递减,故不正确;对于C ,将函数f (x )的图象向右平移π6个单位长度所得图象对应的函数y =f ⎝⎛⎭⎫x -π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=sin 2x ,所以不正确;对于D ,当x ∈⎣⎡⎦⎤0,π2时,2x +π3∈⎣⎡⎦⎤π3,4π3,所以f (x )∈⎣⎡⎦⎤-32,1,故正确.故选D. 2.已知函数f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3. (1)求函数f (x )的单调区间;(2)求函数f (x )图象的对称轴和对称中心. 解:(1)f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3 =4sin x ⎝⎛⎭⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3.令2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). 令2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),得k π+5π12≤x ≤k π+11π12(k ∈Z),所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z). (2)令2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z).令2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z).[课时跟踪检测]A 级1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .1 B .-1 C.12D .0解析:选B ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α, 即⎝⎛⎭⎫32-12sin α=⎝⎛⎭⎫12-32cos α,∴tan α=sin αcos α=-1.2.化简:cos 40°cos 25°1-sin 40°=( )A .1 B. 3 C. 2D .2解析:选C 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25°=2cos 25°cos 25°= 2.3.(2018·唐山五校联考)已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010B.1010C .-31010D.31010解析:选C 因为α是第三象限的角,tan α=2,所以⎩⎨⎧sin αcos α=2,sin 2α+cos 2α=1,所以cos α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010. 4.(2019·咸宁模拟)已知tan(α+β)=2,tan β=3,则sin 2α=( )A.725B.1425C .-725D .-1425解析:选C 由题意知tan α=tan [(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,所以sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-725.5.已知cos ⎝⎛⎭⎫2π3-2θ=-79,则sin ⎝⎛⎭⎫π6+θ的值为( ) A.13 B .±13C .-19D.19解析:选B ∵cos ⎝⎛⎭⎫2π3-2θ=-79, ∴cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+2θ=-cos ⎝⎛⎭⎫π3+2θ =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6+θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6+θ=-79, 解得sin 2⎝⎛⎭⎫π6+θ=19,∴sin ⎝⎛⎭⎫π6+θ=±13. 6.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝⎛⎭⎫α+π4=( ) A .7 B.17C .-7D .-17解析:选B ∵sin(α-β)sin β-cos(α-β)cos β=45,即-cos(α-β+β)=-cos α=45,∴cos α=-45.又∵α为第二象限角,∴tan α=-34,∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 7.化简:2sin (π-α)+sin 2αcos2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α8.(2018·洛阳第一次统考)已知sin α+cos α=52,则cos 4α=________. 解析:由sin α+cos α=52,得sin 2α+cos 2α+2sin αcos α=1+sin 2α=54,所以sin 2α=14,从而cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫142=78. 答案:789.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又因为α+β∈(0,π),所以α+β=π3.答案:π310.函数y =sin x cos ⎝⎛⎭⎫x +π3的最小正周期是________. 解析:y =sin x cos ⎝⎛⎭⎫x +π3=12sin x cos x -32sin 2x =14sin 2x -32·1-cos 2x 2=12sin ⎝⎛⎭⎫2x +π3-34,故函数f (x )的最小正周期T =2π2=π.答案:π11.化简:(1)3tan 12°-3sin 12°(4cos 212°-2); (2)cos 2α1tan α2-tan α2.解:(1)原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=3sin 12°-3cos 12°2sin 12°cos 12°cos 24° =23(sin 12°cos 60°-cos 12°sin 60°)sin 24°cos 24° =43sin (12°-60°)sin 48°=-4 3. (2)法一:原式=cos 2αcos α2sin α2-sin α2cos α2=cos 2 αcos 2 α2-sin 2 α2sin α2cos α2=cos 2αsin α2cos α2cos 2 α2-sin 2 α2=cos 2αsin α2cos α2cos α =sin α2cos α2cos α=12sin αcos α=14sin 2α. 法二:原式=cos 2αtan α21-tan 2 α2=12cos 2α·2tan α21-tan 2 α2 =12cos 2α·tan α=12cos αsin α=14sin 2α. 12.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解:(1)因为f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32, 所以函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z. (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,f (x )∈⎣⎡⎦⎤0,1+32.故f (x )的值域为⎣⎡⎦⎤0,1+32. B 级1.(2018·大庆中学期末)已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=( )A. 3B. 2 C .- 2 D .- 3解析:选C ∵tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,∴tan α+1tan α=k ,tan α·1tan α=k 2-3.∵3π<α<7π2,∴k >0,∴k =2, ∴tan α=1,∴α=3π+π4, 则cos α=-22,sin α=-22,∴cos α+sin α=- 2. 2.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =________. 解析:∵sin(C -A )=1,∴C -A =90°,即C =90°+A ,∵sin B =13, ∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13, 即1-2sin 2A =13,∴sin A =33. 答案:333.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin 2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域.解:(1)∵角α的终边经过点P (-3,3),∴sin α=12,cos α=-32,tan α=-33. ∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,∴g (x )=3cos ⎝⎛⎭⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎫2x -π6-1. ∵0≤x ≤2π3, ∴-π6≤2x -π6≤7π6. ∴-12≤sin ⎝⎛⎭⎫2x -π6≤1, ∴-2≤2sin ⎝⎛⎭⎫2x -π6-1≤1, 故函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域是[-2,1].。