焊接机器人智能化技术研究
焊接机器人现状及发展趋势探究

焊接机器人现状及发展趋势探究摘要:在现阶段的工业生产实践过程中,焊接机器人已经得到了普遍的推广运用。
焊接机器人由于具备自动化与智能化的焊接操作特征,因此能够有效取代人工焊接操作的传统工艺方法。
近些年以来,焊接机器人的系统组成结构正在趋向于日益获得完善,焊接机器人在工业领域的实践运用范围也得到了明显的扩大。
因此,本文探讨了焊接机器人在当前时期阶段的技术发展总体状况,探究焊接机器人的工艺技术未来发展趋势。
关键词:焊接机器人;实践运用现状;技术发展趋势焊接工序构成了工业生产必不可少的工序组成部分,焊接工序的操作实施过程表现为人身伤害风险较高的特征。
并且,人工进行零部件的焊接操作处理还会导致产生较多的人力资源成本以及生产时间成本,不利于促进工业企业获得最大化的经济效益。
由此能够判断得出,焊接机器人在目前的企业焊接生产操作过程中需要得到更大范围的普及运用,切实控制焊接操作的人工实施成本,促进企业达到更高层次的经济效益利润目标。
一、焊接机器人的基本组成结构对于焊接机器人而言,目前机器人的基本系统组成结构应当包含机器人的控制柜、本体结构、焊接系统、示教器、传感监测系统、辅助焊接设备、自动化的综合控制处理系统等。
焊接机器人的核心设备部件主要集中在机器人的本体结构中,重点包含示教器与控制柜等,焊接系统可以划分为焊枪焊钳、焊接电源、供气机构与送丝机构,辅助焊接设备主要为焊接工装夹具以及自动化的移动控制系统。
此外,系统外部的自动传感监测装置能够重点针对于电弧焊的焊缝缺陷、空间环境数据等进行实时性的采集反馈,有效确保了焊接操作全面实施中的系统电压变化波动状况能得到完整的监测[1]。
自动化的视觉传感器可以接收实时性的外部环境传输数据,然后将现有的焊接监测数据反馈给综合性的自动控制处理系统。
在此前提下,具有综合控制处理功能的机器人系统就会协调控制现有的机器人运行状况,确保经过传感器采集获得的各项数据信息都能得到完整的反馈。
自动化焊接机器人生产线优化研究分析

自动化焊接机器人生产线优化研究分析1. 引言1.1 背景介绍自动化焊接机器人生产线是现代制造业中常见的生产方式,其通过自动化设备的运用,实现焊接任务的高效完成。
随着工业4.0的发展,自动化焊接机器人生产线在制造业中的应用越来越广泛。
目前在自动化焊接机器人生产线的优化方面仍然存在一些问题和挑战。
现有的自动化焊接机器人生产线在布局上可能存在不合理,导致生产效率不高。
由于焊接任务的复杂性,机器人在执行焊接过程中可能出现误差,导致焊接质量不稳定。
现有的优化方法可能仍然有待改进,无法充分发挥自动化焊接机器人生产线的潜力。
对自动化焊接机器人生产线进行优化研究具有重要意义。
通过优化现有的生产线布局、改进焊接技术和优化控制系统,可以提高生产效率、降低成本,提高产品质量稳定性。
本研究旨在深入探讨自动化焊接机器人生产线的优化方法,分析优化效果,并展望未来的发展方向。
通过这些努力,可以为制造业的发展和升级提供有力的支持。
1.2 研究目的本研究的主要目的是针对自动化焊接机器人生产线的优化问题进行深入探讨和研究。
通过对目前自动化焊接机器人生产线存在的问题进行分析和评估,旨在找到有效的优化方法,提高生产效率和质量,降低生产成本,实现生产线的持续稳定运行。
具体来说,研究目的包括以下几个方面:1. 分析当前自动化焊接机器人生产线存在的瓶颈和问题,找出导致生产效率低下和质量不稳定的原因;2. 探讨各种可能的优化方法和策略,包括改进生产流程、优化设备配置、提高操作人员技能等方面;3. 评估不同优化方法的可行性和效果,比较各种方案的优缺点,为实际操作提供科学依据;4. 展望未来自动化焊接机器人生产线的发展方向,提出未来可能的优化方向和技术挑战,为相关领域的研究和实践提供参考。
1.3 研究意义自动化焊接机器人生产线优化是当前制造业发展中面临的重要问题之一。
研究对其进行优化,将对整个生产线的效率、质量和成本产生深远影响,具有重要的实践意义和理论价值。
焊接机器人智能化技术研究现状与展望

焊接机器人智能化技术研究现状与展望摘要:焊接机器人主要是从事焊接、切割、热喷涂等工艺的工业机器人,近年来,工业快速发展,带动了工业机器人的发展,焊接机器人的数量占工业机器人的40%,2020年焊接机器人的市场规模超过150亿元。
然而,与国外焊接机器人相比,我国焊接机器人的自动化水平、可靠性、稳定性还存在一定的差距,导致我国焊接机器人水平偏低。
通过探讨焊接机器人传感技术、焊缝跟踪技术、焊接路径规划技术与焊缝成形质量控制技术等关键智能化技术研究现状及当前焊接机器人面临的问题,对未来焊接机器人的发展前景进行分析,希望促进我国焊接机器人智能化发展。
关键词:焊接机器人;智能化技术;传感技术焊接被誉为“工业裁缝”,是工业生产重要的环节。
由于焊接工作环境恶劣,面临焊接烟尘、弧光、金属飞溅等情况,增加了焊接的危险性。
随着计算机技术、数控技术、电力电子技术、传感技术以及机器人技术的发展,促进了自动焊接机器人,自从上个世纪六十年代开始,焊接机器人开始应用在工业领域。
与人工焊接相比,焊接机器人通过控制系统可以控制焊接电流、电压、焊接速度、焊接伸缩长度等相关参数,降低焊接操作技术要求,提高焊接质量,保证焊接的一致性。
焊接机器人改善了焊工的劳动环境,让焊接工人远离弧光、烟雾和飞溅,缩短了工业产品更新周期,减少了企业的成本。
因此,焊接机器人广泛应用在船舶制造、航天、汽车、电子设备等制造领域,取得了良好的经济效益和社会效益。
根据《中国制造2025》提出,将大力发展智能装备、智能产品,推动生产过程智能化,培育新型生产方式,促进中国制造向中国智造方向发展[1]。
1焊接机器人概述1.1焊接机器人构成焊接机器人集计算机技术、电子技术、传感技术、控制技术以及人工智能技术为一体的自动化设备。
焊接机器人主要由执行系统、控制系统、动力系统、传递设备系统等构成。
执行系统主要负责焊接任务,主要负责传递力或力矩并执行具体动作的机械结构,包括机器人的手、机身、臂等部分;控制系统主要根据焊接任务要求,让机器人的执行元件按照规定的程序和焊接轨迹进行作业,并在规定的动作完成电焊、喷涂、切割等作业的计算机系统;动力系统主要负责为焊接机器人提供动力,主要以液压系统和电动系统为主;传感系统是焊接机器人的关键系统,主要负责监测焊接过程的焊缝边缘、宽度、焊缝等相关参数,并将焊接机器人执行情况反馈给控制系统,如果出现焊接缺陷,则系统会发出警告信息,执行系统对焊接任务进行修正。
智能机器人技术的研究和应用

智能机器人技术的研究和应用随着人类科技的飞速进步,机器人已经成为了极具前景的研究领域。
作为高新技术的代表,智能机器人技术正逐渐地走向普及化。
它在工业、医疗、军事等各个领域的应用都展现了出色的成果,极大地促进了各行业的进步和发展。
本文将从研究与应用两个角度,探讨智能机器人技术的现状和前景。
一、智能机器人技术的研究现状智能机器人技术作为目前最为前沿和热门的研究领域之一,自然引起了全球科学家的关注。
目前,智能机器人技术的研究涉及到了机器人的感知、决策和行动三个方面。
首先,机器人的感知能力是需要被加强的:如何让机器人学会“看、听、嗅、触、味”,才能够更好地适应现实环境和各种场景。
其次,机器人的决策能力也是智能机器人技术的重要方面之一。
机器人应该能够根据自己对周围环境的感知,进行决策,并作出合理的行动方案。
最后,机器人的行动能力也是研究的主要内容之一。
机器人可以学习运动技能,如单腿站立、行走、跳跃等。
此外,机器人还要学会如何和人类进行交互,如何正确、自然的完成人们的委托或指令。
目前,科学家们正着力于解决以上问题。
他们通过研究机器人感知、学习、控制等基础理论,推动智能机器人技术的发展与应用。
二、智能机器人技术在各个领域的应用智能机器人技术不仅在研究方面有着广泛的应用,而且还在各个领域中得到了越来越多的应用。
下面简单介绍一下智能机器人技术在几个领域的应用。
1. 工业自动化领域工业自动化是智能机器人技术的一个重要应用领域。
随着机器人技术的不断进步,生产线上的机器人已经成为了工业制造和生产中不可或缺的一部分。
比如,打包机器人、铆接机器人、焊接机器人、搬运机器人等方便快捷的机器人,为工业生产提供了强有力的支持。
2. 医疗保健领域智能机器人技术可以发挥很多优势,如提高工作效率、确保操作安全、提高准确度等。
在医疗保健领域中,机器人的应用已经不是一件稀奇的事情了。
机器人外科手术系统、康复机器人、护理机器人等,已经成为医疗保健领域的常规设备,在医院中得到广泛应用。
机器人焊接技术论文(2)

机器人焊接技术论文(2)机器人焊接技术论文篇二智能化机器人焊接技术研究进展摘要:随着先进制造技术的发展,焊接技术的自动化、智能化得到了显著提升,无论是焊接精度、效率都得到了快速发展与提高,可以说未来智能化机器人焊接技术的发展是大势所趋,必然会在大部分的制造业中取代传统的手工焊接。
本文通过对现代智能化机器人焊接技术研究进展,由此进一步探讨和研究未来的智能化焊接技术发展趋势。
关键词:智能化;机器人焊接技术;发展趋势;制造业引言现代科学技术的发展,传统焊接技术也已经发生了天翻地覆的变化,已经从过去单纯的手工式的焊接转变而智能化的操作,并且随着先进制造技术的发展,焊接技术的自动化、智能化得到了显著提升,无论是焊接精度、效率都得到了快速发展与提高,可以说未来智能化机器人焊接技术的发展是大势所趋,必然会在大部分的制造业中取代传统的手工焊接。
从上世纪六十年代至今,焊接机器人控制与发展主要经历了三个阶段,包括示教再现阶段、离线编程阶段和自主编程阶段。
而现代计算机控制技术以及智能化微处理技术的发展,也进一步提升了智能化机器人焊接技术的发展速率,未来的智能化机器人不仅仅是能够按照预先的编程进行运行和焊接,同时也能够实现多项命令下的同时操作以及良好的应变能力,由此更加智能化、柔性化的进行加工和生产。
1.人焊接智能化技术的主要构成现代焊接技术具有典型多学科交叉融合的特点,将现代智能技术引入到传统焊接应用中国,通过微处理技术和计算机技术,将预先程序事先植入到焊接机器人中,从而实现了其行为的自主性,由此使得其能够执行一系列复杂的动作,并且由于计算机的操控可以对其行为以及环境进行实时监控,从而保证了行为的有效性以及故障的可追溯性。
可以说智能化机器人焊接技术是多种技术的集成,实现了远程监控管理、统一调度规划等多项功能,让现代焊接效率更高,流程更清晰,分工更明确,同时也更加便于管理与协调,仅仅需要通过改变一定的程序就能够实现整体的焊接模式和机器人行为,无疑与传统单一的机器人焊接而言有了长足的进步。
焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势一、引言焊接是创造业中常见的工艺,它在产品的生产过程中起到了至关重要的作用。
然而,传统的手工焊接存在一些问题,如低效率、质量不稳定和劳动强度大等。
为了解决这些问题,焊接自动化技术应运而生。
本文将详细探讨焊接自动化技术的现状和发展趋势。
二、焊接自动化技术的现状1. 自动焊接设备自动焊接设备是焊接自动化技术的核心。
目前,市场上已经浮现了各种各样的自动焊接设备,如焊接机器人、自动焊接机等。
这些设备通过程序控制,能够实现高效、准确的焊接操作。
2. 焊接机器人焊接机器人是目前应用最广泛的焊接自动化设备之一。
它具有高度灵便的操作能力,能够适应各种复杂的焊接任务。
焊接机器人通过激光传感器等高精度设备,能够实现高质量的焊接效果。
同时,它还能够减少人力成本,提高生产效率。
3. 自动焊接机自动焊接机是一种集焊接、翻转、定位等功能于一体的设备。
它通过自动控制系统,能够实现焊接过程的自动化。
自动焊接机具有操作简单、高效率、焊接质量稳定等优点,被广泛应用于汽车创造、船舶创造等领域。
4. 焊接监测技术焊接监测技术是焊接自动化技术中的重要组成部份。
通过使用传感器、摄像头等设备,可以实时监测焊接过程中的温度、电流、电压等参数。
这些监测数据能够匡助工程师及时发现焊接缺陷,并进行调整,从而提高焊接质量。
三、焊接自动化技术的发展趋势1. 智能化发展随着人工智能技术的不断发展,焊接自动化技术也将越来越智能化。
未来,焊接设备将更加智能化,能够自动学习和适应不同的焊接任务。
同时,焊接设备还将与其他智能设备进行联网,实现更高效的生产。
2. 精确度提升随着传感器技术的不断进步,焊接自动化设备的精确度将得到进一步提升。
传感器的高精度测量能力将使焊接过程更加精细化,从而提高焊接质量和一致性。
3. 环境友好型环境保护意识的提高将推动焊接自动化技术向更环境友好型的方向发展。
未来,焊接自动化设备将采用更加清洁、低能耗的能源,减少对环境的污染。
焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势一、引言焊接是一种常见的连接工艺,广泛应用于制造业各个领域。
随着工业自动化的发展,焊接自动化技术逐渐成为焊接行业的发展趋势。
本文将重点探讨焊接自动化技术的现状和未来的发展趋势。
二、焊接自动化技术的现状1. 自动化焊接设备随着科技的进步,自动化焊接设备的种类和功能不断增加。
目前市场上常见的自动化焊接设备包括焊接机器人、自动焊接机、激光焊接设备等。
这些设备能够实现高效、精确的焊接操作,提高焊接质量和生产效率。
2. 自动化焊接工艺自动化焊接工艺的发展也取得了重要进展。
传统的手工焊接需要熟练的焊接工人进行操作,容易受到人为因素的影响。
而自动化焊接工艺采用先进的控制系统和传感器,能够实现焊接参数的自动调节和焊接过程的实时监控,提高焊接质量的稳定性和一致性。
3. 自动化焊接应用自动化焊接技术在各个行业都得到了广泛应用。
例如,汽车制造业中的车身焊接、航空航天工业中的航空器焊接、电子制造业中的电子元器件焊接等。
自动化焊接技术不仅能够提高生产效率,降低生产成本,还能够改善工作环境,减少劳动强度。
三、焊接自动化技术的发展趋势1. 智能化发展随着人工智能技术的快速发展,智能化焊接设备将成为未来的发展方向。
智能化焊接设备能够通过学习和优化算法,自动调整焊接参数,提高焊接质量和效率。
同时,智能化焊接设备还能够实现与其他生产设备的联动,实现全自动化生产。
2. 数据化管理随着大数据技术的应用,焊接过程中产生的数据可以被收集、分析和利用。
通过对焊接数据的分析,可以帮助优化焊接工艺,提高焊接质量和效率。
此外,数据化管理还可以实现对焊接设备的远程监控和故障诊断,提高设备的稳定性和可靠性。
3. 绿色环保焊接过程中产生的烟尘和废气对环境和人体健康造成一定的影响。
未来,焊接自动化技术将越来越注重绿色环保。
例如,采用环保焊接材料、改进焊接工艺、减少焊接过程中的废气排放等。
这将有助于减少对环境的污染,提高工作场所的安全性。
智能焊接机器人系统

智能焊接机器人系统随着科技的不断发展,智能焊接机器人系统已经成为现代制造业中的重要一环。
借助于先进的算法和传感器技术,智能焊接机器人能够自动化完成一系列复杂的焊接任务,从而大大提高了生产效率,降低了生产成本,并且能够在高精度、高强度、高危险性的环境中工作。
一、智能焊接机器人系统的优势1、自动化程度高:智能焊接机器人系统能够自动识别工件,自动进行焊接路径规划,自动调整焊接参数,实现了从原料到成品的全程自动化。
2、精度高:智能焊接机器人配备了高精度的传感器和执行器,能够实现毫米级的精确控制,大大提高了焊接精度。
3、适应性强:智能焊接机器人能够适应各种不同的工作环境和任务,通过编程和调整,可以完成不同类型的焊接作业。
4、安全性高:智能焊接机器人配备了多种安全保护装置,能够自动识别危险源,避免事故发生,保障了工作人员的安全。
二、智能焊接机器人系统的组成1、机器人本体:机器人本体是智能焊接机器人系统的核心部分,它由伺服电机、减速器、编码器、传感器等组成,负责执行各项焊接操作。
2、控制系统:控制系统是智能焊接机器人的大脑,它负责接收和解析焊接任务,通过算法控制机器人的运动轨迹、速度、电流等参数。
3、编程软件:编程软件是智能焊接机器人的灵魂,它负责将复杂的焊接任务转化为机器可以理解的语言,使得工作人员能够轻松地对机器人进行编程和操作。
4、安全防护装置:安全防护装置是智能焊接机器人的保护网,它负责在机器人遇到危险时自动停止工作,保护工作人员的安全。
三、智能焊接机器人系统的应用1、汽车制造:汽车制造是智能焊接机器人系统的典型应用领域。
在汽车制造过程中,智能焊接机器人能够自动化完成车身的焊接工作,大大提高了生产效率和质量。
2、航空航天:航空航天领域对焊接精度和安全性要求极高,智能焊接机器人系统在此领域的应用也十分广泛。
通过编程和控制,智能焊接机器人能够准确无误地完成各种高强度、高精度的焊接任务。
3、造船业:在造船业中,智能焊接机器人系统也发挥了重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接机器人智能化技术研究
发表时间:2018-10-15T09:55:07.960Z 来源:《知识-力量》2018年10月中作者:平苏丰
[导读] 机器人焊接已经成为自动化焊接的主要标志,实现机器人焊接过程智能化是机器人焊接技术发展的必然趋势。
本文从焊接传感技术(山东省特种设备检验研究院有限公司)
摘要:机器人焊接已经成为自动化焊接的主要标志,实现机器人焊接过程智能化是机器人焊接技术发展的必然趋势。
本文从焊接传感技术、焊缝跟踪技术、焊接路径规划技术与焊缝成形质量控制技术四个方面介绍机器人焊接智能化关键技术的研究现状及其面临的问题,也展望了焊接机器人智能化技术的发展趋势。
关键词:焊接;智能化;发展趋势
随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化已成为必然趋势。
从60年代诞生和发展到现在,焊接机器人的研究经历了三个阶段,即示教再现阶段、离线编程阶段和自主编程阶段。
随着计算机控制技术的不断进步,使焊接机器人由单一的单机示教再现型向多传感、智能化的柔性加工单元(系统)方向发展,实现由第二代向第三代的过渡将成为焊接机器人追求的目标。
一、焊接机器人技术发展过程
随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化已成为必然趋势。
从60年代诞生和发展到现在,焊接机器人的研究经历了三个阶段,即示教再现阶段、离线编程阶段和自主编程阶段。
随着计算机控制技术的不断进步,使焊接机器人由单一的单机示教再现型向多传感、智能化的柔性加工单元(系统)方向发展,实现由第二代向第三代的过渡将成为焊接机器人追求的目标。
目前,国内外大量应用的弧焊机器人系统从整体上看基本都属于第一代或准二代的。
由于焊接路径和焊接参数是根据实际作业条件预先设置的,焊接时缺少外部信息传感和实时调整控制的功能,这类弧焊机器人对焊接作业条件的稳定性要求严格,焊接时缺乏“柔性”,表现出明显的缺点。
在实际弧焊过程中,焊接条件是经常变化的,如加工和装配上的误差会造成焊缝位置和间隙的变化,焊接过程中工件受热及散热条件改变会造成焊道变形和熔透不均。
为了克服机器人焊接过程中各种不确定性因素对焊接质量的影响,提高机器人作业的智能化水平和工作的可靠性,要求弧焊机器人系统不仅能实现空间焊缝的自动实时跟踪,而且还能实现焊接参数的在线调整和焊缝质量的实时控制。
研究智能化机器人焊接技术,改进目前工业生产中示教再现型焊接机器人的适应或智能化功能,一方面是目前高技术产品复杂焊接工艺及其焊接质量、效率的迫切要求;另外,随着人类探索空间的扩展,在极端环境,如太空、深水以及核环境下的焊接制造也对发展自主智能型焊接机器人提出了强烈的技术需求。
二、焊接机器人技术发展现状
1.焊接传感技术
焊接过程的传感是机器人焊接智能控制行为的前提条件,如同人工智能行为的感知功能,机器人通过传感器实时获取焊接过程的各种状态信息来实现机器人焊接的智能控制行为。
研究学者对焊接过程的传感技术的研究开展了许多的工作,开发了许多种类的传感器,用于对焊接过程进行感知,进而智能控制焊接过程。
已有的研究表明,单一的传感器在反映焊接状态的全面性与准确性存在不足,采用多传感信息融合技术能获取更多的焊接过程状态信息,能更全面和真实的表达焊接过程。
焊接过程中的各类传感器基于传感原理对焊接传感器进行分类,主要包括:视觉传感、电弧传感、声学传感、光谱传感、温度传感等。
视觉传感方法可以识别焊接接头类型,获取焊缝位置、焊接过程熔滴过渡、熔池动态特征等信息,并且不与焊接回路接触,不干扰正常焊接过程,是最有发展前景的传感方法之一。
2.多传感信息融合技术
多传感信息融合技术是在焊接过程中采用多个传感器,从多角度、多方面对焊接过程进行传感,然后使用信息融合技术对多传感信息进行融合处理,获取更加准确、全面的焊接过程状态的融合信息。
该方法对错误信息的容错能力较强、更加真实全面的描述焊接过程状态,因此能够更加准确控制焊接质量,是未来传感技术发展的趋势。
目前针对焊接过程的多传感信息融合技术的研究才刚刚起步,已展现出一定的优势。
3.焊缝跟踪技术
焊接过程的跟踪与纠偏是智能化焊接必须面对与解决的问题之一。
实际焊接过程中,受到加工精度、装配精度与热变形等因素的影响,使焊枪偏离焊接轨迹,从而导致焊接质量下降甚至工件报废。
所以智能化焊接要求在焊接时,利用传感器检测出焊缝偏差信息,并根据偏差信息实时反馈调整焊接路径与焊接参数。
根据焊缝跟踪中所用到的传感器种类的不同可以分为视觉、电弧、超声波、接触式感应跟踪等,其中视觉跟踪和电弧跟踪是焊缝跟踪技术研究的重点。
4.离线编程法
离线编程法也称为虚拟示教法,是利用交互式三维图形软件对机器人、工件及其环境进行建模,并在模拟环境中进行虚拟示教,进而将示教结果转化实际焊接路径的方法。
该方法能够提高机器人的使用效率和焊接自动化水平,降低成本。
但通过离线编程获取的焊接路径在实际焊接时仍需要进行校准与修正才能使用。
目前,国内对于焊接路径规划的离线编程还处于研究试验阶段,而国外一些工业机器人厂家已经开发离线编程软件用于实际生产。
5.电弧跟踪法
电弧跟踪法是利用电弧传感器测量焊接过程中电信号的变化来检测出焊缝偏差信息,从而实现焊接过程纠偏的方法。
该方法不受焊接飞溅、弧光、烟尘等干扰,焊枪可达性好,信号检测的实时性较强,成本较低,在焊缝跟踪中取得较广泛的应用。
电弧跟踪方法主要用于几何特征比较明显的焊缝跟踪,其工作原理是在V型坡口对接焊试验中,控制电弧周期性摆动,当焊枪位置出现偏差时,电信号在周期内呈非对称分布,根据检测到的电信号变化情况,获取焊枪位置偏差信息,并反馈给控制系统实现焊接过程纠偏。
三、焊接机器人技术发展趋势
智能化技术是保证焊接机器人获取更高焊接质量与生产效率的关键技术,是解决焊接机器人在船舶、航空航天、机械制造等领域进一步深入应用的关键。
从上述的研究现状可以看出焊接机器人智能化技术取得了较大的进展,但仍然还有许多问题需要解决。
焊接机器人各方面智能化关键技术中:(1)焊接传感技术将由单一传感方法向多传感信息融合方法发展,以确保焊接状态信息的准确性与完整性;(2)研制出
成本较低、精度较高、实时性较好、适应性较强的视觉跟踪系统是焊缝跟踪技术发展的一种趋势,将会为机器人激光焊的焊缝跟踪应用打下基础。
(3)基于视觉传感的在线自主路径规划技术将是焊接路径规划技术的发展趋势。
(4)随着对焊接过程了解的深入,协同调节各种焊接参数控制焊接过程将是焊缝成形控制技术的发展方向。
随着科学技术快速发展,机器人焊接各方面智能化技术的问题得到有效解决,并取得巨大突破。
本文中探讨了大量的示教再现类型的智能化机器人焊接技术运用问题,这些技术研究成果在众多科研和实务工作者的研究下已经取得了一定的研究成果,在结构和半结构空间的智能化机器人范畴实现了跨越式发展。
但是,在其发展完善过程中仍然存在着相当多的问题,函待解决,需要进一步的调整和优化。
从目前的智能化机器人焊接技术运用实践来看,爬行式焊接机器人等针对具有特殊构件设备的机器人也正处于开发研究过程中,而本文中的各项智能化机器人焊接应用技术具有很强的普适性,也是发展这些新型技术的关键所在。
参考文献
[1]聂云鹏,张培磊,庄乔乔,李雷.焊接机器人智能化关键技术与研究现状[J].热加工工艺,2017,46(15):7-10+14.
[2]赵文光,李士凯,张斌斌.焊接机器人智能化技术研究现状与展望[J].材料开发与应用,2016,31(03):108-114.
[3]陈善本,吕娜.焊接智能化与智能化焊接机器人技术研究进展[J].电焊机,2013,43(05):28-36.
[4]孔萌,林涛,陈善本.机器人焊接智能化技术的现状与最新发展[J].航空制造技术,2008(08):40-43.
[5]陈善本.智能化机器人焊接技术研究进展[J].机器人技术与应用,2007(03):8-11
作者简介:平苏丰(1992-),男,山东济南市人,检验员,单位:山东省特种设备检验研究院有限公司。