数学:213《分层抽样》PPT课件(新人教A版必修3)
合集下载
人教版高中数学必修三课件:2.1.3 分层抽样(共15张PPT)

晚会,要产生两名“幸运者”,则合适的抽样方法分别为( C )
A.系统抽样,系统抽样,简单随机抽样
B.简单随机抽样,分层抽样,简单随机抽样
C.系统抽样,分层抽样,简单随机抽样
D.分层抽样,简单随机抽样,简单随机抽样
4、某校高三一班有学生54人,二班有学生42人,现在要用分层抽
样的方法从两个班抽出16人参加军训表演,则一班和二班分别被
抽取的人数是( C )
A.8,8
B.10,6
C.9,7
D.12,4
5、某大学为了解在校本科生对参加某项社会实践活动的意向,拟
采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量
为300的样本进行调查,已知该校一年级、二年级、三年级、四年
级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取
A.将总体分成几部分,按预先设定的规则在各部分抽取
B.抽样过程中每个个体被抽到的机会均等
C.将总体分成几层,然后分层按照比例抽取
D.没有共同点
目标检测
3、①教育局到某学校检查工作,打算在每个班各抽调2人参加座
谈;②某班期中考试有10人在85分以上,25人在60~84分,5人
不及格,欲从中抽出8人参加改进教与学研讨;③某班级举行元旦
适应范围
总体中 的个体 数较少
总体中 的个体 数较多
总体由 差异明 显的几 部分组 成
样本的是( B )
A.从10名同学中抽取3人参加座谈会 B.某社区有500个家庭,其中高收入的家 庭125户,中等收入的家庭280户,低收入的 家庭95户,为了了解生活购买力的某项指标, 要从中抽取一个容量为100户的样本 C.从1 000名工人中,抽取100人调查上班 途中所用时间 D.从生产流水线上,抽取样本检查产品质 量
课件_人教版高中数学必修三分层抽样课件_PPT课件_优秀版

2000 1 10 200
巩固练习
2、某工厂生产A、 B、C三种不同型 号的产品,产品数量 之比为2:3:5,现用 分层抽样方法抽取 一个容量为n的样 本,样本中A型产品 有16种,那么此样 本容量n= .
解:A、B、C三种型号 产品数量之比也是相应 三种产品样本数之比 2:3:5,所以A型产品的样
分层抽样的定义
一般地,在抽样时, 将总体分成互不交叉 的层,然后按照一定 的比例,从各层独立 地抽取一定数量的个 体,将各层取出的个 体合在一起作为样本, 这种抽样方法是一种 分层抽样.
例 1 某单位有500名职工,其中不到35岁的有125人, 35~49岁的有280人,50岁以上的有95人.为了了解该单 位职工年龄与身体状况的有关指标,从中抽取100名职工作 为样本,应该怎样抽取?
之和为 ; 对调查对象(总体)事先掌握的各种信息.
(4)分利➢别用分抽简取单层2随5抽机,抽5样6样,或中19系人分统;抽多样的少方层法,、从各如年何龄段分层要视具体情况而定,要尽量利用调查者 全(面为调第查对全层班所调同包查学含的的对平个均体象身数(高),使总并得与各体抽)样统事计的先结掌果进握行比的较各,你种能发信现息什么.问题?
解:(1)分三层:不到35岁的职工,35~49岁的职工,50岁以上的
职工;
所以三种型号轿4车、依次抽抽取样数为—: —在各个层中,按步骤3中确定的数目在各
解:设“不喜欢”的 人,则“喜欢”的为 人,“一般”的为 人 .
层中随机抽取个体; 统计思想、类比思想、随机思想
为了了解我班50名同学的近视情况,准备抽取10名学生进行检查,应怎样进行抽取?
本数占样本容量的 2 , 10
即 2 n16,
10
高中数学(人教版A版必修三)配套课件:2.1.3分层抽样

解析答案
类型二 分层抽样的实施步骤 例2 写出跟踪训练1的实施步骤. 解 (1)按年龄将500名职工分成三层:35岁以下的职工;35岁~49岁的 职工;50岁以上的职工. (2)确定每层抽取个体的个数.抽样比为150000=15,则在 35 岁以下的职工中
抽取 125×51=25(人);在 35 岁~49 岁的职工中抽取 280×51=56(人);
答案
返回
题型探究
重点难点 个个击破
类型一 分层抽样的适用情景 例1 某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育 部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小 学生中抽取1%的学生进行调查,你认为应当怎样抽取样本? 解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异, 为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样. (2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样. (3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.
第二章 §2.1 随机抽样
2.1.3 分层抽样
学习目标
1.理解分层抽样的基本思想和适用情形; 2.掌握分层抽样的实施步骤; 3.了解三种抽样方法的区别和联系.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 分层抽样的基本思想和适用情形 思考 中国共产党第十八次代表大会2 270名代表是从40个单位中产生的, 这40个单位分别是1─31为省(自治区、直辖市)、32中央直属机关、33中央
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
类型二 分层抽样的实施步骤 例2 写出跟踪训练1的实施步骤. 解 (1)按年龄将500名职工分成三层:35岁以下的职工;35岁~49岁的 职工;50岁以上的职工. (2)确定每层抽取个体的个数.抽样比为150000=15,则在 35 岁以下的职工中
抽取 125×51=25(人);在 35 岁~49 岁的职工中抽取 280×51=56(人);
答案
返回
题型探究
重点难点 个个击破
类型一 分层抽样的适用情景 例1 某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育 部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小 学生中抽取1%的学生进行调查,你认为应当怎样抽取样本? 解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异, 为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样. (2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样. (3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.
第二章 §2.1 随机抽样
2.1.3 分层抽样
学习目标
1.理解分层抽样的基本思想和适用情形; 2.掌握分层抽样的实施步骤; 3.了解三种抽样方法的区别和联系.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 分层抽样的基本思想和适用情形 思考 中国共产党第十八次代表大会2 270名代表是从40个单位中产生的, 这40个单位分别是1─31为省(自治区、直辖市)、32中央直属机关、33中央
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
人教A版高中数学必修三213分层抽样课件共17张

分析(:3)三个学段中个体有较大差别,应如何 提高样本的代表性? 应考虑他们在样本中所占的比例。 (4)如何确定各学段所要抽取的人数? 按比例分配人数到各个阶段,得到各个学段
所要抽取的个体数 .
创设情景
假设某地区有高中生2400人,初中生10900人,小学生 11000人.此地区教育部门为了了解本地区中小学生的近视 情况及其形成原因,要从本地区的中小学生中抽取1%的学 生进行调查,你认为应当怎样抽取样本?
后勤人员24名。为了了解教职工对学校在校务公开方面的意
见,拟抽取一个容量为20的样本。
③分层抽样
知识应用
例 某高中共有900人,其中高一年级
300人,高二年级200人,高三年级400
人,现采用分层抽样抽取容量为45的
样本,那么高一、高二、高三各年级
抽取的人数分别为( D )
A.15,5,25
B.15,15,15
抽样
成
作业
? 课本62页,课后练习第一题,要求按学习小组合 作写出统计报告,要求体现统计数据、抽样过程 和结论。
222126200 134123040 4343300
258215080 1112190 63600
问题一 总体容量是多少? 问题二 应该采用哪种抽样?
分层抽样时,若某层中按 抽样比算不是整数时,则 需先剔除几个个体,在剔
问题三
如何确定每层的样本数?
除时要随机剔除以保证每 个个体被抽取的机会相等.
问题四 实际抽样过程中遇到什么问题?
解: 高中生人数 :2400×1%=24
初中生人数 :10900×1%=109
小学生人数 : 11000×1%=110
然后分别在各个学段运用系统抽样方法抽取 .
所要抽取的个体数 .
创设情景
假设某地区有高中生2400人,初中生10900人,小学生 11000人.此地区教育部门为了了解本地区中小学生的近视 情况及其形成原因,要从本地区的中小学生中抽取1%的学 生进行调查,你认为应当怎样抽取样本?
后勤人员24名。为了了解教职工对学校在校务公开方面的意
见,拟抽取一个容量为20的样本。
③分层抽样
知识应用
例 某高中共有900人,其中高一年级
300人,高二年级200人,高三年级400
人,现采用分层抽样抽取容量为45的
样本,那么高一、高二、高三各年级
抽取的人数分别为( D )
A.15,5,25
B.15,15,15
抽样
成
作业
? 课本62页,课后练习第一题,要求按学习小组合 作写出统计报告,要求体现统计数据、抽样过程 和结论。
222126200 134123040 4343300
258215080 1112190 63600
问题一 总体容量是多少? 问题二 应该采用哪种抽样?
分层抽样时,若某层中按 抽样比算不是整数时,则 需先剔除几个个体,在剔
问题三
如何确定每层的样本数?
除时要随机剔除以保证每 个个体被抽取的机会相等.
问题四 实际抽样过程中遇到什么问题?
解: 高中生人数 :2400×1%=24
初中生人数 :10900×1%=109
小学生人数 : 11000×1%=110
然后分别在各个学段运用系统抽样方法抽取 .
2.1.3分层抽样课件ppt人教A版(必修3)ppt.ppt

1.分层抽样利用了调查者对调查对象事先掌 握的各种信息,考虑了保持样本结构与总体 结构的一致性,从而使样本更具有代表性, 在实际调查中被广泛应用.
2.分层抽样是按比例分别对各层进行抽样, 再将各个子样本合并在一起构成所需样本.其 中正确计算各层应抽取的个体数,是分层抽 样过程中的重要环节.
3.简单随机抽样是基础,系统抽样与分层抽 样是补充和发展,三者相辅相成,对立统一.
思考:样本容量与总体的个体数之比是 分层抽样的比例常数,按这个比例可以 确定各层应抽取的个体数,如果各层应 抽取的个体数不都是整数该如何处理?
调节样本容量,剔除个体.
例:某单位有老年人28人,中年人54 人,青年人81人,为了调查他们的身体 状况,从他们中抽取容量为36的本, 最适合抽取样本的方法是( ) A.简单随机抽样 B.系统抽样 C.分层抽样 D.先从老年人中剔除1人,再用 分层抽样
解:用分层抽样来抽取样本,步骤是:
(1)分层:按年龄将150名职工分成三层: 不到35岁的职工;35岁至49岁的职工;50岁 以上的职工.
(2)确定每层抽取个体的个数.抽样比为,则在 不到35岁的职工中抽125×1/5=25人;在35岁 至49岁的职工中抽280×1/5=56人;在50岁以 上的职工中抽95×1/5=19人.
(3)利用简单随机抽样或系统抽样的方法,从 各年龄段分别抽取25,56, 19人。
(4)综合每层抽样,就是所抽取的样本组成样本.
思考:分层抽样的操作步骤如何?
第一步,计算样本容量与总体的个体数 之比.
第二步,将总体分成互不交叉的层,按 比例确定各层要抽取的个体数. 第三步,用简单随机抽样或系统抽样在 各层中抽取相应数量的个体.
2. 某中学有180名教职员工,其中教学 人员144人,管理人员12人,后勤服务 人员24人,设计一个抽样方案,从中 选取15人去参观旅游.
2.1.3 分层抽样 高三数学上册必修课件

应用实例
例1 . 高一(7)班有54名学生,其中男生有24名
女生有30名,现从该班学生当中选9名学生来参加
唱红歌比赛 ,则男女生当中分别抽取多少名?
解析:(1)样本容量与总体的个体数的比为
9 =1 54 6
(2)确定各个层要抽取的数目:
男生: 24 1 = 4
6
女生: 30 1 = 5
6
(3)采用简单随机抽样在各层中抽取
一般地,在抽样时,将总体分成互不交叉的层, 然后按照一定的比例,从各层独立地抽取一定数 量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。
布置作业
1. 教材第64页习题第五题 2. 同步练习第26页内容
由于样本的容量与总体的个体数的比是1:100
因此,样本中包含的各部分的个体数应该是
2400 , 10900 , 11000
100
100
100
即抽取24名高中生,109名初中生和110名 小学生作为样本。
分层抽样的步骤:
(1)分层:按某种特征将总体分成若干部分。 (2)按比例确定每层抽取个体的个数。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。
男生:4名 女生:5名;这样便得到了所要抽取 的样本。
随堂练习
1. 某学校有教师160人,其中有高级职称的32人, 中级职称的56人,初级职称的72人.现抽取一个容 量为20的样本,用分层抽样法抽取的中级职称的
教师人数应为( C )
A.4
B.6
C.7
D.9
高考链接
1.(2009辽宁)某城市有210家百货商店,其 中大型商店20家,中型商店40家,小型商店 150家。为了掌握各商店的营业情况,计划抽 取一个容量为21的样本,按照分层抽样方法 抽取时,各种百货商店分别抽取多少家?写 出抽样过程。
高中数学2.1.3分层抽样1课件新人教A版必修3
单位职工与身体状况有关的某项指标,要从中抽取一个容 量为100的样本。由于职工年龄与这项指标有关,试问:应 用什么方法抽取?
解:1)确定样本容量与总体的个体数之比100:500 = 1:5
2)利用抽样比确定各年龄段应抽取的个体数,依次为 125,280,95 ,即25,56,19。 5 55
3)利用简单随机抽样或系统抽样的方法,从各年龄段分 别抽取25,56,19人,然后合在一起,就是所抽取的样 本。
分层抽样
假设某地区有高中生2400人,初中生10900人,小学 生11000人。此地区教育部门为了了解本地区中小学生的 近视情况及其形成原因,要从本地区的中小学生中抽取 1%的学生进行调查。你认为应当怎样抽取样本?能在 14300人中任意取143个吗?能将143个份额均分到这三部 分中吗?
分析:考察对象的特点是由具有明显差异的几部分组成。
1、根据总体的差异将总体分为互不交叉 的层。2、按比例kn N
在各层中抽取个体。
3、合成样本。
2、某单位有职工200人,其中老年职工40人,现从该 单位的200人中抽取40人进行健康普查,如果采用分 层抽样进行抽取,则老年职工应抽取的人数为多少?
课堂小结: n
(1)分层抽样是等概率抽样N ,它也是公平的。用分层 抽样从个体为N的总体中抽取一个容量为n的样本时,在 整个抽样过程中每个个体被抽到的概率相等。
当已知总体由差异明显的几部分组成时,为了使样本更 充分地反映总体的情况,常将总体分成几个部分,然后 按照各部分所占的比例进行抽样,这种抽样叫做“分层 抽样”,其中所分成的各部分叫做“层”。
1、一个单位的职工500人,其中不到35岁的有125人,35到 49岁的有280人,50岁以上的有95人。为了了解这个
(人教a版)必修三同步课件:2.1.3分层抽样
B.某社区有500个家庭,其中高收入的家庭125户,中等收
的家庭95户,为了了解生活购买
入的家庭280户,低收入
力的某项指标,要从中抽取一个容量为100户的样本
C.从1 000名工人中,抽取100人调查上班途中所用时间 D.从生产流水线上,抽取样本检查产品质量 答案 B
解析
A中总体所含个体无差异且个数较少,适合用简单随
高中数学· 必修3· 人教A版
2.1.3 分层抽样
[学习目标]
1.理解分层抽样的概念. 2.会用分层抽样从总体中抽取样本. 3.了解三种抽样法的联系和区别.
[知识链接]
学校教务处每年都要进行一次评教、评学活动,即对本学年教师的授课,学生的接受状 况进行了解,教务处规定每班选两名同学作为代表,他们分别是各班的班长和学习委
中,其样本容量分别是多少? (2)上面三种抽取方式各自采用何种抽取样本的方法? (3)试分别写出上面三种抽取方法各自抽取样本的步骤.
解
(1)这三种抽取方式中,其总体都是指该校高三全体
学生本年度的考试成绩,个体都是指高三年级每个学生
本年度的考试成绩.其中第一种抽取方式中样本为所抽
取的14名学生本年度的考试成绩,样本容量为14;第二 种抽取方式中样本为所抽取的14名学生本年度的考试成 绩,样本容量为14;第三种抽取方式中样本为所抽取的 100名学生本年度的考试成绩,样本容量为100.
分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持_________与_________的一 致性,这对提高样本的代表性非常重要.当总体是由_________的几个部分组成时,
样本结构 总体结构 往往选用分层抽样的方法 .
差异明显
要点一
例1
分层抽样的概念
人教A版高中数学必修三课件高一:2.1.3分层抽样.pptx.pptx
当总体由差异明显的几部分组成时,往往采用分层抽样
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
归纳总结分层抽样的特点:
(1)分层抽取;
(2)按比例抽取;
(3)必须结合简单随机抽样或系统抽样完成.
【做一做】有一批产品,其中一等品10件,二等品25件,次品5件.用
题型一 题型二 题型三
确定各层抽取的个体数
【例2】某全日制大学共有学生5 600人,其中专科生有1 300人,本
科生有3 000人,研究生有1 300人,现采用分层抽样的方法调查学生
利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科
生、本科生与研究生这三类学生中分别抽取多少人?
解:抽样比是
剖析:(1)若总体由差异明显的几部分组成,则选用分层抽样.
(2)若总体所含个体没有差异,则考虑采用简单随机抽样或系统抽
样.
当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小
时宜用随机数法;当总体容量较大,样本容量也较大时宜用系统抽
样.
(3)采用系统抽样时,当总体容量 N 能被样本容量 n 整除时,抽样
280 5 600
=
1 20
,
则应在专科生、本科生与研究生这三
类学生中分别抽取1 300× 1 = 65(人),3 000× 1 = 150(人),1 300×
20
20
1 20ቤተ መጻሕፍቲ ባይዱ
=
65(人).
反思一个总体中有m个个体,用分层抽样方法从中抽取一个容量
为n(n<m)的样本,某层中含有x(x<m)个个体,在该层中抽取的个体
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
归纳总结分层抽样的特点:
(1)分层抽取;
(2)按比例抽取;
(3)必须结合简单随机抽样或系统抽样完成.
【做一做】有一批产品,其中一等品10件,二等品25件,次品5件.用
题型一 题型二 题型三
确定各层抽取的个体数
【例2】某全日制大学共有学生5 600人,其中专科生有1 300人,本
科生有3 000人,研究生有1 300人,现采用分层抽样的方法调查学生
利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科
生、本科生与研究生这三类学生中分别抽取多少人?
解:抽样比是
剖析:(1)若总体由差异明显的几部分组成,则选用分层抽样.
(2)若总体所含个体没有差异,则考虑采用简单随机抽样或系统抽
样.
当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小
时宜用随机数法;当总体容量较大,样本容量也较大时宜用系统抽
样.
(3)采用系统抽样时,当总体容量 N 能被样本容量 n 整除时,抽样
280 5 600
=
1 20
,
则应在专科生、本科生与研究生这三
类学生中分别抽取1 300× 1 = 65(人),3 000× 1 = 150(人),1 300×
20
20
1 20ቤተ መጻሕፍቲ ባይዱ
=
65(人).
反思一个总体中有m个个体,用分层抽样方法从中抽取一个容量
为n(n<m)的样本,某层中含有x(x<m)个个体,在该层中抽取的个体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)某单位有老年人27人,中年人 55人,青年人81人,为了调查他 们的身体情况,需从他们中抽取 一个容量为36的样本,则适合的 抽取方法是( ) A.简单随机抽样 B.系统抽样 C.分层抽样 D.先从中年人中 剔除1人,然后再分层抽样
(3)对某单位1000名职工进 行某项专门调查,调查的项目 与职工任职年限有关,人事部 门提供了如下资料:
目标检测
练习
(1)某校有1000名学生,其中O型血的有 400人,A型血的人有250人,B型血的有 250人,AB型血的有100人,为了研究血型 与色弱的关系,要从中抽取一个40人的样 本,按分层抽样,O型血应抽取的人数为 ___人,A型血应抽取的人数为___人,B型 血应抽取的人数 为___人,AB型血应抽取 的人数为___人。
问题8:分层抽样的具体步骤是什么?
例4:最近“三鹿婴儿奶粉事件”引起社 会广泛关注,造成婴儿肾结石的原因是婴 儿奶粉中掺有三聚氰胺。现某地质量监督 部门将对本地三鹿奶粉厂的所有种类的库 存奶粉进行三聚氰胺平均含量抽样检测, 已查明该厂库存奶粉10000袋,其中婴儿 奶粉4000袋、普通奶粉3000袋、老年奶 粉3000袋,如果质量监督部门打算抽取 500袋作为样本进行检测,那么应该如何 抽样?
运用概念
例2:如果要调查我们班同学的 平均身高,应该如何抽样比较 合理?
例3:某校有在校高中生1350人,高一, 高二、高三学生人数和男、女生分布情 况如下表:
年级 高一 高二 高三 人数 450 440 460 男生 240 240 240 女生 210 200 220
问:如果想通过抽查学校中10%学生来调查 学生身高,以了解青少年生长发育情 况,应采用怎样的抽样方法?如何抽 样?
问题3:
问题4: 1%的样本是什么含义?
问题5 :请问例1中样本可看 成由几部分组成?
问题6:你怎么从各部分中抽取样本?请动笔 试试。为什么要这样取各个学段的个体数?
思考:有人说:“如果抽样方法 设计得好,用样本进行视力调查 与对24300名学生进行视力普查 的结果会差不多,而且对于教育 部门掌握学生视力状况来说,因 为节省了人力、物力和财力,抽 样调查更可取。”你认为这种说 法有道理吗?为什么?
近视率/%
小学
ห้องสมุดไป่ตู้
初中
高中 年级
教育部门为了了解本地区中小学生 的近视情况及其形成原因,要从本地 区的中小学生中抽取1%的学生进行 调查,你认为应当怎样抽取样本?
你认为哪些因素可能影响学 生的视力?设计抽样方法时 需要考虑这些因素吗?
学段对视力有影响
请问例1中的总体是什么? 总体可看成由几部分组成? 总体中的个体数是多少?
情景设置
问题1:如果要调查我们班同学 的平均身高,用前面学过的抽 样方法怎么做?
问题2:由经验看,以上的方 法有没有不妥的地方?样本的 代表性一定好吗?
可能会出现样本代表性 不好的情况!
探究
例1:假设某地区有高中生 2400人,初中生10900人,小 学生11000人.此地区
80 60 40 20 0
新课标人教版课件系列
《高中数学》
必修3
2.1.3《分层抽样》
教学目标
1. 正确理解分层抽样的概念; 2. 掌握分层抽样的一般步骤;3. 区分简单随机抽 样、系统抽样和分层抽样,并选择适当正确的方 法进行抽样。 教学重点 :正确理解分层抽样的定义,灵活应用 分层抽样抽取样本,并恰当的选择三种抽样方法 解决现实生活中的抽样问题。 教学难点 :灵活应用分层抽样抽取样本,并恰当 的选择三种抽样方法解决现实生活中的抽样问题。
概念解读
问题7:什么是分层抽样?
一般地,在抽样时,将总体分成互不 交叉的层,然后按照一定的比例,从 各层独立地抽取一定数量的个体,将 各层取出的个体合在一起作为样本, 这种抽样方法叫作分层抽样。 注意: (1)分层抽样要利用对总体事先 掌握的各种信息,并要考虑样本结 构与总体结构的一致性。 (2)当总体是由差异明显的几部 分组成时,往往选用分层抽样。
步骤1:根据已经掌握的信息,将总体分 成互不相交的层 分层 步骤2:根据总体的个体数N和样本容量n 计算抽样比k= n:N 求比 步骤3:确定每一层应抽取的个体数目,并使 每一层应抽取的个体数目之和为样本容量n 定数 步骤4:按步骤3确定的数目在各层 中随机抽取个体,合在一起得到容 量为n样本 抽样
任职年限 5年以下 5年至10年 10年以上 人数 300 500 200
试利用上述资料设计一个抽样 比为3:100的抽样方法。
小结
分层抽样的定义 分层抽样的步骤 分层 步骤1:
求比
步骤2:
定数
步骤3: 抽样 步骤4: