关于算法和算理

合集下载

怎样处理算理和算法的关系

怎样处理算理和算法的关系

怎样处理算理和算法的关系算理和算法的关系是计算机科学中一个非常重要的问题。

算理,又称为理论计算机科学,研究的是计算的本质、边界和原理,旨在寻找问题的求解能力和计算的极限。

而算法,则是指解决问题的有序的计算步骤。

算法是算理的应用,而算理则为算法提供了基础和指导。

下面将详细探讨算理和算法的关系,并提出一些处理该关系的方法。

首先,算理为算法提供了基础。

算理研究的是计算机科学的本质和理论模型,例如图灵机、自动机等。

这些理论模型提供了计算过程的抽象和形式化描述,为算法设计和分析提供了基本的数学语言和工具。

算理通过数学和逻辑方法,对算法的正确性、效率和可实现性进行研究,为算法的设计和分析提供了理论基础。

其次,算理为算法提供了指导。

算理研究的是计算的极限和难题,包括NP完全性、不可计算性等。

这些理论结果为算法设计和分析提供了指导方针。

例如,对于NP完全问题,算理的理论结果表明不存在多项式时间的算法来解决这些问题,因此算法设计者不必再花费精力去寻找多项式时间算法,而可以转而寻找近似算法或启发式算法。

算理通过对计算的边界和难题的研究,为算法设计提供了指导,帮助设计者做出更明智的选择。

同时,算法也为算理提供了实践验证和驱动力。

算法是对现实问题的求解过程的抽象和模拟,它们通过一系列的计算步骤来解决问题。

算法的实际应用和效果可以为算理提供实践验证,验证算理研究的正确性和可行性。

而实践中的问题和需求也可以为算理的研究提供驱动力。

算法在实际应用中暴露出的问题和挑战,可以推动算理研究对计算模型和理论的改进和完善。

为了更好地处理算理和算法的关系,可以采取一些方法和策略。

算理与算法

算理与算法

算理与算法摘要:一、引言1.计算的重要性2.算理与算法的概念二、算理简介1.算理的定义2.算理的分类3.算理的发展历史三、算法简介1.算法的定义2.算法的基本特性3.算法的发展历史四、算理与算法的关系1.算理是算法的理论基础2.算法是算理的实际应用3.算理与算法相互促进和发展五、算理与算法在实际应用中的案例1.日常生活应用2.科学研究应用3.工业生产应用六、我国在算理与算法领域的发展1.我国古代算理与算法的发展2.现代我国在算理与算法的研究成果3.我国在算理与算法领域的发展趋势七、结论1.算理与算法的重要性2.算理与算法的发展前景正文:一、引言计算是人们日常生活中必不可少的一部分,无论是简单的加减乘除,还是复杂的科学研究,都离不开计算。

在计算过程中,算理与算法是计算的核心。

本文将介绍算理与算法的相关知识。

二、算理简介算理,又称计算原理,是指计算过程中遵循的逻辑规则和原理。

算理可以分为两大类:一类是关于数的概念、性质、运算等方面的算理;另一类是关于量度、测量、统计等方面的算理。

算理的发展历史悠久,可以追溯到古代文明中的数学知识。

三、算法简介算法,又称计算方法,是指解决计算问题的步骤和技巧。

算法具有五个基本特性:确定性、有穷性、可执行性、输入和输出。

算法的发展历史同样悠久,可以追溯到古代文明中的数学知识。

四、算理与算法的关系算理与算法相互依存,算理为算法提供理论基础,算法是算理的实际应用。

算理与算法相互促进和发展,共同推动了计算科学的进步。

五、算理与算法在实际应用中的案例在日常生活中,人们会用到算理与算法解决各种问题,如购物时计算价格、预算家庭支出等。

在科学研究领域,算理与算法被应用于理论研究、实验设计和数据分析等。

在工业生产领域,算理与算法在自动化生产线、计算机辅助设计和人工智能等方面发挥着重要作用。

六、我国在算理与算法领域的发展我国在古代就有着丰富的算理与算法知识,如《九章算术》、《周髀算经》等。

循理入法,以理驭法——算理与算法有效融合案例分析

循理入法,以理驭法——算理与算法有效融合案例分析

循理入法,以理驭法——算理与算法有效融合案例分析郭家桥中心学校郝悦儿在计算教学中,既要注重算法的掌握,更要注重算理的理解。

所谓算法,指的就是计算方法,详细来说就是把复杂的思维过程进行简单化,然后添加一些后天人为规定的固定操作步骤,即计算法则;而算理指的就是在计算过程中存在的道理,即在计算过程中的思维方式,也是问题的思考与分析,比如为什么要用这样的方法解题,还有没有更合适的办法等。

一、渗透数学思想,促进算理和算法有效融合:(一)数形结合,帮助学生理解算理,掌握算法。

(二)借助转化,感悟算理和算法。

(三)渗透优化思想,加强不同算法的对比。

(四)渗透归纳思想,循序渐进地总结算法。

二、小数的加减法在课前复习了整数加法列竖式的计算方法,帮助学生回顾反思了整数加法的算法,并且分析了算法形成过程中依据的算理。

(1)小丽买了下面两本书,一共花了多少钱?/ 4.29 元A(2)《数学家的故事》比《童话选》贵多少钱?要求:1.同桌各选一道不同的问题解决;⅛2.先列横式,在列竖式计算。

出示例题后分析题意列出算式,让学生尝试计算。

唤醒旧知强化算法后分析了整数加减法和小数加减法之间的联系。

通过学生思考发现两者的算理都是“相同数位必须对齐”,而小数加减法的算理是“必须对齐小数点”,从这里打通了整数加减法与小数加减法的认知。

5元6角2分+3元零9分4ιιι35cιn+5ιπ70cπι5.62+3.09=2.看图写出小数加减法算式教师用紧凑的课堂练习换个角度启发学生深入分析与思考,深化了算理的理解。

这样可以使学生站在更高的高度掌握理解算法与算理之间的联系,把知识恰当地融合在一起,从而更科学地掌握计算法则。

出示例题后教师用“你想怎么算?”来激活学生的思维,寻找学生知识的生长点。

重视“两位数乘两位数”的桥梁作用,准确把握将“两位数乘两位数”连接到“两位数乘一位数”和“两位数乘整十数”的口算这一关键连接点。

14本zzzzzzzzzzzzziy2^二:二:::::::::::110套J2×*4^=28 '10×14=14028÷140=168合理借助直观点子图,从不同角度直观呈现了14X12的计算“道理”,把一个新学习的问题转化成易于理解和解决的问题。

如何处理算理和算法的关系

如何处理算理和算法的关系

如何处理算理和算法的关系算理是算法的理论依据,算法是算理的提炼和概括,它们是相辅相成的,算理与算法,贵在合谐,而寻求算理与算法的平衡点是计算教学理性回归需要解决的主要问题。

算法多样化,算理要让学生掌握数学思想方法。

怎样处理好算理与算法教学统一,使学生既理解算理,又能牢固掌握算法、提高计算的速度和正确率呢?下面就以两位数乘一位数为例,说说如何实现理算理与算法的的教学统一。

1、引导研究,理解算理学生只有理解了计算的道理,才能“创造”出计算的方法,才能理解和掌握计算方法,才能正确迅速地计算,所以计算教学必须从算理开始。

教学中要引导学生对计算的道理进行深入的研究,帮助学生应用已有的知识领悟计算的道理。

首先引导学生思考:为什么可以用14×2计算?使学生明白14×2表示求2个14是多少;其次,让学生思考:你打算怎么计算14×2?使学生明白14是由1个十和4个一组成的,可以把14×2转化成已经学过的乘法计算:先算2个10 是多少,再算2个4是多少,最后把两次算的得数合并,计算的过程有三个算式:4×2=8,10×2=20,20+8=28。

通过这样的研究学生就理解两位数乘一位数计算的道理,学生就能应用这样的道理解决其他两位数乘一位数的计算问题。

2、及时练习,巩固内化通过上面的计算研究,学生虽然理解了两位数乘一位数的道理,但是此时学生对算理的理解还处于似懂非懂的状态,学生是否真正掌握了算理还要经过实际计算才能得到检验和巩固,此时及时组织学生进行相应的练习是很有必要的,只有在练习中才能把算理内化为自己的理解,才能使学生理解和掌握算理。

所以在学生初步理解了算理后,应当及时组织学生用三个算式进行两位数乘一位数的练习,使学生在练习中加深对算理的理解,在练习中牢固掌握算理,为后面的抽象、概括计算方法奠定坚实的基础。

3、应用算理,进行创造。

算理是计算的思维本质,如果都这样思考着算理进行计算,不但思维强度太大,而且计算的速度很慢算。

算理和算法的简单例子

算理和算法的简单例子

算理和算法的简单例子算理和算法是计算机科学中非常重要的概念,它们在解决问题和优化程序中起着至关重要的作用。

下面是一些简单的例子,旨在帮助读者更好地理解算理和算法的概念。

1. 算理:假设你有一个数字列表,你想找到其中的最大值。

你可以使用算理的思想,通过遍历列表并比较每个数字,找到最大值。

这种方法被称为线性搜索算理。

2. 算法:在上述例子中,你可以使用一种称为“分而治之”的算法来找到最大值。

这个算法将列表分成两半,分别找到每个半部分的最大值,然后将这两个最大值进行比较,找到整个列表的最大值。

这种方法被称为二分查找算法。

3. 算理:假设你有一个字符串,你想知道它是否是回文。

回文是指从前往后读和从后往前读都一样的字符串。

你可以使用算理的思想,通过遍历字符串的两端并比较每个字符,判断是否是回文。

4. 算法:在上述例子中,你可以使用一种称为“反转字符串”的算法来判断字符串是否是回文。

这个算法将字符串反转,然后将反转后的字符串与原字符串进行比较,如果相等则说明是回文。

这种方法被称为字符串反转算法。

5. 算理:假设你有一个长度为n的数组,你想找到其中的重复元素。

你可以使用算理的思想,通过比较每个元素与其他元素的值,找到重复出现的元素。

6. 算法:在上述例子中,你可以使用一种称为“哈希表”的算法来找到重复元素。

这个算法首先创建一个空的哈希表,然后遍历数组中的每个元素,将元素作为键存储在哈希表中,如果遇到重复的元素,则说明找到了重复元素。

这种方法被称为哈希表算法。

7. 算理:假设你有一个有序数组和一个目标值,你想找到目标值在数组中的位置。

你可以使用算理的思想,通过比较目标值与数组中的元素,找到目标值的位置。

8. 算法:在上述例子中,你可以使用一种称为“二分查找”的算法来找到目标值的位置。

这个算法将数组分成两半,分别比较目标值与中间元素的大小,然后根据比较结果缩小搜索范围,直到找到目标值或搜索范围为空。

这种方法被称为二分查找算法。

算理和算法有效结合磨课总结

算理和算法有效结合磨课总结

算理和算法有效结合磨课总结篇一:计算教学中如何使算理和算法有效结合计算教学中如何使算理和算法有效结合算理与算法之间有着密切的关系:算理是客观存在的规律,为计算提供了正确的思维方式,保证了计算的合理性和正确性,它是算法的理论依据;算法为计算提供了快捷的操作方法,提高了计算的速度,它是算理的提炼和概括,二者是相辅相成的。

要实现二者的有效融合很有必要,它不仅关系着算理能否掌握,还直接关系算法能否落实。

怎样将二者融合呢?从磨课方案到教学设计到上课实录,再到总结研讨,真是醍醐灌顶,如获至宝。

尤其是本次磨课中对于算理与算法的有效结合做的是炉火纯青,值得我仔细揣摩,谈到本课例片段中是怎么处理算理和算法关系,采取了哪些促使算理和算法有效结合的措施,具体来说我认为:一、算理必须要让学生感悟,而不是让学生单纯的理解。

本片段中口算环节,先由学生独立试算,其实这就是让学生自主探究感悟算理,该怎么做呢,为什么这样做呢?二、算法是学生在理解了算理的根底上对适合自己的计算方法的总结,本片段中让学生中交流算法,其中引入了直观图;然后比照几种口算方法,寻找其共同点。

这其实就是在感悟的根底上对算法进行一种理解总结。

真的就是感悟算理和掌握算法是计算教学的两大任务,算法是解决问题的操作程序,算理是算法赖以成立的数学原理。

三、我个人认为本片段中自主探究环节设计的巧妙,自主探究环节是找准“算理〞与“算法〞的连接点,是促使算理和算法有效结合的有力措施。

总之通过本次研修我个人认为只有根据学生已有的“旧知〞,并与抽象的竖式计算建立起联系,从而让学生经历竖式,才能真正掌握竖式计算的方法。

才能到达算理与算法的有效结合。

篇二:磨课总结与反思磨课总结反思邹城市中心店镇付庄小学王波研修即将结束,回忆这将近两个月的紧张磨课经历,一路走来,我感到收获颇多。

整个磨课过程,我与研修组全体成员精诚团结,群策群力,虽然工作繁忙,可磨课任务一样都没落下。

真是“为磨精课人憔悴,衣带渐宽终不悔。

算理与算法并重

算理与算法并重

算理与算法并重,促进学生计算能力的培养算理:即计算的原理或者道理,是解决“为什么这样算的问题”。

算法:即计算的方法,是解决“怎么算”的问题。

也就是说计算教学是由计算原理教学和技能训练两部分组成。

在教学时,每一位教师应让算理与算法并重,加强学生计算能力的培养,从而提高学生的计算能力。

在我身边的一些数学教师总认为,计算教学没有什么道理可讲,不必浪费时间去理解算理,只要让学生死记硬背法则,掌握计算方法,反复练习就可以达到正确、熟练的要求。

还有一些教师对“算理”和“算法”的处理,存在着一定的偏差,单纯地讲“算理”,缺乏对“算法”的提炼,或用“算法”讲“算法”,忽视“算理”的教学,遇到一些教师不好讲解或学生不易懂的算理,就一带而过。

更有一部分学生认为自己早在学前就会计算了,而不懂得要去探索计算中的“所以然”,因此造成只知其然不知其所以然的局面。

这样不明算理的机械算法,最终使学生计算的正确率较低,计算技能技巧也无法得到提高。

从六年级毕业班教学下来的我,作为学校数学教研组长的我,深知肩上的责任,就是要在教学中起到引领的作用,于是我下定决心改变上述状况。

首先我认真钻研新大纲,新教材,然后根据班上学生的实际情况,在数学计算教学中,我尝试做到以下五点:一、正确处理好“算理”与“算法”的关系算理是计算的理论依据,而算法则是依据算理提炼出来的计算程序和方法,它是算理的具体体现。

在教学三年级上册的两位数乘一位数不进位乘法时,我是这样设计的:我首先引导学生思考:为什么可以用14×2计算?使学生明白14×2表示求2个14是多少;其次,让学生思考:你打算怎么计算14×2?使学生明白14是由1个十和4个一组成的,可以把14×2转化成已经学过的乘法计算:先算2个10 是多少,再算2个4是多少,最后把两次算的得数合并,计算的过程有三个算式:4×2=8,10×2=20,20+8=28。

算理与算法

算理与算法
算理:把0.2扩大10倍变为2,把0.3扩大10倍变为3,2×3=6,因为两个因数都扩大了10倍,积就扩大到了原来的100倍,还要把积缩小100倍,就是0.06。
算法:先按整数乘法来乘,2×3=6,再数一数因数中有几位小数,有两位,就在积里从右向左数出两位,点上小数点就是0.06。
例3:“同分母分数加法”
小学数学渗透的数学思想方法主要有对应思想方法、转化思想方法、符号化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、有序思想方法等。在计算教学中教师有意识的让引导学生感悟、了解、应用一些数学思想方法,很有必要。例如整数、小数和分数的加减法,从算法上看存在显著区别,但分析其中的算理,却可以发现,三者是完全一致的,其本质都是相同计数单位的合并(或相减)。再比如,除数是小数的除法和异分母分数的加减法,在计算方法上完全不同,但从数学思想方法的角度进行考察,就能发现其中的一致性,即都体现了“转化”的思想。由此可见在计算教学中揭示蕴含在不同知识点背后的本质联系,有利于学生更加深刻地理解数学,构建知识网络,培养数学意识,进而使学生掌握的数学知识更具有可持续发展的张力。
说算理、算法在小学数学计算教学中的重要性
算理:即计算的原理或者道理,是解决问题的操作程序,解决“为什么这样算的问题”。算法:即计算的方法,是算法依赖于成立的数学原理,解决“怎么算”的问题。也就是说计算教学由计算原理教学和技能训练两部分组成。在教学时,教师应该指导学生理解算理,在理解算理的基础上掌握计算方法,最后形成计算技能。
5、关注数学对数学思想方法的感悟和运用。
数学课程标准总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”知识和技能是数学学习的基础,而数学思想方法则是数学的灵魂和精髓。掌握科学的数学思பைடு நூலகம்方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于算法和算理
什么是算理?
算理就是计算过程中的道理,是指计算过程中的思维方式,解决“为什么这样算”,这样算的道理是什么。

算理一般由数学概念、运算规律、运算性质等构成。

就是教师根据概念,性质,定义为依据对计算方法加以说明。

如:小数乘法的算理就是积的变化规律,小数除法的算理就是商不变的规律。

什么是算法?
算法就是计算的方法,主要解决“怎样计算”的问题。

通常是算理指导下的一些人为规定的操作步骤,解决如何算得方便、准确的问题。

如:小数乘法的算法:先按照整数乘法算出积,再看因数中一共有几位小数就从积的右边数出几位点上小数点。

整数(小数)加法:算法:把相同数位对齐列出竖式,再从个位加起,满十向前一位进一。

算理:依据数的组成意义,推出相同计数单位(分数单位)的数才能相加减。

算理也可以理解为加法交换律和结合律。

整数(小数)减法:算法:相同数位对齐,从个位减起,哪一位不够减就从前一位退一,在本位上加10再减。

算理:依据数的组成和意义概念,推出相同计数单位的数才能相加减。

十进制计数法。

算理与算法的关系是什么?
算理是客观存在的规律,算法是人为规定的操作方法;算理为计算提供了正确的思维方式,保证了计算的合理性和正确性,算法为计算提供了快捷的操作方法,提高了计算的速度;算理是算法的理论依据,算法是算理的提炼和概括,它们是相辅相成的。

教学中不可放弃任何一方面。

在教学中如何处理算理和算法的关系?
既要让学生知道怎么算,又要知道为什么要这样算,知其然又知其所以然,这是计算教学的根本。

在教学时要让学生在感悟、理解算理的基础上生成、(创造)出算法,到最后掌握算法。

一般情况下,一个单元的起始例题,是整个单元的基础和关键。

要用足时间重点突破。

使学生扎扎实实地理解算理,掌握算法。

相关文档
最新文档